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Switchgrass varieties grown under various environments were investi-
gated by dispersive and Fourier Transform Near-Infrared (NIR) spectro-
meters. The collected NIR spectra were analyzed using multivariate 
approaches. More specifically, principal component analysis (PCA) and 
projection to latent structures (PLS) regression techniques were 
employed to classify and predict characteristics of the switchgrass 
samples. The multivariate results were compared to reflectance indices 
that are commonly used to study the physiological performance of plants. 
From near infrared spectra, discrimination between the two growth 
locations was successfully achieved by PCA. Separation based on the 
ecotype and the rate of fertilizer applied to the field was also possible by 
the multivariable analysis of the spectral data. For the classification/ 
discrimination of the switchgrass samples, the near infrared spectra 
collected by the dispersive and the Fourier Transform spectrometers 
provided similar results. From the two near infrared data sets robust 
models were developed to predict non-structural carbohydrates content 
and the rate of nitrogen applied to the field. However, the spectra 
collected by the dispersive spectrometer resulted in more accurate 
models for these samples. 
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INTRODUCTION 
 
 Developing renewable energy from plants is an attractive proposition for many 
reasons, including minimizing release of sequestered carbon in fossil fuels.  Perennial 
energy crops such as switchgrass (Panicum virgatum L.) may improve agricultural 
sustainability through crop diversification, decreased erosion, and improved water quality 
compared with a traditional annual row crop system (Tolbert and Wright 1998).  This 
warm-season (C4) grass has been proposed for biofuel production in the central, mid-
western, and southeastern United States (McLaughlin 1998), and Canada. Stated traits for 
selecting switchgrass as a crop for energy and fiber production include high production 
rate, low production costs, low nutrient requirement, high water use efficiency, large 
range of geographic adaptation, ease of establishment by seed, adaptation to marginal 
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soils, and potential for carbon storage in soil (Christian and Elbersen 1998; McKendry 
2002; Samson and Omielan 1992; Sanderson et al. 1996). 

Two switchgrass ecotypes are generally defined based on morphological charac-
teristics and habitat preferences. Lowland ecotypes are vigorous, tall, thick-stemmed, and 
adapted to wet conditions, while upland ecotypes are short, rhizomatous, thin-stemmed, 
and adapted to drier conditions (Moser and Vogel 1995). Lowland cytotypes are 
tetraploids, while the upland cytotypes can be either tetraploids or octaploids (Martínez-
Reyna et al. 2001).  Switchgrass varieties have been cultivated since the 1930s, and new 
lowland and upland varieties are now being developed specifically for biomass 
production for biofuel (Taliaferro and Hopkins 1997).  Quality of biomass for energy 
purposes depends on the type of application: high lignin and cellulose content is more 
suitable for co-firing, while high cellulose content and non-structural carbohydrate 
content (sugars and starches) is desired for ethanol production.  Energy density, ash and 
nutrient content, and other bioenergy-related chemical traits vary widely among 
switchgrass ecotypes and varieties (Lemusa et al. 2002). High genetic variation in these 
important traits should make possible the development and selection of improved 
varieties for bioenergy production.  

In addition to differences between cultivars, growth conditions and cultural 
practices such as fertilization also have a significant effect on the chemical composition 
of switchgrass plants.  Nitrogen management is an important component of any non-
leguminous cropping system, especially bioenergy systems.  Nitrogen has important 
economic cost in switchgrass production, and as a waste product of energy production, an 
ecological cost as a potential contributor to air and stream pollution (FAIR 5-CT97-3701, 
2003).  Nitrogen application rates must maximize growth rate while maintaining low 
foliar nitrogen and ash concentrations for biomass combustion applications.  High ash 
concentrations could cause corrosion, slagging, and fouling of the boilers and other 
components of the power plant, decreasing efficiency and increasing maintenance costs 
(Miles et al. 1996), while high nitrogen content increases NOx emissions.  

