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Short date palm tree lignocellulosic fibers were used as a reinforcing 
phase in a polyepoxy thermoset commodity resin. Unmodified fibers 
as well as counterparts chemically oxidized using TEMPO catalyst 
mediation were used as fillers for composite materials prepared in a 
Resin Transfer Molding process. The preparation was facilitated in 
the case of the composites based on oxidized fibers. During the 
process, the front displacement of injected resin was more regular, 
more homogeneous, and faster in the case of oxidized fibers. The 
morphology, thermal and mechanical properties of the resultant 
composites were characterized by SEM, DSC, DMA, as well as 
three-point bending and Charpy impact tests. An elevated 
reinforcing capability of the oxidized fibers as compared to their 
unmodified counterparts was demonstrated, particularly by a high 
strain test in the glassy state. This confirmed the enhanced 
filler/matrix interface observed in such materials during the process 
and in the final composite as analyzed by SEM. No significant 
difference in reinforcing capability of the two kinds of filler was 
observed in the DMA analysis. 
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INTRODUCTION 
 

Lignocellulosic fibers display many well-known advantages as compared to their 
synthetic counterparts, including their being ecologically and toxicologically harmless, 
biologically degradable, and carbon dioxide (CO2) neutral. Furthermore, natural fibers 
are characterized by a huge degree of variability and diversity in their properties. They 
are available in various forms, give a feeling of warmth to the touch, and have a pleasant 
appearance. None of these properties are offered by other non-wood engineering fibers. 
Over the last two decades, a great deal of work has been dedicated to composites 
reinforced with natural fibers. However, only few studies have dealt with polymers 
reinforced with lignocellulosic fibers obtained from palm trees (Abu-Sharkh and Hamid 
2004; Wan Rosli et al. 2004; Kaddami et al. 2006; Bendahou et al. 2008 ; Sbiai et al.  
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2008; Bendahou et al. 2009). In the previous investigations (Kaddami et al. 2006; 
Bendahou et al. 2008; Sbiai et al.  2008), the reinforcing capability of palm tree fibers in 
thermoset or thermoplastic polymer matrices was demonstrated. In the case of epoxy-
based composites, expected and strong interactions gave rise to enhanced mechanical and 
thermal characteristics. An increase in the glass transition temperature and an 
improvement of the thermo-mechanical properties, bending moduli, stress at break 
values, and maximum absorbed energies were reported for composites based on fibers 
modified with acetic anhydride (Kaddami et al. 2006). The size of the fibers was also 
found to have an effect on the properties (Sbiai et al. 2008).  

Reinforcement is the physical expression of the microscopic balance at the 
matrix/filler interface that makes up a filler network. Thus, the adhesion filler/matrix is 
the most important parameter governing reinforcement. This adhesion can be enhanced 
through chemical or physical modification of the polymer and/or the filler. Natural fibers 
bear hydroxyl groups from cellulose and lignin, and the literature is full of contributions 
regarding the modification and the use of coupling agents to promote the adhesion 
between the filler surface and the matrix. Such modifications depend on the physico-
chemical nature of the matrix. 

Among modifications used to improve interfacial adhesion in natural 
fiber/polymer composites, oxidative treatments have received much attention during the 
seventies and eighties. Corona and plasma treatments were found to effectively enhance 
the interface in epoxy-based composites (Sakata et al 1993a,b), and chemical oxidative 
treatments have been widely reported in several studies for numerous composites of 
natural fiber and polymers. Many types of oxidants have been employed, e.g. 
dichromate/oxalic acid, ozone, potassium ferricyanide, ferric chloride, nitric acid, 
hydrogen peroxide, dicumyle peroxide, etc. (Sapieha et al 1989; Felix et al 1994; Cousin 
et al 1989; Kali ski et al. 1981; Raj et al. 1990; Felix and Gatenholm 1991; Flink et al. 
1988; Young 1978; Moharana et al. 1990; Gardinera and Cabasso 1987; Zang and 
Sapieha 1991; Iwakura et al. 1965; Jutier et al. 1988; Michell et al. 1978; Coutts and 
Campbell 1979; Tzoganakis et al. 1988; Sung et al. 1982; Philippou et al. 1982; Manrich 
et al. 1989; Sapieha et al. 1991). 

