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The purpose of this study is to develop an analytical method to quantify 
the nitrogen present at the surface of paper by using X-ray photo-
electronic spectroscopy (XPS). A sample of softwood thermomechanical 
pulp (TMP) was treated with a cationic starch containing primary amines, 
while another one was treated with a cationic polymer containing 
quaternary amines. We also grafted monomers containing a quaternary 
amine to the fiber. Sheets were prepared and analyzed by XPS. The 
technique used allowed us to identify the type of amine and to give a 
semi-quantitative evaluation. 
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INTRODUCTION 
 

The surface of TMP fiber contains cellulose, hemicelluloses, lignin, and 
extractives. The extractives tend to redeposit on the fiber surface after pulping. They give 
a hydrophobic surface with only a few oxygen atoms. The chemical composition of the 
fiber surface affects its reactivity with various chemicals and the interactions between 
fibers. As for the cellulose and hemicelluloses, they provide the fiber surface mainly with 
hydroxyl groups and some carboxylic acid groups, making the surface more hydrophilic. 
On the other hand, the lignin contributes to a hydrophobic surface due to its large amount 
of aromatic units containing oxygen atoms. 

The addition of amine groups onto the fiber would change the surface composition 
and chemistry. They can be added by grafting or deposition of amine-containing 
polymers. As a result, they yield surfaces with positive charges. The goal of this study 
was to characterize the fiber surface composition by XPS to determine the efficiency of 
such chemical treatments. Mohammed-Ziegler et al. (2006) have demonstrated that 
Silanization of wood can be follow with XPS. 
 
XPS of Mechanical Pulp 

Dorris and Gray pioneered the application of XPS in the pulp and paper domain. 
They first studied the surface molecular structure of cellulose and lignin (Dorris and Gray 
1978a) and thereafter the surface of a mechanical pulp (Dorris and Gray 1978b). 

Based on the results of XPS analysis it is possible to separate various carbon 
groups into four classes (Dorris and Gray 1978a): 
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C1: Carbon-Carbon or Carbon-Hydrogen bonding  
C2: Carbon having a simple bond with only one oxygen 
C3: Carbon that bonds to only one oxygen carbonyl or two oxygen atoms, 
non-carbonyl 
C4: Carbon that bonds to an oxygen carbonyl and an oxygen non-carbonyl 

 
Figure 1 shows an XPS spectrum of cellulose and lignin. The XPS spectrum of 

cellulose (Dorris and Gray 1978a) exhibits broad C2 bands overlapped by two C1 and C3 
bands. Broad bands for oxygen are also observed. It is normal to obtain large C2 bands 
because cellulose mainly contains carbons related to one oxygen atom.  

Lignin presents a different spectrum. The oxygen band is less evident. It has a 
larger C1 band than cellulose with little evidence of C2 and C3 bands. These 
observations are in accordance with the basic structure of the Freudeberg lignin 
(Freudenberg and Neish 1968), C9H7.95O2.4 (OCH3) 0.92. 
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Fig. 1.  Lignin and cellulose XPS spectra 
 
 

An XPS spectrum of mechanical pulp is shown in Fig. 2 (Dorris and Gray 1978b). 
In this case a significant C2 and a C1 strip are much better defined than in the case of 
cellulose. On the other hand the C3 strip escarpment is generally less well defined. We 
thus have a spectrum that seems to be a composite of the cellulose and the lignin spectra. 
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Fig. 2.  Mechanical pulp XPS spectrum 
 

Table 1 shows the binding energy for ternary and quaternary amines (Wagner et 
al. 1979). R can be hydrogen or hydrocarbon and R’ can be hydrocarbon. It is thus 
possible to distinguish quaternary amine easily from other types by determining the 
binding energies. 
 
 

    Table 1.  Amine Binding Energy. 
 

Amine type Nitrogen 1s 

C-NR2 399.77 

C-NR’3 401.46 

 
Cationisation 

Adding quaternary amine covalently to polysaccharide is commonly used to 
produce cationic starch (Wurzburg 1986). This grafting reaction has been applied to 
cotton fibers to improve anionic dyes fastness (Seong and Koe 1998). Grafting of 
chemical pulp was also extensively studied (Schempp et al. 1983; Gruber et al. 1996; 
Gess et al. 1989). It is well established that cationisation of chemical pulp improves both 
retention and paper strength (Gruber et al. 1997).  

