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In the present study, classical statistical tool Response Surface 
Methodology (RSM) was adopted for the optimization of process 
variables in the bioconversion of pretreated sugarcane bagasse into 
ethanol by cellulase and Candida wickerhamii MTCC 3013 based on 
Central Composite Design (CCD) experiments. A 23 five level CCD with 
central and axial points was used to develop a statistical model for the 
optimization of process variables such as incubation temperature (25 – 
45°) X1, pH (5.0 – 7.0) X2, and fermentation time (24 – 120 h) X3.  Data 
obtained from RSM on ethanol production were subjected to analysis of 
variance (ANOVA) and analyzed using a second-order polynomial 
equation, and isoresponse contour plots were used to study the 
interactions among three relevant variables. Maximum response for 
ethanol production was obtained when applying the optimum values for 
temperature (33°C), pH (5.7), and fermentation time (104 h). Maximum 
ethanol concentration (4.28 g/l) was obtained from 50 g/l pretreated 
sugarcane bagasse at the optimized process conditions in aerobic batch 
fermentation. Various kinetic models such as Modified Logistic model, 
Modified Logistic incorporated Leudeking – Piret model, and Modified 
Logistic incorporated Modified Leudeking – Piret model were evaluated 
and the constants were predicted. 
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INTRODUCTION 
 
 With industrial development growing rapidly, there is a need for environmentally 
sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, 
sustainable energy source for transporation fuel. Based on the premise that fuel 
bioethanol can contribute to a cleaner environment and with the implementation of 
environmental protection laws in many countries, demand for this fuel is increasing. 
Efficient ethanol production processes and cheap substrates are needed. Current ethanol 
production processes using crops such as sugarcane and corn are well established; 
however, utilization of a cheaper substrate such as lignocellulose could make bioethanol 
more competitive with fossil fuel (Zaldivar et al. 2001; Cardona and Sanchez 2007). One 
of the major lignocellulosic materials to be considered in tropical countries is sugarcane 
bagasse, the fibrous residue obtained after extracting the juice from sugar cane 
(Saccharum officinarum) in the sugar production process.  Sugarcane bagasse is 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Ezhumalai and Thangavelu (2010). “Bioethanol,” BioResources 5(3), 1879-1894.  1880 
 

accumulated in large quantities at cane-to-sugar processing plants and consists 
approximately of 50% cellulose, 25% hemicellulose, and 25% lignin. The bagasse 
produced is traditionally utilized for in-house energy production (Pandey et al. 2000; 
Haagensen and Ahring 2002). 

There are major limitations to efficient ethanol production from agricultural 
residues; these limitations include the close physical and chemical associations between 
lignin and plant cell wall polysaccharides, together with cellulose crystallinity. Lignin 
forms a protective shield around cellulose and hemicellulose, protecting the 
polysaccharides from enzymatic degradation. To convert the biomass into ethanol, the 
cellulose must be readily available for cellulase enzymes. Thus, by removing the lignin, 
the cellulose becomes vulnerable to enzymes and allows the yeast to convert the glucose 
into ethanol during fermentation. Therefore, a pretreatment must be applied to degrade 
the lignin in the sugarcane residue, decrease cellulose crystallinity, and increase the 
surface area for enzymatic activity (Dawson and Boopathy 2007). Steam explosion was 
selected as the processing technology because of recent reports that steam explosion 
renders biomass more readily digestible by enzymes. Furthermore, steam explosion 
requires little or no chemical input and thus is environmentally benign relative to other 
technologies, such as acid hydrolysis; environmental concerns are of paramount 
importance (Morjanoff and Gray 1987). 