Widespread interest in the use of biomass for bioenergy and biomaterials 
production has increased the demand for efficient, accurate analytical methods.  Current 
methods (Karr and Brink 1991; Karr et al. 1991; American Society for Testing and 
Materials 1993) for chemical characterization of biomass feedstock are not applicable in 
a commercial setting because they are very expensive (labor intensive) and cannot 
provide analytical information in a time frame useful for feedstock management and 
process control. The expanding application of spectroscopic methods to crop production, 
both remote sensing and near-range, will allow for the rapid assessment of plant 
characteristics.  Rapid biomass compositional analysis utilizing near infrared techniques, 
which may instantly provide information of heating value and contents of sugars, lignin, 
and ash, is in high demand for biomass feedstock suppliers, bio-ethanol manufacturers, 
and bio-power producers (Hames et al. 2003).  NIR has been successfully used to predict 
total nitrogen in forage (Valdes et al. 2006) and nitrogen deficiency in corn (Clay et al. 
2007).  However, mixed success has been reported for the use of NIR spectra in 
quantifying biochemical characteristics, particularly when used in conditions of high 
environmental or genetic variability.  The use of multiple indices has been suggested as a 
way to improve the predictive capacity of spectra (Belanger et al. 2005; Prasad et al. 
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2007), while multivariate methods such as principal components analysis (PCA) are 
another alternative statistical technique. The quantification of sugars by mid-FTIR has 
been successfully used for plant extracts (Cadet 1998), and models from NIR spectra 
have predicted starch content of sweet potato (Lu et al. 2006), and total sugars in intact 
fruit (Walsh et al. 2000).  For biomass, the quantity of easily extractable carbon may be 
important in determining pre-treatment methods. 

As a step towards rapid biomass compositional analysis, the goal of this study is 
to conduct a comprehensive evaluation of the feasibility of NIR technology, including 
both dispersive (D-NIR) and Fourier Transform (FT-NIR) near infrared, in differentiating 
switchgrass ecotypes and varieties, and for the evaluation of environmental effects on 
plant composition.  Specific objectives are: 1) to determine the extent of spectral 
variation between cultivars and ecotypes, and examine the relative abilities to distinguish 
between these using principal components analysis (PCA) of D-NIR and FT-NIR data; 2) 
to determine the extent of spectral variation resulting from nitrogen (N) fertilization, and 
the relative abilities to distinguish between these using principal components analysis 
(PCA) of D-NIR and FT-NIR data; and 3) to determine the effects of cultivar and N 
fertilization on non-structural carbohydrate concentrations, and test the ability to predict 
these parameters using Projection to Latent Structures (PLS) models constructed from D-
NIR and FT-NIR data.  The hypothesis tested is that NIR scan readings in combination 
with principal component analysis (PCA) can provide rapid classification of switchgrass 
samples without previous statistical calibration curves. 
 
 
EXPERIMENTAL 
 
Plant Materials 

Tables 1 and 2 summarize the information about the twelve cultivars. 
 
Table 1. Treatment Description of Switchgrass Cultivars 

Treatment # Ecotype 1 Variety Nitrogen applica-
tion, kg ha-1 Location 

1 Lowland Cave-in-Rock 0 Knoxville 
2 Lowland Alamo 0 Knoxville 
3 Lowland Kanlow 0 Knoxville 
4 Upland Shelter 0 Knoxville 
5 Upland NC 1-16 0 Knoxville 
6 Upland NC 2-16 0 Knoxville 
7 Lowland SL-93-3  Milan 
8 Lowland GA-993  Milan 
9 Lowland GA-992  Milan 
10 Lowland Alamo 0 Milan 
11 Lowland Alamo 67.2 Milan 
12 Lowland Alamo 201.7 Milan 

1 Taliaferro, C.M. 2002. Breeding and selection of new switchgrass varieties for increased 
biomass production http://www.ornl.gov/info/reports/2002/3445605360105.pdf  accessed January 
8, 2007, and Bouton, J.H . Bioenergy crop breeding and production research in the southeast – 
final report for 1996 to 2001. http://bioenergy.ornl.gov/pdfs/TMUniv_Georgia_final_report.pdf 
accessed January 8, 2007 
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Table 2. Characteristics of Switchgrass Cultivars at Time of Harvest 

Treatment 
# Cultivar 

Nominal 
Height and 
Range (m) 

(Range) 

Mean Stem Base 
Diameter (mm) 

(Standard 
Deviation) 

Characteristic Colors 
and visual description 

1 Cave-in-
Rock 

1.32 
(1.12 – 1.52) 

2.92 
(0.31) 

Dark green leaves 
Dark pink stems 

50% tan seeds fallen off 

2 Alamo 0.96 
(0.84 – 1.12) 

2.78 
(0.33) 