It was demonstrated that 2,3-epoxy-propyl-tri-methyl ammonium chloride 
(EPTMAC) can be grafted onto TMP fiber in aqueous alkaline solution (Montplaisir et al. 
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2006a). In all cases, including this study, alkali is required to catalyze the reaction. The 
alkali activates cellulose and hemicellulose to react with the epoxy groups of EPTMAC, 
forming an ether. A homogeneous hydrolysis of the epoxide can occur as an undesirable 
side reaction; the glycol produced cannot react further with cellulose or hemicelluloses. 

It was shown (Fig. 3) that cationic grafting improved the sheet strength properties 
and increased the adsorption of anionic fines and fillers (Montplaisir et al. 2006b). 
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Fig. 3.  Grafting reaction mechanism 
 
 
Oxygen to Carbon Ratio 

The important information obtained from XPS analyses is the oxygen-carbon 
atomic ratio (No/Nc), as defined in equation (1): 
 

)4321( CCCC
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o

+++
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For pure cellulose the theoretical value is 0.83 since we have 5 oxygen atoms for 
6 carbon atoms. Lignin has a ratio from 0.31 to 0.40 (Toth et al. 2007). For the purpose of 
this study, we used a ratio of 0.33. 

The extractives have a value approaching the theoretical value of 0.1 for abietic 
acid and 0.11 for oleic acid (Laine et al. 1994). Oxygen to carbon ratio of 0.12 was 
observed for the extractives of a softwood kraft pulp. 

The No/Nc ratio for mechanical pulp ranged between 0.4 and 0.5 for the 
unextracted pulp and between 0.55 and 0.65 for the extracted sample (Laine et al. 1994). 
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This increase is attributed to the very low level of oxygen of the extractives adsorbed on 
the fiber surface.  
 
Surface Treatment 

Cationic polyelectrolytes can be adsorbed easily on the fiber surface due to its 
anionic charge. Considering the fact that fibers contain charged groups on their surface, it 
is predictable that polyelectrolyte adsorption is governed by electrostatic interactions. It 
has been shown that the adsorption of highly charged cationic polyelectrolyte in 
electrolyte-free conditions occurs at a 1:1 charge stoichiometry (Winter et al. 1986). 
Adsorption of cationic starch or polyDADMAC ceases when the charges between the 
fiber and polyelectrolyte are completely screened (Tanaka et al. 1979; Lindström and 
Wågberg 1983; Van de Steeg et al. 1993). This adsorption contributes to the fixation of 
anionic contaminant to the fiber surface (Richardson et al. 2002; Bobacka et al. 1999). 
 
 
EXPERIMENTAL 

 
A sample of unbleached eastern Canadian spruce/balsam fir (70:30) TMP was 

taken after the twin-wire press at a Kruger mill in Trois-Rivieres (Quebec). Pulp 
consistency was approximately 32-38%.  

The technique used for grafting the pulp sample was similar to that described 
earlier (Montplaisir et al. 2006a). The grafting substance was EPTMAC, as shown in Fig. 
3. Surface treatment was carried out at room temperature by adding 400 meq/kg of 
cationic polymer for 30 minutes to the pulp at 4% consistency, followed by standard 
handsheet preparation according to the PAPTAC standard testing methods.  Standard 
handsheet preparation can be considered as a washing step. The handsheets were all air 
dried to avoid any variation in the results. Based on Hulten and al. (2006), the XPS 
oxygen to carbon ratio is sensitive to the drying method. Inari et al. (2006) have 
demonstrated that applying a heat treatment to beech wood increased the oxygen to 
carbon ratio at the surface. The cationic polymers used were a cationic starch containing 
secondary amine groups and a polyDADMAC containing quaternary amine groups.  

XPS analyses were performed using an “AXIS Ultra” instrument from “Kratos 
Analytical.” A 225 watt monochromatic aluminum source was used. A surface of 2 mm2 
at 4 positions was analyzed. Emission time was from 180 to 362 seconds with 90° 
emission angle. Deconvulsion analysis was performed with a SUN Sparc Station IPX 
computer (Vision 2). 
 
 
RESULTS AND DISCUSSION 
 

Table 2 summarizes the results extracted from the XPS spectra. As shown in Fig. 
4, the three zones studied corresponded to the carbon, oxygen, and nitrogen atoms, 
respectively. The nitrogen bands were much smaller and required a change of resolution 
to observe them.  
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Table 2.  Atomic % and Oxygen-to-Carbon Ratio from XPS Spectra. 
 