Enzymatic hydrolysis is a promising approach for obtaining sugars from 
lignocellulosic materials. This is because it has the advantages of reduced sugar loss 
through side-reactions, and it is milder and more specific compared to most alternatives. 
But the low enzymatic accessibility of the native cellulose is a key problem for biomass-
to-ethanol processes (Sun and Cheng 2002; Adsul et al. 2005). There are several 
technologies available for the conversion of lignocellulosics to fuel ethanol. The main 
difference between these technologies is the catalyst used for the break-down of 
polysaccharides in the raw material. Simultaneous Saccharification and Fermentation 
(SSF) processing is an ideal method of producing ethanol from lignocellulosic materials. 
In this process, a cellulose hydrolyzing enzyme (cellulase) is combined with an ethanol 
producing organism (yeast) to carry out simultaneous hydrolysis of cellulose to glucose 
and the conversion of glucose to ethanol in the same reactor (Ballesteros et al. 2004). The 
result is improved hydrolysis rates and yields of ethanol when compared to those 
involving separate hydrolysis and fermentation steps (Philiphidis et al. 1993). 

The classical method of studying one variable at a time can be effective in some 
cases, but it is useful to consider the combined effects of all the factors involved. The 
Response Surface Methodology (RSM), based on statistical principles, can be employed 
as an interesting strategy to implement process conditions that drive to optimal ethanol 
production from pretreated sugarcane bagasse by performing a minimum number of 
experiments. Thus, RSM experimental design is an efficient approach to deal with a large 
number of variables. There are several reports on application of RSM for the production 
of primary and secondary metabolites through microbial fermentation (Balusu et al. 
2005; Jargalsaikhan and Saracoglu 2009). The present study investigates the potential use 
of sugarcane bagasse for ethanol fermentation using cellulase and yeast Candida 
wickerhamii MTCC 3013, which has the ability to ferment cellobiose directly to ethanol 
(Kilian et al.1983). The influence of process variables such as incubation temperature, 
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initial pH, and fermentation time on ethanol production from pretreated sugarcane 
bagasse was studied using a Central Composite experimental Design (CCD). 
Knowledge-based approaches such as Artificial Neural Network (ANN) were 
successfully applied for the purpose of simulation on the same experimental data used for 
RSM. Various kinetic models such as Modified Logistic model (growth kinetics), 
Modified Logistic incorporated Leudeking – Piret model (product formation kinetics) 
and Modified Logistic incorporated Modified Leudeking – Piret model (substrate 
utilization kinetics)  were evaluated.  
  
 
MATERIALS AND METHODS 
 
Materials  

A sugarcane bagasse sample was obtained from M.R.K. Sugar Mills Ltd. 
Sethiyathope, Tamilnadu, India. The bagasse sample was made into 100 mesh (0.15mm) 
fine powder by use of laboratory blender at 3000 rpm. The sample was preserved in a 
sealed plastic bag at 4°C to prevent any possible degradation or spoilage. Pure cellulose 
powder was used in reference of cellulose estimation and fermentation tests. The control 
and pretreated bagasse samples were analyzed for cellulose content using Anthrone 
reagent at 630 nm in a UV/Visible spectrophotometer ELICO BL 198 (Updegroff 1969). 
The estimated cellulose content of steam pretreated sample was 420 mg/g bagasse. 

 
Micro-organism and Culture Conditions 

Commercially available cellulase enzyme (ONOZUKA R–10) was obtained from 
HIMEDIA Laboratories, Mumbai. The activity of the enzyme was found to be 15 
FPU/mL, and it was used throughout the experimentation. The cellulase activity was 
measured by the standard Mandel’s method (Mandel et al. 1976). Yeast strain Candida 
wickerhamii MTCC *3013 was obtained from Microbial Culture Collection and Gene 
Bank (MTCC), Institute of Microbial Technology (IMTECH), Chandigarh, INDIA. The 
culture was maintained on yeast extract agar medium. After three days incubation at 25°C 
the agar slants were stored at 4°C. The liquid medium for the growth of inoculum for 
yeast was yeast extract – glucose nutrient medium composed of 3g/L of yeast extract, 
1g/l of sodium chloride, 10g/L of glucose, 2g/l of potassium dihydrogen phosphate, 
0.2g/L of calcium chloride, and 1.7g/L of magnesium sulphate.  