Light green leaves 
Pale green stems 
Seeds fallen off 

3 Kanlow 1.73 
(1.29 – 2.01) 

3.64 
(0.44) 

Light green leaves 
White w/ brown patches 

on stems 
Tan seeds present 

4 Shelter 1.04 
(0.91 – 1.12) 

2.28 
(0.38) 

Dark green leaves 
Yellow stems 

Seeds fallen off 

5 NC 1-16 2.01 
(1.55 – 2.44) 

4.01 
(0.57) 

Light green leaves 
Yellow stems 

Brown bold seeds 

6 NC 2-16 1.70 
(1.24 – 1.98) 

4.53 
(0.97) 

Light green leaves 
30% pink on stems 

Pink seeds 

7 SL-93-3 2.04 
(1.93 – 2.16) 

3.63 
(0.80) 

Brown with some light 
green leaves 

Light green stems 
Tan seeds present 

8 GA-993 2.24 
(2.01 – 2.46) 

3.52 
(0.89) 

Light green and brown 
leaves 

Light green stems 
Tan seeds present 

9 GA-992 2.36 
(2.11 – 2.59) 

4.13 
(1.14) 

Light green and brown 
leaves 

Light green stems 
Tan seeds present 

10 Alamo 2.06 
(1.78 – 2.29) 

3.66 
(0.80) 

Light green and brown 
leaves 

Light green stems 
50% tan seeds fallen off 

11 Alamo 2.17 
(2.08 – 2.24) 

3.40 
(0.98) 

Light green and brown 
leaves 

Pale green stems 
Tan seeds present 

12 Alamo 2.24 
(2.08 – 2.31) 

4.30 
(1.11) 

Light green and brown 
leaves 

Pale green stems 
50 % tan seeds fallen off 

 
Twelve switchgrass cultivars of experimental populations were included in the 

study. Among the twelve, six were grown in Knoxville, in eastern Tennessee, and the 
other six were from Milan in western Tennessee. Both lowland and upland ecotypes were 
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included, and three different nitrogen fertilization treatments were applied to the Alamo 
variety grown in Milan.  

The experiment was conducted in a randomized block design with two replica-
tions and three sub-samplings (a total of 72 samples). All of the switchgrass samples at 
both locations were freshly harvested in the fall of 2006 and transported to the Knoxville 
campus of the University of Tennessee in a time window of three days. Samples were 
oven-dried at 105 °C for 12 hours, then ground using a Wiley Mill (Thomas Scientific, 
Swedesboro, NJ) to 5 mm particle size. The use of dried and ground samples in this study 
reduces sample variation and the effects of tissue water on spectral reflectance.  
 
Collection and Processing of Spectral Data 

Near infrared spectra were collected on the dried samples using both D-NIR and 
FT-NIR.  Thirty (for D-NIR) or thirty two (for FT-NIR) scans were collected and 
averaged into a single average spectrum. Three average spectra were taken for each 
sample. Table 3 lists the instruments and the corresponding scan parameters.  The 
complete NIR data sets (D-NIR and FT-NIR) were transferred to Unscrambler v. 9.2 
software (CAMO Software Inc., Woodbridge, NJ). The reflectance spectra were con-
verted to absorbance spectra. The data sets were reduced by averaging the spectra (D-
NIR and FT-NIR) to a spectral data set of 4 nm intervals. Averaging the spectra reduces 
the size of the spectra matrix and significantly minimizes the time required to compute 
the multivariate models without decreasing their quality. The data were then mean-
normalized.  Multiplicative scatter correction (MSC) was also applied to compensate for 
multiplicative and/or scatter effects in the data. 

 
Table 3. NIR Instruments and Scan Parameters Used to Collect the Near 
Infrared Spectra 

