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The objective of the study is to develop a new filler for the production of 
natural filler thermoplastic composites using the waste rapeseed stalks. 
The long-term water absorption and thickness swelling behaviors and 
flexural properties of rapeseed filled polypropylene (PP) composites 
were investigated. Three different contents of filler were tested: 30, 45, 
and 60 wt%. Results of long-term hygroscopic tests indicated that by the 
increase in filler content from 30% to 60%, water diffusion absorption and 
thickness swelling rate parameter increased. A swelling model 
developed by Shi and Gardner can be used to quantify the swelling rate. 
The increasing of filler content reduced the flexural strength of the 
rapeseed/PP composites significantly. In contrast to the flexural strength, 
the flexural modulus improved with increasing the filler content. The 
flexural properties of these composites were decreased after the water 
uptake, due to the effect of the water molecules. 
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INTRODUCTION 
 

Today, the use of agricultural residues is common in wood-limited countries, 
since they are easily available and inexpensive. Rapeseed (Brassica napus) stalk is an 
agricultural industrial residue produced as a by-product. It is widely cultivated throughout 
the world for the production of animal feed, vegetable oil, and biodiesel fuel. It is one of 
the most important oilseeds in the world, ranking fourth with respect to production after 
soybean, palm, and cottonseed (Rashid and Anwar 2008). Rapeseed is mostly used as a 
general term to describe different species that are quite close in appearance but 
sometimes very different in their chemical composition or botanical origin (Donald and 
Bassin 1991). According to the Food and Agriculture Organization (FAO), world 
harvesting area of rapeseed is growing rapidly, with 30.8 million hectares harvested 
during the year 2006–07. Iran has about 220 thousand hectares of rapeseed harvesting 
area. The biomass produced per unit area by rapeseed varies from 5 to 10 t/ha (Enayati et 
al. 2009).  

Natural fiber thermoplastic composites can be manufactured using a variety of 
production techniques. A simple technique to produce such composites is hot pressing. 
The advantages of the technique are flexibility in altering the density of the composite 
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panels produced, and the possibility to produce layered panels (Tajvidi and Haghdan 
2009).  

Although there has been considerable research devoted to the physical and 
mechanical properties of agro-based fiber thermoplastic composites (Panthapulakkal et 
al. 2009; Zabihzadeh et al. 2010; Talavera et al. 2007; Yang et al. 2007; Yao et al. 2008),    
there are no experimental data about the physical and mechanical properties of rapeseed 
filled thermoplastic composites. This work establishes the hygroscopic and flexural 
performance of rapeseed filled polypropylene composites produced by hot pressing. 
Flexure properties of the composites as a function of filler loading before and after water 
absorption were analyzed. Long-term water absorption and thickness swelling behaviors 
of composites were also investigated. 
 
 
EXPERIMENTAL 
 
Materials 
 Polypropylene (Lotte Daesan Petrochemical Corp., South Korea) with a density of 
0.90 g/cm3, and the melt flow index of 25 g/10min at 230 °C was used in this work as the 
polymer matrix. Natural filler was obtained by milling and screening rapeseed residue to 
40-mesh particle size. Maleic anhydride grafted polypropylene (MAPP) was used as 
compatibilizer. 
 
Composite Preparation  
 Table 1 shows formulation of the composite panels prepared for this study. A dry-
blending method and hot pressing were used to produce composite panels. The mixture of 
PP powder, oven-dried rapeseed flour, and MAPP was spread into a steel mold with 
dimensions of 25 cm × 15 cm × 1 cm. The formed mats were pressed in a cold press to 
maintain the shape. The formed mats were then pressed in a hot press for 15 min at a 
pressure of 35 bar and a temperature of 190 °C. The composite panels were transferred to 
the cold press and stayed there for about 5 min at a pressure of 35 bar. Four composite 
panels were manufactured for each formulation. The manufactured composite panels 
were kept at room temperature for two weeks in order to allow the condition of the 
composite to reach equilibrium.   
 
Table1. Formulation Composite Panels 

Code PP (wt %) Rapeseed flour (wt %) Compatibilizer (wt %) 
PP/R30 67 30 3 
PP/R45 52 45 3 
PP/R60 37 60 3 

 
 
Hygroscopic Tests  

Hygroscopic behavior studies were performed following the ASTM D 570-98 
method. Four specimens of each composite were dried in an oven for 24 h at 105±2°C. 
The dried specimens were weighed with a precision of 0.001 g and their thickness was 
measured with a precision of 0.001 mm. Then they were placed in distilled water. At 
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predetermined time intervals, the specimens were removed from the distilled water, the 
surface water was wiped off using blotting paper, and their wet mass and thickness were 
determined. Water absorption and thickness swelling were calculated using the following 
formulas, 

 
 100/)((%)  oot mmmM             (1) 
 
where mo and mt denote the oven-dry weight and weight after time t, respectively, and 
 

  100(%)  oot TTTS                                                                         (2) 
 
where To and Tt denote the oven-dry dimension and dimension after time t, respectively. 
 