Inocula were grown aerobically in 250 mL Erlenmeyer flasks containing the 
above mentioned medium at 25°C in an Environmental Shaker (Remi Scientific) at 200 
rpm for 24 h. Active cells were centrifuged in a clinical centrifuge (1200 rpm), washed 
with sterile water, and were used as inoculum. Fermentations for ethanol production were 
conducted aerobically in an online monitored modular fermenter 2L capacity with a 
working volume of 1000mL medium. Samples were withdrawn periodically (12 h 
interval) for the analysis of cell mass, ethanol, and residual sugar concentrations. 

 
Steam Pretreatment 

Sugarcane bagasse sample was pretreated by autoclaving at 15 psi (121°C) for 
about 20 minutes. The steam treated samples were collected and filtered in crucibles, 
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followed by washed with distilled water under suction. Finally it was dried at room 
temperature before fermentation (Kaar et al. 1998). 

 
Fermentation  

Batch experiments were conducted as per the central composite experimental 
design for ethanol production in a fermenter (APPLIKON Biotech ADI 1025, Holland), 
with 2 L capacity, equipped with flat blade impeller, oxygen and pH electrodes, and 
temperature and dO2 (dissolved oxygen) probe. The equipment also monitored 
temperature, agitation speed, gas purging flow rate, pumping rates, antifoam addition, 
dO2, and the vessel level. All processing parameters were online monitored, with the aid 
of BioXpert Lite 1.00 software. The agitation speed (400±1 rpm) and dissolved oxygen, 
dO2 (8±0.1 ppm) were kept constant during the experiments. Other parameters, such as 
temperature, pH, and fermentation time, were chosen as the most significant ones, 
considering the experimental design. After selecting those parameters, experiments were 
done in duplicate, for superior (+) and lower (-) levels of the experimental design, and in 
triplicate, for the central point (0). The process was conducted at the initial substrate 
concentration of 50g/l (pretreated sugarcane bagasse) with the addition of nutrient 
medium (without glucose) and 0.05 M Sodium phosphate buffer (pH 5.7) followed by 
sterilization for 15 min, at 15 psi (121°C). A cellulase dosage of 15 FPU/g bagasse was 
used for hydrolysis. For each experiment, 10mL of the inoculum was used, that is,                
10%(v/v) of the initial working volume (1L). Samples were withdrawn periodically              
(12 h interval), centrifuged in a laboratory desktop centrifuge at 1200 rpm, and the 
supernatants were analyzed for total sugars and ethanol concentrations.  

 
Cell Growth and Chemical Analysis 

The sugarcane bagasse sample was analyzed for hemicellulose and Klason lignin 
content following the procedures described in NREL Standard Procedure (No.002). Cell 
mass was determined by direct optical density at 660 nm using a SYSTRONICS 
colorimeter (420 to 820 nm). The total reducing sugar was measured by the                              
dinitrosalicylic acid (DNS) method using a UV/Visible spectrophotometer ELICO BL 
198 at 510 nm (Miller, 1959). Ethanol was estimated using a NUCON 5765 Gas 
Chromatography (GC) with a Flame Ionization Detector (FID) and CHROMATOPAK 
(10% Carbowax 20M) column (3m length and 1/8 mm dia) using N2 as the carrier gas at 
the rate of 20 μL per minute. The oven temperature was held at 80°C. The injector and 
detector temperature was maintained at 200°C. Ethanol concentration of the sample was 
obtained directly by using WINACDS software version 6.2. 