Instrument Instrument 
type Scan range Scan 

resolution Co-addition 
Diameter of 

scanned 
area 

Advanced 
Spectral 

Devices® 
D-NIR 350-2500 nm 1 nm 30 40 mm 

Varian 
Excalibur® FT-NIR 1000-2500 

nm 0.39 nm 32 10 mm 

 
In near infrared spectroscopy, the influence of compounds usually reflects 

throughout the whole spectral region instead of only within a certain specific region. As a 
result, visual analysis of NIR spectra does not reveal fingerprints of chemicals in the near 
range (700-2500 nm) as they are in the mid range (400-4000 cm-1). However, a NIR 
spectrum is a unique representation of a substance or a mixture. Signals from bonds such 
as C-O, C=O, O-H, and N-H, as well as the overlap of their first and second overtones are 
included within this region. The composition-informative spectra need to be combined 
with multivariate mathematical methods to extract structural information. Therefore, 
multivariate models are, besides being predictive, also useful in the interpretation of 
overlapping and wide overtone bands. All of the multivariate analyses of NIR data were 
performed using a commercial software Unscrambler v. 9.2.  Principal component 
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analysis (PCA) was used to analyze the spectra of dry samples, using all samples for the 
analysis of cultivars, and Alamo only for analysis of nitrogen fertilization effects. PCA is 
a non-direct analysis of spectral data and can be employed to visualize outliers, trends, or 
clusters in large data sets. In order to interpret/compare the loadings obtained for the D-
NIR and FT-NIR data sets, a factor rotation procedure (Varimax rotation) was performed 
using Matlab (Abdi 2003). 

Projection to Latent Structures (PLS) was applied to build regression models 
between the spectral data and parameters of interest, such as amount of fertilizer applied 
to the field, as well as starch and sugar content. PLS models were constructed by cross-
validation, and the number of PLS-components was selected as the minimum in the 
residual variance versus components plot.  PLS is a regression technique that provides a 
model for the relationship between a set of predicator variables X (n objects, m variables) 
and a set of response variables Y (n objects, p responses). If the spectral data contain 
information about the property of interest, then a reliable model can be constructed. The 
multivariate calibration models were constructed using the full cross-validation 
technique. The cross-validation systematically removed a single sample from the data set, 
constructed the model with the remaining samples, and used that model to predict the 
value of the Y variable for the extracted sample (validation). In addition to a coefficient 
of correlation for the calibration (Rcalibration) and for the validation model (Rvalidation), a root 
mean square error of calibration (RMSEC) and root mean square error of cross validation 
(RMSECV) were provided to assess the quality of the PLS models. Jack-knifing was 
employed to study the significance of the X variables in the regression coefficients plot, 
which expresses the link between the variation in the predictors (wavelengths) and the 
variation in the response (sugar and starch content, fertilization effects). 

 
Reflectance Indices 

The data set collected on dry samples by D-NIR was used to calculate several 
reflectance indices that have been proposed for the assessment of crop characteristics.  
All are based on reflectance of plant pigments at 680 nm and 705 nm, which are sensitive 
to genetic and environmental factors, as compared to a reference value.  Specific indices 
were selected to represent simple, normalized and chlorophyll: carotenoid indices (Sims 
and Gammon 2002).  The R4 estimates chlorophyll content by a simple ratio of 
reflectance at 430 to reflectance at 672 (Brach et al. 1981).  The Structure Independent 
Pigment Index (SIPI) assesses the ratio of chlorophyll to carotenoid pigments, using an 
infrared wavelength to account for structural changes that may be related to observed 
pigment changes (Penuelas et al. 1995), and is defined as: 

 
SIPI = (R800 – R445) / (R800 – R680)      (1) 
 

where Rx = reflectance at a wavelength of x nm 
The Plant Senescence Reflectance Index (PSRI) has been proposed to describe 

changes in the ratio of chlorophylls to carotenoids in leaves as a result of senescence 
(Merzlyak et al. 1995): 
 
 PSRI = (R678 – R500) / R750       (2) 
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ND680 and ND705 are normalized indices developed by Sims and Gamon (2002) based 
on the normalized difference vegetation index (NDVI) and on the maximum absorbance 
of total chlorophyll at 705 nm. These indices were calculated on the raw reflectance data. 

 
ND680 = (R800 – R 680) / (R800 + R 680)     (3) 
 
ND705 = (R750 – R 705) / (R750 + R 705)     (4) 

 
ANOVA was used to test for effects of fertilization and of cultivar on the above indices, 
with a Duncan post-hoc used when treatment effects were significant (SPSS version 13.0, 
SPSS Inc. Chicago, IL). 
 