Flexural Properties 

Three-point flexural tests were performed according to the ASTM D 790-00 
specification. The tests were carried out before and after water absorption at a crosshead 
speed of 5 mm/min. The modulus of rupture (MOR) and flexural modulus (MOE) were 
calculated. Each value obtained represented the average of four samples. 
 
 
RESULTS AND DISCUSSION 
 
Hygroscopic Behavior 

Figure 1 shows the water absorption curves of composite panels at room 
temperature, where percentage of moisture absorbed is plotted against the square root of 
the immersion time. Generally, the water absorption increased with the filler content and 
immersion time until equilibrium conditions were reached. The water absorption in 
natural fiber thermoplastic composites is mainly due to the presence of hydrogen bonding 
sites in the natural fiber. Cellulose and hemicelluloses are mostly responsible for the high 
water absorption of natural fibers, since they contain numerous accessible hydroxyl 
groups. The water absorption of all the composites increased with the immersion time 
until maximum water absorption was reached. The maximum water absorption for 
composite with 30, 45, and 60% rapeseed flour was 12.09, 22.13, and 29.88%, 
respectively. The equilibrium time for composite with 30, 45, and 60% rapeseed flour 
was 1245, 876, and 756 h, respectively. It can be seen that the filler loading also has a 
significant effect on initial water uptake (slope of water absorption at the initial stage). 
The composite with higher filler content reaches the equilibrium moisture content more 
quickly.  

For all three formulations, the water absorption increased with t0.5 during the first 
stages until reaching a certain value at which the water content remained constant, 
indicating a Fickian mode of diffusion. Fick's second law states that 
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where D, M, T, and Z denote diffusion coefficient, moisture content, time, and the 
thickness dimension, respectively. 

Under conditions of non-steady state diffusion, the apparent diffusion constant, DA 

may be described by: 
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where h is the thickness of the sample, Msat is the water absorption at saturation, and 

t

M t



  is the slope of the water absorption versus square root of time. 

 
Fig. 1.  Effect of filler loading on water absorption for PP/rapeseed composites 
 
 
Table 2 summarizes maximum water absorption, water diffusion coefficient, 

maximum thickness swelling and swelling rate parameter for the composite panels. The 
magnitude of the diffusion coefficients obtained in this study (1.37×10-6 to 7.86×10−6 
mm2/s) was close to the reported values in previous works. Adhikary et al. (2008) 
reported a diffusion coefficient of 3.43×10−6 mm2/s for hot pressed 50 wt.% Radiata pine 
(Pinus radiata) sawdust- PP composite coupled with MAPP. Espert et al. (2004) 
published a diffusion coefficient of 1.09×10−6 mm2/s for PP composites containing 30 
wt.% coir fiber and a diffusion coefficient of 1.83×10−6 mm2/s for composites containing 
30 wt.% luffa fiber. Wang et al. (2006) published a diffusion coefficient of 4.63×10−7 
mm2/s for hot pressed 50 wt.% rice hull-HDPE composites coupled with MAPP.
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Table 2. Hygroscopic Properties of Composite Panels 
Code Maximum water 

 Absorption 
(%) 

Water diffusion  
coefficient  

(10-6mm2/s) 

Maximum thickness
swelling 

(%) 

Swelling rate 
parameter 
(10-3 h-1) 

 
PP/R30 12.09 1.37 4.63 1.25 
PP/R45 22.13 4.42 8.03 5.63 
PP/R60 29.88 7.86 13.05 13.43 

 
Figure 2 shows the long-term thickness swelling behavior of the composite 

panels. The higher the filler content, the higher the thickness swelling. The maximum 
thickness swelling for composite with 30, 45, and 60% rapeseed flour was 4.63, 8.03, and 
13.05%, respectively. A moisture buildup in the natural fiber cell wall can lead to fiber 
swelling and dimensional changes in the composite, particularly in the direction of the 
fiber thickness (Rowell 1997). Dimensional stability of natural fiber thermoplastic 
composites is one important physical property in outdoor applications. A problem 
associated with thickness swelling is a reduction in the adhesion between the natural fiber 
and the matrix, leading to a reduction in the mechanical properties of the composite. The 
thickness swelling of the composites follows a similar trend to the water absorption 
behavior, increasing with immersion time until an equilibrium condition is attained. 