 
Experimental Design and Statistical Analysis 

In the Central Composite Design (CCD), the total number of experimental 
combinations was 2K +2K + n0, where K is the number of independent variables and n0 is 
the number of repetitions of the experiments at the central point, which indicated that 20 
experiments were required for this procedure. The CCD contains a total of 20 
experiments with five level full factorial design and replications of the central points and 
axial points. The dependent variable selected for this study was ethanol concentration, Y 
(g/l). The independent variables chosen were incubation temperature (25 – 45°) X1, pH 
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(5.0 – 7.0) X2 and fermentation time (24 – 120 h) X3. A mathematical model, describing 
the relationships among the process dependent variable and the independent variables in a 
second-order equation, was developed (Giovanni 1983). Design-based experimental data 
were matched according to the following second-order polynomial equation (1), 
 
 
 
where, I and j are linear and quadratic coefficients, respectively, while ‘b’ is a regression 
coefficient, k the number of factors studied and optimized in the experiment, and ‘e’ is 
random error. When developing the regression equation, the test factors were coded 
according to the following equation:  
 
 
 
where xi is the dimensionless value of an independent variable, Xi is the real value of an 
independent variable, X0 is the real value of the independent variable at the center point, 
and ΔXi is the step change value.  

The quality of fit of the second order equation was expressed by the coefficient of 
determination R2, and its statistical significance was determined by the F-test. The 
significance of each coefficient was determined using student’s t-test. The student t-test 
was used to determine the significance of the parameters regression coefficients. The P-
values (probability value) were used as a tool to check the significance of the interaction 
effects, which in turn may indicate the patterns of the interactions among the variables. In 
general, larger magnitudes of t and smaller of P, indicate that the corresponding 
coefficient term is significant. The coefficients of the equation were determined by 
employing MINITAB software version 15. Analysis of variance (ANOVA) for the final 
predictive equation was done using the same software package. The response surface 
equation was optimized for maximum yield in the range of process variables using 
MATLAB software version 7.0.1. Isoresponse contour plots were obtained based on the 
effect of the levels of three parameters (at five different levels each) and their interactions 
on the yield of ethanol by keeping the other parameters at their optimal concentrations. 
From these contour plots, the interaction of one parameter with another parameter was 
studied. The optimum concentration of each parameter was identified based on the hump 
in the contour plots. 

 
Artificial Neural Network (ANN) Modeling 
 Knowledge-based approaches such as artificial neural network have been 
successfully applied to modeling and control of various biological processes in recent 
years. ANN represents the nonlinearities better than the RSM does. ANN cannot produce 
a model equation similar to RSM but it works in the manner of a human brain and it 
estimates the response based on the training data in the investigated range. The first step 
in implementing a neural network modeling approach is to design the topology of the 
network. A number of design parameters affect performance and these parameters 
include the choice of activation function and training algorithm, training parameters such 
as learning rate and momentum, number of hidden layers, number of neurons in each 
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hidden layer, initial weights, and training duration. In general, feed-forward neural 
networks with one hidden layer containing a sufficiently large number of hidden neurons 
have been shown to be capable of providing accurate approximations to any continuous 
nonlinear function (Hornik et al. 1989; Anjum et al. 1997).  

The choice of design parameters for a neural network is thus often the result of 
empirical rules combined with trial and error as detailed. The configuration of the two 
neural networks developed in this work were 3-5-1 structure: three input neurons are 
incubation temperature (°C), initial pH and fermentation time (h)-five neurons in one 
hidden layer-one output neuron and are determined after brief experimentation. To avoid 
the problem of overtraining, the data set comprising 20 experimental runs is split into two 
categories: a training set comprising 17 experimental runs is used to optimize the weights 
of the two neural networks and a validation set comprising 3 experimental runs is used to 
evaluate their predictive capability. Because empirical models like neural networks do 
not extrapolate data well, data for network training should be selected carefully if the best 
results are to be achieved. In this study the data selected for network training covered the 
lower and upper bounds of the one output neurons (y1). 
 