Non-Structural Carbohydrates 

Soluble sugars were extracted twice with 85% ethanol at 90° for 10 min.  The two 
aliquots were combined, the extract was reduced under vacuum until all ethanol was 
removed, the extract was rehydrated to a set volume, and then sugars were measured by 
HPLC.  The analysis was carried out on a Waters 2695 Alliance Separations Module 
coupled with a Waters 2414 Refractive Index Detector.  The sugar separation utilized a 
Biorad Aminex HPX-87P column heated to a constant temperature of 80ºC in an external 
column heater. Standard solutions were prepared using HPLC-grade glucose (Thermo 
Fisher Scientific, Waltham, MA).  Sugars other than glucose were found to make up only 
a small fraction of soluble sugars (<5%) and were not used in analysis.  The remaining 
residue was dried and starch was converted to sugars using the enzymatic digestion 
method described by Hendrix (1993), which uses α-amylase and amyloglucosidase to 
break glucoside bonds in starch and dextrins into glucose units, with minimal effect on 
cell wall polysaccharides.  Soluble starch (Fisher Scientific S-516) was used as a 
standard.  ANOVA was used to test for effects of fertilization and of cultivar, with a 
Duncan post-hoc used when treatment effects were significant, and PLS models were 
developed for sugar and starch. 

 
 

RESULTS AND DISCUSSION 
 

Figure 1 shows some D-NIR (a) and FT-NIR (b) spectra collected on the oven-
dried switchgrass samples. All absorbance spectra collected by the two methods had 
generally similar spectral patterns. Prominent absorbance bands were observed at the 
same characteristic wavelengths across all samples, such as bands at 1475, 1723, 1925, 
2100, 2275, and 2330 nm. The bands at 1925, 2100, and 2275 nm were generally 
assigned to OH stretching vibration, the bands at 1723 and 2330 nm were attributed to C-
H stretching vibration, and the peak at 1475 nm was assigned to N-H stretching vibration 
(Shenk et al. 2001). 
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Fig. 1. D-NIR (a) and FT-NIR (b) spectra of switchgrass samples 

 
Principal Component Analysis (PCA) followed by Varimax rotation was first 

conducted on the whole data sets (D-NIR; FT-NIR), in order to determine the variation 
across all samples, and between cultivars.  Eigenvalue scores indicated that the first three 
principal components accounted for most of the total variance (97% for the D-NIR data 
and 98% for the FT-NIR).  These patterns in the spectra indicate that the switchgrass 
samples could be classified by their location of growth (Knoxville versus Milan, Fig. 2).  
While growth location was associated strongly with PC1 in the model constructed from 
D-NIR data, the separation was not as clear and more closely associated with PC2 in the 
model constructed from FT-NIR data.  Both approaches indicated measurable differences 
in switchgrass chemistry between growth locations, the result of differences in soils, 
and/or climate between the two locations. 
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Fig. 2. Scores plot of the first two principal components derived from D-NIR (a) and FT-NIR (b) of 
absorbance spectra of dried switchgrass samples 
 
 

Varimax rotation was performed in order to maximize the variance of factor 
loadings by making high loadings higher and low ones lower for each factor. These PCA 
loadings describe the data structure in terms of variable correlation. Each variable has a 
loading on each PC. The loadings of the first two principal components (after Varimax 
rotation) for the two sets of spectral data (D-NIR and FT-NIR) are shown in Fig. 3. From 
these plots it was possible to identify the spectral regions that contributed the most to 
each principal component.  
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Fig. 3. Loadings (after Varimax rotation) of the first two principal components derived from D-NIR 
(a) and FT-NIR (b) of absorbance spectra of dried switchgrass samples 
 

Several significant bands were responsible of the classification of the samples. 
For the D-NIR data set (Fig. 3a), the significant bands of principal component one were 
1459, 1567, 1923, 2100, and 2285 nm, and for principal component two 1107, 1303, and 
1923 nm. For the FT-NIR data set (Fig. 3b), the bands at 1425, 1725, 1925, 2100, 2256, 
2296, and 2358 nm possessed high loadings.  The significant bands in the 1925, 2100 
regions suggest that these portions of the spectrum may have been the most affected by 
the growth environment.  The bands at 1725, 2256, 2296, and 2358 nm were generally 
assigned to C-H functional groups present in biomass components, and the bands at 1425, 
1925, and 2100 nm were assigned to the hydroxyl groups.  