More recently, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated 
oxidation of polysaccharides bearing primary alcohols has been intensively studied. This 
type of oxidation makes it possible to selectively oxidize, in aqueous medium, primary 
alcohol groups into carboxyl groups in natural polysaccharides (Isogai, and Kato 1998; 
Isogai and Saito 2005; Isogai et al. 2005; Davis and Flitsch 1993; De Nooy et al. 1995 
Fukuzumi et al. 2009; Chang and Robyt 1996; Tahiri and Vignon 2000; Habibi et al. 
2006). 

In all of our previous studies the composites materials were prepared using the 
compression technique. For the present study our composites materials were prepared 
using the resin transfer molding technique (RTM), which has been widely used for 
composites processing (O'Flynn 2007; Octeau 2001; Chu 2003). The purpose of this 
process was to improve the quality (dry spots, voids) and processability and to minimize 
the material wastage. The interaction between matrix and reinforced fiber is particularly 
important to the RTM process (Nguyen-Thuc and Maazouz 2004).  
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Our most recent work explored the kinetics of oxidation of date palm tree fibers 
(Sbiai et al. 2010). These fibers are more complex as compared to those generally 
described in the literature, since natural fibers are a mixture of macromolecules 
(cellulose, hemicellulose, and lignin) with different kinetic reactions toward oxidation. 
As a continuation, the present paper describes an investigation of the effect of this 
oxidation on the RTM process and on the interfacial adhesion between the oxidized fibers 
and an epoxy matrix. 

 
 

EXPERIMENTAL 
 
Materials  
Polymer Matrix 

The polyepoxy matrix was obtained through a polymerization reaction of an 
epoxy prepolymer with an amine curing agent. The selected epoxy resin was di-glycidyl 
ether of bisphenol A (DGEBA) (Ref.: LY 556) supplied by Ciba-Geigy, and the curing 
agent was isophorone diamine (IPD) supplied by Fluka-Chemika. The characteristics of 
these components are presented in Table 1. The curing was carried out according to the 
following setup: 2 h at 80 °C, 2 h at 120 °C, and 2 h at 160 °C.  

 
Table 1. Chemical Characteristics 

Component Chemical structure Characteristics 

Prepolymer 
DGEBA 

 

Ciba Geigy 
LY 556 
n = 0.15 
M = 380 g/mol 
d = 1.169 g/cm3 

f = 2 

isophorone 
diamine 

 

Fluka–Chemika 
M = 170 g/mol 
d = 0.92 g/cm3 
 g = 4 

 
Reinforcement fiber preparation 

The lignocellulosic fibers were obtained by cutting date palm tree leaves into 
small pieces of approximately 5 cm long and 10 mm wide. The fibers were then extracted 
for 24 h in a Soxhlet reflux of a solvent mixture composed of acetone/ethanol (75/25). 
Subsequently, the discolored fibers were dried at room temperature. The used fibers were 
denoted as unmodified. The length and width of these fibers ranged from 2 to 10 mm, and 
0.2 to 0.8 mm, respectively. They were obtained by grinding and sieving the bleached 
fibers in a 0.1mm-hole sieve to eliminate particles designated as fines, after which they 
were further sieved through 0.8 mm holes to eliminate bigger fibers.  

Fibers oxidation experiments were made under the following conditions. The 
following samples were oxidized separately. Samples (fiber, cellulose, lignin, and 
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hemicellulose) (2 g, i.e., 12.35 mmol of anhydroglucose units) were dispersed in distilled 
water (200 ml) for 1 min with a mechanical agitator. TEMPO (32 mg, 0.065 mmol) and 
NaBr (0.636 g, 1.9 mmol) were added to the suspension, which was maintained at 4 °C. 
The sodium hypochlorite solution (10 %, 32.17 ml, 43.21 mmol) with pH adjusted to 10 
by addition of a 0.1 M aqueous HCl was set at 4 °C by means a thermocontrolled bath. 
The mixture was then added to the suspension, which was stirred mechanically.  

The pH was maintained at 10 during the reaction by addition of a 0.5-M NaOH 
solution. The temperature of the suspension was maintained at 4 °C by means of a 
thermocontrolled bath during the oxidation reaction. When the reaction time exceeded 12 
h, the kinetics became very slow and the solution turned a yellowish white. The reaction 
was stopped by adding 5 ml of methanol. 

The reaction mixture was neutralized to pH 7 with 0.1 M HCl. The oxidized 
sample was washed with distilled water, after which it was filtered and dried at room 
temperature. The fiber oxidation was characterized by various methods (IR, 
conductimetry, solid-state NMR, XPS, MEB, EDX, X-ray diffraction) (Sbiai and al 
2010).  In the following, the oxidized fibers are referred to as modified fibers. 
 