 
RESULTS AND DISCUSSION 
 
Optimization of Process Variables in Ethanol Fermentation 

The statistical technique RSM is widely used as a tool for checking the efficiency 
of several processes. In the present work it has been used with the purpose of obtaining 
information about the ethanol production process; consequently, a reduction in the 
operational variability and a cut down in operational costs can be expected. The 
experimental results (ethanol concentration, Y g/l), associated to the processing set-up of 
each independent variables are listed in Table 1. Five level central composite design 
matrix and the experimental responses of the dependent variable (ethanol concentration) 
are listed in Table 2. The regression equation coefficients were calculated and the data is 
fitted to a second-order polynomial equation. The response, Y (ethanol concentration) by 
C.wickerhamii, can be expressed in terms of the following regression equation (3): 

 
 
 

 
 
Besides the linear effect of the ethanol concentration, Y g/l, the response surface 

method also gives an insight into the parameters’ quadratic and combined effects. The 
analyses were done by using both Fisher's F- test and Student t-test statistical tools. The 
regression coefficient, t and P values for all the linear, quadratic, and combined effects 
with a 95% significance level are given in the Table 3. It shows that the regression 
coefficients of the linear term X3, and all quadratic coefficients of X1, X2 and X3 were 
significant at < 1% level (p < 0.001 for all), and the interaction coefficients were of less 
significance (p < 0.005).  
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Table 1. Coded and Actual Levels of the Independent Variables for Design of 
Experiment 

Coded levels 
Independent variables Symbols 

– 1.682 – 1 0 +1 +1.682 
Temperature (°C) X1 25 30 35 40 45 
pH X2 5 5.5 6.0 6.5 7.0 
Fermentation time (h) X3 24 48 72 96 120 

 
 

Table 2. Five-Level Factorial Central Composite Design and the Experimental 
Responses of Dependent Variable, Y (ethanol concentration, g/L)  

Coded levels Real variables Ethanol conc. (g/l) Run 
No. x1 x2 x3 1X1 

2X2 3X3 Exp Pred 
(RSM) 

Pred 
(ANN) 

1 1.000 -1.000 1.000 40.0 5.5 96.0 4.62 4.47 4.65 

2 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

3 1.000 1.000 1.000 40.0 6.5 96.0 3.64 3.72 3.74 

4 1.000 -1.000 -1.000 40.0 5.5 48.0 2.14 2.34 2.29 

5 -1.682 0.000 0.000 26.6 6.0 72.0 3.51 3.48 3.26 

6 0.000 -1.682 0.000 35.0 5.2 72.0 4.13 4.09 4.29 

7 1.000 1.000 -1.000 40.0 6.5 48.0 1.85 1.83 1.89 

8 0.000 0.000 1.682 35.0 6.0 112.3 4.44 4.54 4.31 

9 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

10 0.000 0.000 -1.682 35.0 6.0 31.6 2.68 2.49 2.75 

11 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

12 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

13 0.000 1.682 0.000 35.0 6.9 72.0 3.64 3.59 3.66 

14 -1.000 -1.000 -1.000 30.0 5.5 48.0 3.45 3.41 3.41 

15 -1.000 -1.000 1.000 30.0 5.5 96.0 3.88 3.94 4.13 

16 -1.000 1.000 -1.000 30.0 6.5 48.0 3.36 3.55 3.59 

17 -1.000 1.000 1.000 30.0 6.5 96.0 4.01 3.85 4.19 

18 1.682 0.000 0.000 43.4 6.0 72.0 2.52 2.47 2.50 

19 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

20 0.000 0.000 0.000 35.0 6.0 72.0 4.36 4.36 4.41 

                                                 
1X1 (incubation temperature, °C) is calculated as: X1 = 35 + x1 (5) 
2X2 (initial pH) is calculated as: X2 = 6.0 + x2 (0.5) 
3X3 (fermentation time, h) is calculated as: X3 = 72 + x3 (24) 
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Table 3.  Results of Regression Analysis and Corresponding t and p-value of 
Second Order Polynomial Model for Optimization of Ethanol Production  

Term 
Constant 

Regression 
coefficient 

Std. 
deviation t-statistics P-value 

Intercept 4.3621 0.05589 78.042 < 0.001 
X1 – 0.3013 0.03708 – 8.125 < 0.001 
X2 – 0.1504 0.03708 – 4.056 0.002 
X3 0.6085 0.03708 16.408 < 0.001 