In order to identify any spectral patterns related to the switchgrass varieties (in the 
absence of environmental differences) PCA was performed on the samples collected only 
at the Knoxville location. Figure 4 represents the scores plots obtained for the D-NIR and 
FT-NIR sub-data sets.  
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Fig. 4. Scores plot of the first two principal components derived from D-NIR (a) and FT-NIR (b) of 
absorbance spectra of switchgrass samples grown in Knoxville 
 

Especially for the FT-NIR data (Fig. 4b), there was a clear separation of upland 
(Shelter, NC-1-16, NC-2-16) and lowland (Cave-in-Rock, Alamo, Kanlow) ecotypes 
along PC2. Figure 5 shows the most significant wavelengths responsible for this 
discrimination. One band dominated the PC1 loadings at 1925 nm, which is usually due 
to hydroxyl groups present in biomass (Tsuchikawa and Siesler 2003).  More specifically, 
this band is related to the intramolecular hydrogen bond between water and OH of 
switchgrass components. Numerous bands were significant in the PC2 loadings (1425, 
1722, 1907, 1953, 2116, and 2260-2380 nm). The assignment of all these bands to 
specific switchgrass components was not possible due to the nature of near infrared, and 
more than one assignment is possible to give the observed bands.  The band at 1722 nm 
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resulted from the first overtone of CH stretching vibrations.  The band occurring at 1907 
nm was assigned to the combination band of free OH group stretching vibration.  The 
absorbance in the combination region 2260-2380 nm occurred for C-H functional groups 
present in cellulose, hemicellulose, and proteins (Shenk et al. 2001). 

In both models, Cave-in-rock could be picked out from other cultivars, and of the 
six cultivars compared here, only Cave-in-rock was of northern origin. This cultivar also 
had a significantly greater sugar and starch content at the time of harvest, as compared 
with other cultivars (Fig. 7a). 
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Fig. 5. Loadings plot of the first (a) and second (b) principal component derived from FT-NIR of 
absorbance spectra of dried switchgrass samples 
 

The lack of distinct clusters indicates that switchgrass chemistry varied widely 
within a cultivar.  Genetic analysis of cultivars and populations has found greater 
variation between individuals of a population than between cultivars (Casler et al. 2007), 
although latitude of origin also affects switchgrass development and yield (Van Esbroeck 
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et al. 2003; Elbersen et al. 2001).  FT-NIR models showed that the two cultivars 
originating in the southeast, NC-1-16 and NC-2-16, appeared to have a similar chemical 
composition, as did the two western cultivars, Alamo and Kanlow (Fig. 4).  

Reflectance indices calculated with specific wavelengths were also used to 
compare the different cultivars (Table 4). Of the 5 reflectance indices tested, SIPI, 
ND680, and ND705 were significantly different between cultivars.  Cultivar groupings 
by these 3 indices were similar, but did not necessarily coincide with plant color recorded 
from visual observation (Table 2).  Alamo and GA992 with light green leaves were 
grouped at one end of the spectrum with Shelter, which had dark green leaves at the time 
of harvest.  These had a relatively low ratio of carotenoids:chlorophylls, indicated by a 
low SIPI, which may have been due to higher levels of total chlorophyll, as indicated by 
the ND680 and ND705 indices.  At the far end of the range was SL-93-3, which showed 
senescence at the time of harvest, and Cave-in-Rock.   

 
 

Table 4. Values of 5 Different Reflectance Indices by Cultivar, and by Nitrogen 
Application Rate.   

Treatment 
# Cultivar SIPI PSRI ND680 ND705 R4 

1 Cave-in-
Rock 

1.719 cd 
(0.016) 

0.317  
(0.005) 

0.329 a 
(0.004) 

0.126 a 
(0.003) 

8.286 
(0.353) 

2 Alamo 1.644 ab 
(0.018) 

0.276 
(0.005) 

0.346 de 
(0.007) 

0.132 d 
(0.003) 

7.371 
(0.163) 

3 Kanlow 
1.615 
abc 

(0.017) 

0.218 
(0.008) 

0.358 bcd 
(0.005) 

0.137 bcd 
(0.002) 7.590 

(0.121) 

4 Shelter 1.575 a 
(0.014) 

0.255 
(0.010) 

0.377 e 
(0.005) 

0.136 cd 
(0.002) 

7.698 
(0.081) 

5 NC 1-16 1.665 cd 
(0.025) 

0.311 
(0.014) 

0.347 de 
(0.008) 

0.132 ab 
(0.002) 

7.700 
(0.180) 