Composite Processing 

Composites were processed using the resin transfer molding (RTM) method. This 
process can be divided into four stages: preforming, mould filling, curing, and 
demoulding. The epoxy resin was stored in container A while container B contained the 
curing agent IPD. The resin mixtures were preheated at approximately 60 oC to reduce 
the viscosity. The resin was degassed for 20 min to prevent voids from forming during 
pumping. In container B, IPD was kept at room temperature under an argon atmosphere 
in order to avoid evaporation and carboxylation. A good circulation of the resin 
throughout the pump and pipes was necessary. A mold (100 × 60 × 6 mm3) made of a 
composite material, was preheated at 80 ◦C for 2 h before injection. A continuous mat of 
date palm tree fibers (either unmodified or modified (oxidized)) used as reinforcement 
was placed in the mold cavity under isothermal conditions. To observe the flow of the 
resin during the injection process, a transparent mold made of glass was used under 
equivalent conditions. A camera was employed to observe the process, which was 
deemed to have come to an end when the resin was seen to exit from the vent at the other 
side of the mold. Upon completion of the cure cycle, the solid composite parts were 
ejected and post-cured under the same conditions as the pure matrices. 

 
Methods 
Chemical composition of the fiber 

 The chemical compositions of the dried date palm tree fibers were determined 
according to French Standards (NFT12-011). It was thus possible to assess the weight 
fraction of cellulose, hemicelluloses, and lignin.  
 
Scanning Electron Microscopy (SEM) 

SEM was used to investigate the morphology of the different types of materials, 
as well as the filler/matrix interface. The microscope was an ABT-55. The specimens 
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were frozen in liquid nitrogen, fractured, mounted, coated with gold/palladium, and 
observed using an applied voltage of 10 kV. 

 
Differential Scanning Calorimetry (DSC) 

A Mettler TA3000 calorimeter was used to measure the glass transition 
temperature, Tg, which was taken as the onset temperature of the specific heat increment. 
The heating rate was fixed at 10 °C min-1, and scans were recorded under an argon 
atmosphere (flowrate10 mL min-1) in a temperature range between -100 and +200 °C. 

 
Dynamic Mechanical Analysis (DMA) 

DMA experiments were performed with a Rheometrics RDAII device, equipped 
for rectangular samples and working in shear mode. Values of the shear storage, G’, and 
shear loss, G”, moduli as well as the tangent of the loss angle, tanδ = G”/G’, were 
determined. This apparatus was especially dedicated to the study of films and composite 
materials. The average typical dimensions of the composite samples were 20x4x1 mm3. 
The tests were performed under isochronal conditions at 1 Hz, and each sample was 
heated from -120 to +200 °C at a heating rate of 2K/min. The maximum shear strain was 
equal to 0.2%. 

 
Non-Linear Mechanical Properties 

Three-point bending tests were performed according to the international ISO178 
standard to determine the flexural strength (MPa), the flexural modulus (GPa), and the 
total absorbed energy (J) of the composites. The testing machine was a 2/M type supplied 
by MTS (load cell: 10kN). The samples were parallelepiped bars with dimensions close 
to 60x10x5 mm3 and the distance between the supports was fixed at 50 mm. Tests were 
carried out at room temperature, and the data collected on five samples was averaged. 

 
 

RESULTS AND DISCUSION  
 
Chemical Analysis of the Fibers 

Results of the chemical composition of the different fibers are presented in Table 
2. It can be clearly seen that the chemical oxidation induced a significant decrease of the 
lignin content and an increase of that of the cellulose and hemicelluloses. This was 
explained by the oxidation followed by the dissolution of lignin during the TEMPO-
mediated oxidation.  

Fiber oxidation, i.e. the creation of carboxylic groups on the fibers, was 
characterized by various methods (FTIR, conductimetry, solid-state NMR, XPS, MEB, 
EDX, X-ray diffraction) (Sbiai et al. 2010). These various methods provided additional 
qualitative or quantitative information on the modification. According to theses analysis, 
the oxidation degree (DO) was 12% (Sbiai and al 2010).  