X1X1 – 0.4892 0.03610 – 13.552 < 0.001 
X2X2 – 0.1816 0.03610 – 5.032 < 0.001 
X3X3 – 0.2965 0.03610 – 8.214 < 0.001 
X1X2 – 0.1638 0.04845 – 3.380 0.007 
X1X3 0.3988 0.04845 8.230 < 0.001 
X2X3 – 0.0587 0.04845 – 1.213 0.253 

 R2 = 0.985;     Adjusted R2 = 0.972  
 

Table 4. Analysis of Variance (ANOVA) for the Fitted Quadratic Polynomial 
Model for Ethanol Production  

Sources of 
variation 

Sum of 
squares 

Degrees of 
freedom (DF) 

Mean square 
(MS) F-value P-value 

Regression 12.6434 9 1.4048 74.80 < 0.001 
    Linear 6.6053 3 2.2017 117.23 < 0.001 
    Square 4.5240 3 1.5080 80.29 < 0.001 
    Interaction 1.5141 3 0.5047 26.87 < 0.001 
Residual Error 0.1878 10 0.0187 - - 
   Lack-of-Fit 0.1878 5 0.0187 - - 
   Pure Error 0.0000 5 0.0000 - - 

Total 12.831 19 - - - 
 
The statistical significance of the ratio between the mean square variation, due to 

regression, and the mean square residual error, was tested using analysis of variance 
(ANOVA).  ANOVA is a statistical technique that subdivides the total variation of a set 
of data into components associated with specific sources of variation. The regression 
equation obtained form the ANOVA shows (Table 4) that the R2 (coefficient of 
determination) was 0.951 (a value > 0.75 indicates fitness of the model). This is an 
estimate of the fraction of overall variation in the data accounted by the model, and thus 
the model is capable of explaining 95.1% of the variation in the response. The ‘adjusted 
R2’ is 0.907, which indicates that the model is good (for a good statistical model, the R2 
value should be in the range of 0 to 1.0, and the nearer to 1.0 the value is, the more fit the 
model is deemed to be). ANOVA of the regression model for ethanol yield demonstrated 
that the model was significant due to an F-value of 32.74 and a very low probability 
value (P model >F – 0.001).  
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In order to determine the optimal levels of each variable for maximum ethanol 
production, isoresponse contour plots were constructed by plotting the response (ethanol 
concentration) on the Z-axis against two independent variables, while maintaining other 
variables at their optimal levels, which is helpful for understanding both the main and the 
interaction effects of these two factors.  The response surfaces can be used to predict the 
optimum range for different values of the test variables, and the major interactions 
between the test variables can be identified from the circular or elliptical nature of the 
contours.  The circular nature of the contours signify that the interactive effects between 
the test variables are not significant and optimum values of the test variables can be 
easily obtained. Figures 1 through 3 show the isoresponse contour plots of the interactive 
effect of incubation temperature, initial pH, and fermentation time on ethanol production. 
The response values for the variables can be predicted form these plots. The effect of 
incubation temperature and pH on ethanol production, while the other variable 
(fermentation time) was fixed at its central level (72 h), is shown in Fig. 1. According to 
Fig. 1, the contours around the stationary point were elliptical and it became elongated 
more and more along the temperature axis, which meant that a small change of the 
response value would require a small move along the temperature axis. It was evident 
that the ethanol concentration steadily decreased with increasing incubation temperature 
upto 45°C and at low pH level. On the other hand, at high temperature, the increase in the 
response value was negligible as the pH value was increased. So a lower temperature and 
lower pH value enhance the ethanol yield. The significant interaction between incubation 
temperature and initial pH were apparent not only from the elliptical nature of the contour 
plot, but also from the low probability value (P value is 0.028; since the P value for the 
interaction effects were < 5% level). The other pair of the independent variables 
incubation temperature and fermentation time shows a less interactive effect (Fig. 2) 
while keeping the third independent variable, initial pH, at 6.0.  From Fig. 2, it was 
evident that the interactive effects between the test variables were less significant not 
only from the circular nature of the contour plot and also from the high probability value 
(P - 0.520). Then the optimum values of the test variables can be easily obtained form 
this type of circular contour plot. Figure 3 shows a similar effect, that the variables initial 
pH and fermentation time show a less interactive effect in the ethanol fermentation while 
keeping the third variable incubation temperature constant at 35°C and found that the test 
variables were less significant. The results show that as the values of process variables 
increased, the yield also increased, but only up to the midpoint of range of variables, and 
thereafter the yield decreased even though the values of variables increased. The ethanol 
yield is more significantly affected by incubation temperature and initial pH than other 
pair of variables in the ethanol fermentation by SSF process (Harikrishna and Chowdary 
2000).  