TMP Grafted 
TMP

Starch 
TMP

PolyDADMAC 
TMP

C1 24.63 23.32 39.88 32.95
C2 36.15 35.36 28.27 33.52
C3 7.47 8.70 6.64 6.30
C total 68.26 67.38 74.78 72.77
O 31.55 32.12 24.71 26.56
N1 0.18 0.20 0.43 0.16
N2 0.00 0.30 0.08 0.51
N total 0.18 0.50 0.51 0.67
No/Nc 0.46 0.48 0.33 0.36

At
om

 (%
)
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Fig. 4.  XPS analyses of untreated TMP 
 

For all pulps, the oxygen band exhibited the same shape and position when 
compared to the one shown in Fig. 5. However, the amount of oxygen on the surface was 
higher for the surface treatments rather than for the untreated TMP and the grafted TMP. 

If we compare Figs. 6 and 7, we observe a significant increase in the C1 band. 
Table 2 also shows a large increase in C1 for the surface treatments comparatively to the 
grafted or untreated TMP. This phenomenon could be attributed to the fixation of 
extractives on the surface of the fiber by a coagulant. Extractives are rich in C1 carbon 
and low in oxygen atoms. It is also shown that the cationic surface charge of the grafted 
TMP did not contribute to the phenomenon of contaminants fixation. These observations 
confirm the importance of the polymeric structure in the fixation mechanism. 
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Fig. 5.  XPS analyses of TMP-oxygen 
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Fig. 6.  XPS analyses of TMP-Carbon 
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Fig. 7.  XPS analyses of Starch-TMP-carbon 
 
 
 

Figures 8 to 11 show typical binding energies of nitrogen. Two bands were 
observed. N1 represents the non-quaternary amines and N2 the quaternary amines. We 
observed equivalent N1 bands in Figs. 9, 10, and 11 for the untreated TMP, grafted TMP, 
and the surface treatment with polyDADMAC, respectively. In these cases, the N1 band 
represented the nitrogen that was already present in the TMP. N1 exhibited a larger 
percentage for the surface treatment with starch. This observation confirms the 
attachment of primary amine starch to the fiber surface. 

The N2 band was completely missing from the spectra for the untreated TMP and 
the starch treated TMP. On the other hand, the quaternary addition of amine is obvious 
with regard to the grafted TMP and the polyDADMAC treatments. It is thus possible to 
attach more quaternary amine onto the fiber surface with polyDADMAC, compared to 
grafted TMP samples. Therefore, the polymeric nature of the coagulant allowed a greater 
concentration of polymer on the fibre surface. 

 
 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Montplaisir et al. (2008). “Grafted TMP surface,” BioResources 3(4), 1118-1129.  1126 

N 1sc/17
Etch Time 0 s
Pass Energy: 40   W.F.: -4.375
Total Acquisition Time 6 (mins)
Acquired On: 2003/ 11/ 19 14:26:28
Source: Mono(Al (Mono)) (225 W)

Name

N 1s

Pos.

398.5

Area

548.8

N
 1s

x 101

370

380

390

400

410

420

430

440

450

C
PS

410 408 406 404 402 400 398 396 394 392 390
Binding Energy (eV)

N1N1

N 1sc/17
Etch Time 0 s
Pass Energy: 40   W.F.: -4.375
Total Acquisition Time 6 (mins)
Acquired On: 2003/ 11/ 19 14:26:28
Source: Mono(Al (Mono)) (225 W)

Name

N 1s

Pos.

398.5

Area

548.8

N
 1s

x 101

370

380

390

400

410

420

430

440

450

C
PS

410 408 406 404 402 400 398 396 394 392 390
Binding Energy (eV)

N1N1

 
 

Fig. 8.  XPS analyses of TMP-nitrogen 
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Fig. 9.  XPS analyses of starch-TMP-nitrogen 
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Fig. 10.  XPS analyses of PolyDADMAC-nitrogen 
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Fig. 11.  XPS analyses of Grafted TMP-nitrogen 
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CONCLUSIONS 
 
XPS is an effective method to determine the changes in surface reaction of fibers. 

The main observations are:  
1. Enrichment of carbons associated with extractives on fiber 

surface is induced by a coagulant fixation mechanism. 
 
2. Tertiary amine content of the fiber surface is increased by the 

adsorption of amine-containing cationic starch. 
 
3. Quaternary amine can be grafted onto the fiber surface. 
 
4. Quaternary amine from polyDADMAC is added to the fiber 

surface through adsorption. 
 

In summary, it is possible to distinguish the non-quaternary from the quaternary 
amines. This method can be useful for studying any changes in fiber surface chemistry. 
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