 
Observation of Resin Flow during Composite Preparation 

With regard to the observation of front displacement in the mat during the RTM 
experiments, there was a large difference between the two kinds of fibers. In fact, in the 
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case of unmodified fibers, the front displacement was slow and heterogeneous, whereas 
in the case of the oxidized fibers, it was faster and homogeneous. This difference is 
portrayed in Fig. 1, presenting the photos of the fronts taken after 15 seconds of resin 
injection. In fact, the distance covered by the resin front was higher in the case of the 
oxidized fibers. On the other hand, the mat of oxidized fibers was homogeneously 
traveled by the resin, as compared to the mat of unmodified fibers.  

 
Table 2. Chemical Composition of Date Palm Tree Fibers Before (raw dried palm 
tree fibers) and After (modified (oxidized) fibers) the Chemical Oxidative 
Treatment (Sbiai et al. 2010). 

Constituent Raw dried palm tree fibers  
(wt %) 

Oxidized fibers (wt %) 

Cellulose 
Hemicelluloses 
Lignin 

35 % 
28 % 
27 % 

46 % 
34 % 
12 % 

 
These differences could be explained by variations in compatibility between the 

resin and the filler in the two systems, giving rise to a difference of interaction at the 
resin/fiber interface. In fact, the carboxylic groups at the fiber surface, in addition to the 
low amount of lignin in the case of the modified fibers, helped increase the affinity of the 
epoxy resin with the oxidized fibers. These observations were very important for the 
control of the process. On the other hand, one can predict some effects of the fiber 
oxidation on the morphologies and the properties. 
 
Morphological Investigation of the Interfaces 

Figures 2 and 3 show SEM micrographs of freshly fractured surfaces of composite 
materials based on the polyepoxy matrix filled with unmodified and modified fibers, 
respectively. Reinforced materials were investigated. For each composite material, at 
least tree magnifications were used to reveal the effect of the fiber treatment on the 
interfacial adhesion. For the unfilled material, i.e. the thermoset matrix (Fig. 2-a), the 
fracture surface was rather smooth, as could be expected for brittle polymers. By 
comparing these micrographs with those of the composite materials (Fig. 2 b, c, d and e), 
the fibers could be clearly identified. The SEM micrographs in Fig. 2 indicated that the 
interfacial adhesion between the filler and the matrix was not very strong in the case of 
composites based on unmodified fibers. In fact, the fibers were pulled out from the matrix 
and their surface remained practically clean (see Figs. 2-b and 2-c). On the other hand, 
fracturing the samples did not lead to the palm tree fibers breakage (Figs. 2-d and 2-e). 
However, it is worth noting that the interaction between the unmodified fibers and the 
matrix was superior to that of the composite constituted of a hydrophobic matrix filled 
with unmodified fibers, such as unsaturated polyesters, polypropylenes or polyethylenes.    

In contrast, for the composites containing modified fibers, the micrographs in Fig. 
3 are evidence of a better adhesion between the matrix and the filler. One can observe the 
absence of holes around the fillers on the fractured surface, i.e. no debonding occurred. 
Nor was there any breakage of fibers during fracture (See Fig. 3-d and 3-e). On the other 
hand, the area surrounding the cellulosic filler seemed to be continuous with the matrix 
phase, and the epoxy resin appeared to be polymerized within the fiber lumens (see Figs. 
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3d and 3-e). This variation in interfacial adhesion between the composites based on 
unmodified and modified fibers is attributed to difference in the nature of physico-
chemical interactions that can be created at the interface. This difference can be explained 
from the stronger interaction developed by the carboxylic groups created on the modified 
fibers. On the other hand, the dissolution of lignin after fiber oxidation gave rise to an 
increase of the hydrophilic character of the fibers. As a consequence, the wettability of 
the fiber surface with regard to the epoxy resin - a necessary condition for good 
interfacial adhesion - was superior in the case of the modified fibers. The introduction of 
the epoxy resin within the lumen was evidence of this higher thermodynamic affinity 
between the fibers and the polyepoxy matrix.  

 

 
 

 
 

Fig. 1. RTM experiment: the resin front after 15 second of injection (at T° = 25°C  and P = 1.5 
bar) on a mat of (a) unmodified and (b) TEMPO-mediated oxidized date palm tree fibers 

(b) 

(a) 
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Fig. 2. Scanning electron micrographs of freshly fractured surfaces of polyepoxy /unmodified fiber 
composites with (a) 0 wt%, and (b, c, d, e) 10 wt % of unmodified date palm tree fibers at various 
magnifications 
 

 
 

(b) (c) 

(d) (e) 

(a) 
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Fig. 3. Scanning electron micrographs of freshly fractured surfaces of polyepoxy /modified fiber 
composites with 10 wt % of modified date palm tree fibers at various magnifications. 
 