6 NC 2-16 
1.700 
bcd 

(0.009) 

0.322 
(0.014) 

0.336 abc 
(0.003) 

0.129 abc 
(0.002) 7.634 

(0.211) 

7 SL-93-3 1.731 d 
(0.026) 

0.308 
(0.006) 

0.318 a 
(0.007) 

0.121 a 
(0.003) 

7.691 
(0.238) 

8 GA-993 
1.717 
bcd 

(0.036) 

0.298 
(0.013) 

0.314 ab 
(0.010) 

0.119 d 
(0.004) 7.019 

(0.150) 

9 GA-992 1.607 a 
(0.044) 

0.251 
(0.015) 

0.352 cde 
(0.014) 

0.134 cd 
(0.006) 

7.449 
(0.249) 

10 Alamo 
0 N 

1.613 
(0.030) 

0.272 a 
(0.008) 

0.359 
(0.011) 

0.138 
(0.005) 

7.653 
(0.244) 

11 Alamo 
Low N 

1.678 
(0.019) 

0.275 a 
(0.005) 

0.331 
(0.006) 

0.125 
(0.002) 

6.627 
(0.186) 

12 Alamo 
High N 

1.678 
(0.020) 

0.287 b 
(0.009) 

0.332 
(0.006) 

0.126 
(0.002) 

7.494 
(0.115) 

Standard errors are shown in parentheses.  Letters indicate a significant difference between 
treatments at p>0.05, with treatments 10-12 analyzed separately. 
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Although senescence was not visually noted in the latter cultivar at the time of 
harvest, phenology is known to be affected by photoperiod (Van Esbroeck et al. 2003), 
and like other genotypes from the north, would be at a later stage of development than 
local genotypes when grown in the south (Parrish and Fike 2005).  However, it is 
possible that chlorophyll loss during post-harvest handling was different between 
cultivars, resulting in differences in the visible portion of the spectrum (Sestak 1971). 

There was no clear relationship found between reflectance indices based on the 
visible portion of the spectrum and either of the first two principal components from NIR 
models.  Both reflectance indices and NIR models may be detecting chemical differences 
resulting from differing maturity between cultivars, as both growth stage and genotype of 
winter wheat have been shown to significantly affect a variety of reflectance indices 
(Prasad et al. 2007).  Although differences in reproductive development were noted 
(Table 2), neither reflectance indices nor NIR models grouped switchgrass cultivars by 
the presence/absence of seed, so observed differences appear to have been the result of 
switchgrass chemistry. 

Multivariate analysis was also performed on the cultivar Alamo from different 
growth environments (Table 1), to examine the ability of NIR to detect fertilization-
related differences between switchgrass samples.  Both D-NIR and FT-NIR showed clear 
spectral differences between plants grown at different fertility levels (Fig. 6), 
demonstrating that the environment had a dramatic effect on the chemical signatures of 
the biomass. 
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Fig. 6.  Scores plot of the first two principal components derived from NIR (a) and FT-NIR (b) of 
absorbance spectra of alamo variety grown under different amount of fertilizer. 
 
 

Of the five indices used to compare spectral data using in the 400-750nm range, 
only PSRI was sensitive to fertilization treatment of Alamo, with plants in the high 
fertility treatment being significantly different from the other two treatments.  At an 
application rate of 200 Kg ha-1, chlorophyll may be higher as N approaches the saturation 
point, as this rate of fertilization resulted in the greatest biomass production of Alamo 
(Miur et al. 2001). 
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Fig. 7.  Concentrations of soluble sugars and starch in switchgrass sample as related to a) 
cultivar and b) nitrogen application rate.  Bars indicate standard error.  Different letters indicate 
significant differences between cultivars at p<0.05. 
 
 Indices based on reflectance in the 350-1050 nm range and the use of multiple 
indices have been used successfully to classify corn foliage by nitrogen application rate 
(Clay et al. 2006; Strachan et al. 2001). The multivariate approach proved to be more 
efficient in classifying and identifying differences in switchgrass samples related to soil 
fertility.  A very strong model (Rcalibration = 0.97) was created to predict the amount of 
fertilizer that was applied to the field during the switchgrass growth. In this case, both 
data sets (D-NIR and FT-NIR) provided very similar models (Table 5). NIR with PCA 
has been used to predict with good accuracy the total nitrogen content of foliage in forage 
(Starks et al. 2004; Valdés et al. 2006).  The specific chemical differences between plants 
in differing fertilization treatments is unknown, but increases in foliar total N of 
switchgrass have been found with increasing fertilization (Bransby et al. 1998). The 
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ability to determine N of switchgrass will be necessary for fertility management, and for 
the selection of feedstock with low nitrogen content.  