The swelling rate parameter was determined by using Shi and Gardner model (Shi 
and Gardner 2006),  
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where TS (t), ho, and hmax are the thickness swelling, initial, and equilibrium composite 
thickness, respectively. KSR is a constant called the intrinsic relative swelling rate. 
 Rearranging and taking natural logarithm of both sides of Equation 5 gives 
(Tajvidi et al. 2010): 
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The swelling rate parameter was obtained from the slope of the linear part of the 

plot of )
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vs. time (Table 2). 

Figure 2 also exhibits the predicted curves of thickness swelling of composites 
produced by using the Shi and Gardner model. It can be seen from Fig. 2 that the 
swelling model fit the experimental data well for all of the composites. 

The swelling rate parameter of the composite panels is given in Table 2. The 
magnitudes of the swelling rate parameter in this study were 1.25×10-3 to 13.43 ×10-3 h-1. 
The maximum KSR value was calculated for composite made of 60% rapeseed flour. It is 
important to note that KSR is dependent not only on the initial rate of swelling but also on 
the equilibrium thickness swelling of the composites (Shi and Gardner 2006). The 
composite with 60% rapeseed flour will take less time to reach the equilibrium thickness, 
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for which reason it will contribute to a greater magnitude of the swelling rate parameter. 
Adhikary et al. (2008) published a swelling rate parameter of 2.76×10−3 h-1 for hot 
pressed 50 wt.% Radiata pine sawdust-PP composite coupled with MAPP. Kazemi Najafi 
et al. (2008) reported a swelling rate parameter of 21.5×10-3 h-1 for hot pressed 50 wt.% 
wood flour-virgin PP composite. 

 
Fig. 2.  Effect of filler loading on thickness swelling for PP/rapeseed composites 

 
A good linear relationship was found between thickness swelling and water 

absorption (Fig. 3). The relationships were established as, 
 

PP/R30 composite panels:   
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 PP/R45 composite panels:  

 
98.0

1388.03651.0
2 



R

WT as                                                                (8) 

PP/R60 composite panels: 

 
79.0

5119.04037.0
2 



R

WT as                                                                 (9) 

where sT and aW  are thickness swelling and water absorption (%), respectively. 
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Fig. 3.  Relationship between water absorption and thickness swelling of PP/rapeseed 
composites 

 
Effects of Water Uptake on Flexural Properties 

To study the effect of water absorption on the flexural properties, flexural tests 
were carried out in all the composite panels before and after water absorption. Table 3 
shows the flexural strength (MOR) and flexural modulus (MOE) as a function of filler 
loading of rapeseed filled PP composites before and after the water uptake. Before the 
water absorption, a decreasing trend in flexural strength can be seen as the filler content 
increases. This phenomenon can be attributed to the weakness of lignocelulosic phase in 
stress transition to the polymer matrix. In contrast to flexural strength, the flexural 
modulus improved with increasing filler content. This observation is due to the increase 
in volume fraction of high-modulus lignocelulosic in thermoplastic composites. 

In general, the flexural properties of these composites were decreased after the 
water uptake, due to the effect of the water molecules, which change the structure and 
properties of the fillers, polypropylene, and the interface between them. Once the water 
molecules penetrate inside the composite panels, the lignocelulosic fillers tend to swell. 
The reduction in the flexural strength and modulus values of the composites after water 
uptake may be due to the inability of the swelled rapeseed flour to carry the stress 
transferred from the matrix through the disrupted interface as a result of water absorption. 
This finding is consistent with previous studies. Espert et al. (2004) reported that 
mechanical properties natural fiber thermoplastic composites are dramatically affected by 
the water uptake and water-saturated samples present poor mechanical properties. Sain 
and Panthapulakkal (2007) indicated that long term aging in water decrease the strength 
properties of the short hemp-glass fiber hybrid polypropylene composites.  
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Table 3. Effect of the Water Uptake on Flexural Strength and Modulus of 
Composite Panels 

Code Flexural strength 
(MPa) 

Flexural modulus 
(MPa)

Before water 
absorption 

After water 
absorption 

Before water 
absorption

After water 
absorption 

PP/R30 15.68 10.19 1915.45 1168.48 
PP/R45 14.72 8.83 2024.53 1103.32 
PP/R60 11.94 5.85 2193.38 1092.11 

 
 
CONCLUSIONS 
 
1. The water diffusion coefficient and the swelling rate parameter of the composite 

panels were clearly dependent upon the filler content. 
2. The swelling model presented by Shi and Gardner provided a very good predictor of 

the hygroscopic swelling process of the composites. 
3. A linear relationship was found between water absorption and thickness swelling of 

the composite panels. 
4. The flexural strength decreased as the filler loading increased. This was due to the 

weakness of the lignocellulosic phase in stress transition to polymer matrix. 
5. The flexural modulus improved as the filler loading increased. This was due to the 

increase in volume fraction of high-modulus lignocellulosic in composite panels.  
6. The flexural properties of these composites were decreased after the water uptake. 
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