The matching quality of the data obtained by the model proposed in equation (3), 
was evaluated by considering the correlation coefficient, R2, between the experimental 
and modeled data. The mathematical adjustment of those values generated a R2 = 0.95, 
revealing that the model would explain very well 95% of the overall effects and only 5% 
was not explained. In ANN modeling the R2 value between the experimental and 
predicted responses is determined as 0.985, revealing that the model was not able to 
explain only 1.5%.  
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Fig. 1. Isoresponse contour plot for the effect of incubation temperature versus initial pH on 

ethanol production 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Isoresponse contour plot for the effect of incubation temperature versus fermentation time 

on ethanol production 
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Fig. 3.  Isoresponse contour plot for the effect of initial pH versus fermentation time on ethanol 

production 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 4. Parity plot showing the distribution of experimental versus predicted values of Y (ethanol 

conc.) by RSM and ANN 
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 The increase in the number of experimental points in the training the data set 
improved the network’s performance. The parity plot shows a satisfactory correlation 
between the experimental and predictive values of ethanol concentration by RSM and 
ANN modeling (Fig. 4).  From equations derived by differentiating Equation 2, the 
optimum values for the independent variables obtained were incubation temperature 
33°C, pH 5.7, and fermentation time 104 h. Based on the model, the optimal working 
conditions were obtained to attain high ethanol yield. Response analysis revealed the 
maximum ethanol concentration (4.28 g/l) by C.wickerhamii could be achieved at the 
optimum process conditions at 104 h. The final ethanol yield was compared with the 
reported results and it was found that an increase in ethanol yield by about 40% was 
achieved (Harikrishna and Chowdary, 2000; Harikrishna et al. 2001). 

 
 

KINETICS AND MODELING 
 

Kinetic studies are necessary to gain a basic understanding of any fermentation, 
and they are very useful for efficient economical production of metabolites (Dhanasekar 
et al.2003; Sasikumar and Viruthagiri 2008). The validity of the proposed model under 
different experimental conditions has been tested. The cell mass, product formation, and 
substrate utilization kinetics using C.wickerhamii with different parameters were studied. 

 
Modified Logistic Model (growth) 

Under optimal growth conditions and when the inhibitory effects of substrates 
and product play no role, the rate of cell growth is given by equation (4) 

X
dt
dX

0μ=            (4)  

where μo is a constant defined as the initial specific growth rate.  

 Table 5.  Model Parameters for Ethanol Production  
Models 

Model 
parameters  Modified 

Logistic 

Modified Logistic  
incorporated  

Leudeking – Piret 

Modified Logistic  
incorporated Modifed 

Leudeking – Piret 
4μ0 0.21 - - 
5r 0.550 0.580 0.720 
6α - 0.556 0.557 
7β - 0.009 0.030 
8γ - 6.996 8.864 
9η - 0.055 0.019 