Non-structural carbohydrates did not differ significantly between fertility 
treatments (Fig. 7b), but did differ between cultivars with a 6-fold difference between 
foliage of Cave-in-Rock and Kanlow.  This may be due to differences in the timing of 
growth cessation, as Cave-in-Rock was one of the smaller cultivars, but sugar content of 
plant tissue is also highly sensitive to the time of day so harvesting effects cannot be 
ruled out.  The multivariate approach was employed to develop regression models to 
predict the amount of starch and sugar present in the switchgrass samples by near infrared 
spectroscopy and to predict the amount of fertilizer applied to the field. Table 5 
summarizes the results for the different models developed with both, D-NIR and FT-NIR 
spectra. In general, the best models (higher correlation, lower RMSEC and RMSECV) 
were obtained when the D-NIR spectra were utilized. 
 
 
Table 5. PLS Models Developed with D-NIR and FT-NIR Spectra for Sugar, 
Starch, Total Non-Structural Carbohydrates (NSC) and Nitrogen Content 

Models D-NIR/FT-NIR Starch 
(mg/g)  

Sugar 
(mg/g) 

Total NSC 
(mg/g) 

Nitrogen  
Kg/ha 

Rcalibration 0.96 0.91 0.96 0.97 
RMSECCalibration 4.59 2.18 6.48 20.09 
Rvalidation 0.91 0.82 0.92 0.95 
RMSECVvalidation 6.83 3.11 8.95 27.11 
Nb PCs 4 3 4 2 

 
 
 
D-NIR 

 Most 
Significant 

Wavelenghts  
(nm) 

1091,1411 
1563,1910 
2099,2243 
2371,2451 

1411,1910 
2119,2255 
2371 

1107,1415 
1595,1910 
2119,2260 
2371 

1083,1603 
1771,1927 
2107 

Rcalibration 0.82 0.92 0.81 0.97 
RMSECCalibration 8.90 2.62 12.28 20.31 
Rvalidation 0.72 0.80 0.64 0.95 
RMSECVvalidation 10.82 4.22 16.60 27.38 
Nb PCs 3 6 4 2 

 
 
FT-NIR 

Most 
Significant 

Wavelenghts  
(nm) 

1513,1598 
1731,1983 
2045,2120 
2218,2312 

2350 

1460,1704 
1731,1922 
2056,2144 
2210,2337 
2272, 2439 

1704,1732 
2005,2133 
2221,2272 

1441,1505 
2043,2089 
2187,2241 
2350,2434 

 
A model to predict total non-structural sugar in switchgrass with a coefficient of 

correlation of 0.96 for the calibration and 0.92 for the cross validation model was built. 
Four principal components were needed to establish these models, and several 
wavelengths (1415, 1910, 2119, 2260, and 2371 nm) were found significant by jack-
knifing. The band at 1415 nm is assigned in the literature to the first overtone of hydroxyl 
groups, the band at 1910 nm is related to the interaction between carbohydrate hydroxyls 
and water, and the band in the 2260 nm region is attributed to the C-H stretch groups.  
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CONCLUSIONS 
 

The current study demonstrates the ability of using NIR methods for classifying, 
determining, and predicting characteristic features of switchgrass biomass that could be 
used as a feedstock for biofuel production. Classification of the samples by their growth 
location and their ecotypes were achieved, while no clear separation was obtained by 
varieties, demonstrating that the switchgrass chemical features were more dependent on 
growth conditions than varieties. NIR calibration models developed from the dispersive 
and Fourier Transform near infrared data were comparable with slightly better models 
with the D-NIR spectra. Robust models were built to predict characteristics such as 
starch, sugars, and total non-structural carbohydrates content, as well as the amount of 
fertilizer applied to the field during the growth. Results showed that NIR can be used as a 
tool for the rapid analysis of switchgrass, and may prove useful for the selection of 
cultivars or fertility regimes that will provide the most desirable qualities for use as a 
bioenergy feedstock. 
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