Thermal Behavior of Palm Tree Fiber-Based Composite Materials 

As mentioned, the thermal behavior of date palm tree fiber-based composites was 
investigated by DSC. The glass transition temperatures, Tg’s, of these materials are listed 
in Table 3. The Tg of the unfilled epoxy matrix was around 155°C. Table 3 clearly shows 
that the introduction of the lignocellulosic fibers led to a decrease in Tg. This decrease 
was more pronounced in the case of composites based on unmodified fibers. 

(b) 

(c) 

(d) (e) 

(a) 

(d) (e) 
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The decrease in Tg could be explained by an unbalance of the stoichiometric ratio 
in the matrix as well as in the vicinity of the fibers after mixing with fibers. The fibers 
could have more affinity with one component as opposed to with another. This resulted in 
a hindering of the cross-linking process of the polyepoxy resin.  

These results were completely opposite to those obtained in the case of 
composites based on an industrial epoxy matrix (DGEAB (AW106)/Jeffamin (HV953U)) 
supplied by CIBA-Geigy. For the latter composites, an increase in Tg was observed after 
the introduction of the lignocellulosic filler (Kaddami et al 2006; Sbiai et al  2008). This 
difference could be attributed to the difference of resin and polymerization kinetics. 

 
Table 3. The Glass Transition Temperature, Tg, Determined from DSC 
Measurements, the Main Relaxation Temperature, Tα, the Rubbery Storage 
Shear Modulus at Tg + 50 °C, the G’c, of the Composite Materials and the 
Relative Shear Modulus, G’c/G’m (where G’m refers to the rubbery shear storage 
modulus of the neat epoxy) Determined from DMA Experiments 

Tg Tα G’c 
Sample 

°C °C Mpa 
G’c /G’m 

Neat epoxy 155 150 9.69 (G'e) 1 

5 wt% 147 148 14.4 1.49 

10 wt% 148 148 22.2 2.29 
Composites 
based on 
unmodified fibers  15 wt% 145 149 25.9 2.67 

5 wt% 147 146 11.5 1.19 

10 wt% 137 145 17.8 1.84 
Composites 
based on oxidized 
fibers 15 wt% 137 148 16.4 1.69 

 
Mechanical Behavior 

The mechanical behavior of all specimens was investigated under both linear 
(DMA measurements), non-linear conditions (three-point bending experiments), and 
Charpy impact tests. 
 
Dynamical mechanical analysis 

The dependence of log G’, i.e. the logarithm of the shear storage modulus, and the 
loss factor tan δ, vs. the temperature at 1Hz are displayed in Figs. 4 and 5, for composite 
materials based on unmodified and modified fibers, respectively. 

All materials exhibited a relaxation process that was associated with the glass-
rubber transition of the matrix, displayed as a sharp decrease in modulus and a 
concomitant maximum of the loss factor. This relaxation process, denoted α, involved the 
release of cooperative motions of the chains between crosslinks. The relaxation 
temperature, Tα, corresponding to the maximum of the loss factor is listed in Table 3, and 
was found to be approximately 150°C for all materials. A slight decrease in Tα was 
observed for the composites based on modified fibers; however it was less significant 
than the one observed for the Tg, as obtained by DSC. 
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Fig. 4. (a) The shear storage modulus Go, and (b) the loss factor tan δ vs. temperature at 1 Hz for 
composites based on unmodified date palm tree fibers with (◊)0, (Δ) 5  , (O) 10 and (X) 15 wt.-% 
of filler 
 

From the dependence of log G’ vs. temperature, it was clear, for both kinds of 
fibers (oxidized and not oxidized), that the modulus at the rubbery state increased with 
the fibers content. However, it was difficult to observe any significant effect of the filler 
at low temperature, i.e. in the glassy state. A simple mixing rule rendered it possible to 
account for this fact. As is well known, the exact determination of a sample’s glassy 
modulus depends on the precise knowledge of the sample dimensions. On the other hand, 
the water absorption could affect the exact determination of the glassy modulus. 
Therefore, the reinforcing effect of the filler was estimated in the rubbery region of the 
polymer matrix. The values of the rubbery shear modulus are reported in Table 3, as are 
the relative rubbery modulus values corresponding to the ratio of the rubbery modulus of 
the composites, G’c, divided by that of the neat matrix, G’m. Since the modulus was not 
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perfectly constant as a function of the temperature, the G’ values reported in Table 3 
correspond to averages.  