Avg. error 7.58 % 4.69 % 4.79 % 
R2 0.989 0.995 0.992 

                                                 
4Initial specific growth (h-1) 
5Inhibitory effect index 
6Non-growth associated constant for substrate 
7Substrate consumption (g substrate / g biomass h) 
8Growth associated constant (g product / g biomass) 
9Non-growth associated constant (g product / g biomass h) 
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 The logistic model equation implies that the growth rate increases with increase in 
cell mass concentration and is independent of the substrate concentration. A modified 
form of logistic equation is used to describe the cell growth kinetics by introducing an 
index of the inhibitory effect ‘r’, which accounts for the deviation of growth from the 
exponential relationship metabolites (Dhanasekar et al. 2003; Sasikumar and Viruthagiri 
2008), as equation (5) 
 

X
X

Xk
dt
dX

r

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max

1   for r>0          (5) 

 
 When r = 0, there will be a complete inhibition of cell growth; when r = 1, 
equation (5) reduces to a logistic model equation; when r ranges between 0 and 1, 
equation (5) describes a higher degree of inhibition compared to logistic growth; when r 
>1, the growth lies between exponential and logistic patterns. Equation (5) was 
rearranged and integrated by using partial fraction method with the initial 
conditions, )0(0 == tXX , which gives equation (6) 
 

)1(
1

0

0

0
rtr

m

r

rtr
m

t

eX
X

eXX

μ

μ

−
−

=          (6) 

 
 The model parameter values were evaluated using MATLAB software version 
7.0.1 program and are shown in Table 5. A better prediction of cell mass concentrations 
was obtained using the modified logistic model and it was most suited for ethanol 
production with the minimum average error of 4.56 %. 
 
Modified Logistic Incorporated Leudeking – Piret Model (product 
formation) 

A Modified Logistic incorporated Leudeking – Piret model was developed by 
rearranging and integrating the Leudeking – Piret model with two initial conditions, 
X=X0 (t=0) and P = P0 (t=0), giving equation (7) 
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 The model parameter values were evaluated using the MATLAB program and are 
presented in Table 5. The simulation result of the Modified Logistic incorporated 
Leudeking – Piret model is in good agreement with the experimental data obtained from 
the pretreated sugarcane bagasse and the minimum average error of 5.69 %. 
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Modified Logistic incorporated Modified Leudeking – Piret model (substrate 
utilization) 

The substrate utilization kinetics is the modified form of the Leudeking – Piret 
model which can be used for substrate utilization kinetics. Substrate consumption 
depends on the magnitude of three sink terms, the instantaneous cell mass growth rate, 
the instantaneous product formation rate and a cell mass maintenance function. The 
Modified Logistic incorporated Modified Leudeking – Piret model was developed by 
rearranging and integrating the Modified Leudeking – Piret model with two initial 
conditions, X=X0 (t=0) and S= S0 (t=0) gives equation (8) 
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 The model parameter values shown in Table 5 are then used to simulate the 
experimental data of substrate concentration at any time during the entire course of 
fermentation. Better substrate utilization kinetics is obtained using the Modified Logistic 
incorporated Modified Leudeking – Piret model (Eqn. 8) and is well suited for ethanol 
production from pretreated sugarcane bagasse with a minimum average error of 6.82 %.    
 
 
CONCLUSIONS 
 

Based on the present study, it is evident that the use of statistical optimization 
tools, response surface methodology (RSM), has helped to locate the optimum levels of 
the most significant parameters for ethanol production, with minimum effort and time. 
Maximum ethanol concentration (4.28 g/l) was obtained from 50 g/L of pretreated 
sugarcane bagasse at the optimized conditions (incubation temperature 33°C, initial pH 
5.7 and fermentation time 104 h) by using yeast strain C. wickerhamii. Modified logistic 
model, Modified Logistic incorporated Leudeking – Piret model, and Modified Logistic 
incorporated Modified Leudeking – Piret model were attempted for representing the 
batch growth kinetics, product formation kinetics and substrate utilization kinetics 
respectively. The results of the process simulation from the various models using the 
experimental data were compared and found to predict more accurately during the entire 
course of fermentation. 
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