For all the composites, the reinforcement effect of the lignocellulosic filler 
(modified or unmodified) was observed in the rubbery sate. It could be quantified through 
the values of the relative rubbery modulus, which increased up to 1.84 and 2.67, 
respectively, for the composites based on the modified and unmodified fibers. The 
increase in modulus upon filler addition was ascribed to the difference between the 
modulus of the neat matrix (polyepoxy) and that of the lignocellulosic fibers, as well as to 
the decent interactions at the interfaces of these composites. No significant effect of the 
fiber modification was observed on the rubbery modulus despite the fact that TEM 
microscopy demonstrated the presence of better interactions at the interface in the case of 
the composites based on modified fibers. 
 

 

         
Fig.5. (a) The shear storage modulus Go, and (b) the loss factor tan δ vs. temperature at 1 Hz for 
composites based on modified date palm tree fibers with (◊)0, (Δ) 5  , (O) 10, and (X) 15 wt.-% of 
filler. 
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High strain behavior (three-point bending test) 
Storage shear modulus values measured through DMA experiments were 

determined at room temperature. High strain experiments should provide information on 
the mechanical properties at the glassy state. Figure 6 gives typical load vs. displacement 
curves obtained from the three-point bending experiments for the neat polyepoxy matrix 
and composites filled with 15 wt.-% of modified and unmodified date palm tree fibers. 
These curves were obtained in the glassy state of the matrix, and the tests were conducted 
for all materials filled with 5, 10, and 15 wt.-% of modified and unmodified date palm 
tree fibers. The mechanical properties derived from these experiments are presented in 
Fig. 7. 

Panels a and b of Fig. 7 show the evolution of the shear modulus and the upper 
yield stress as a function of the filler content. The data were obtained from the three point 
bending tests. As expected, the composites were more brittle than the neat matrix. The 
composite material reinforced with the modified filler displayed higher mechanical 
properties as compared to the composite filled with the unmodified filler. In fact, the 
composites with modified fibers showed a higher modulus and a higher upper yield 
stress.  

 
 

Fig.6. Load versus displacement curves obtained from three-point bending tests performed at 
room temperature (25 °C) for epoxy-based composites filled with : (Δ) 0, (O)15wt%  of non-
modified  fibers and (◊)15 wt % of oxidized palm tree fibers. 

 
 

Charpy impact tests 
Figure 8 shows the results of Charpy impact tests. The absorbed energy at break is 

presented as a function of the filler content. These tests confirmed that the composites 
were brittle. In fact, a lower energy was required for breaking the composite materials as 
compared to the neat matrix. On the other hand, and within the error margins, no 
significant difference was observed between the composites based on modified and 
unmodified fibers.  
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Fig. 7a. Mechanical properties as functions of the filler content, obtained from three-point bending 
tests of epoxy based composites filled with modified and unmodified fibers. a) shear modulus;   
b) upper yield stress 

        
Fig. 7b. Mechanical properties as functions of the filler content, obtained from three-point bending 
tests of epoxy based composites filled with (O) modified and (◊) unmodified. a) shear modulus;  
b) upper yield stress 

 
Fig. 8. The absorbed energy as a function of the filler content, obtained from Charpy impact tests 
of epoxy based composites filled with (O) modified and (◊) unmodified fibers fibers 

(b) 

(a) 
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CONCLUSIONS 
 

1. The results obtained from this study show that the preparation of composites 
using an RTM process was facilitated in the case of composites based on oxidized fibers. 
During the process, the front displacement of injected resin was regular, homogeneous, 
and faster in the case of oxidized fibers. The morphology, thermal, and mechanical 
properties of polyepoxy reinforced with lignocellulosic fibers extracted from date palm 
trees were also investigated.  
2. Thermal properties from DSC measurements showed that the glass transition 
temperature of the composites, mainly those based on oxidized fibers, was lower than 
that of the neat matrix.  
3. Dynamic mechanical analysis showed a significant increase of the rubbery 
modulus when lignocellulosic, unmodified and oxidized fibers were introduced into the 
polymer. No significant difference of the rubbery modulus between the two families of 
composites was observed.  
4. Analysis of the high-strain mechanical proprieties (three-point bending tests) 
demonstrated some reinforcement of the oxidized fibers as compared to their unmodified 
counterparts. This confirmed the microscopic analysis, which pointed at a better adhesion 
at the fiber/matrix interface in the case of the composites comprising the oxidized fibers. 
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