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THE SOLUBILITY OF LIGNIN FROM BAGASSE IN A 1,4-
BUTANEDIOL/WATER SYSTEM 
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The solubility of lignin from bagasse in a 1,4-butanediol/water mixed 
solution was investigated and explained by the solubility parameter (δ-
value). To explore the lignin solubility, enzymatic hydrolysis/mild 
acidolysis lignin (EMAL) isolated from bagasse was used as the starting 
material to prepare lignin solution by ultrasonic treatment. The lignin 
content in solution was determined by UV-vis spectroscopy at a 
wavelength of 280 nm. The results showed that 240 minutes of ultrasonic 
treatment was needed to achieve lignin dissolution equilibrium in the 1,4-
butanediol/water mixture. Maximum lignin solubility (14.6 g/L) occurred at 
a concentration of 80% (v/v). The δ-value of lignin (14.0 (cal/cm3)1/2) was 
calculated based on the atomic and functional groups present in the 
phenylpropane unit. The δ-values of the 1,4-butanediol/water showed a 
decrease from 22.31 to 11.09 (cal/cm3)1/2 as the concentration of 1,4-
butanediol increased. The maximum lignin solubility predicted by the δ-
value should occur at a concentration of 80% (v/v), which agreed with 
the experimental result. 
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INTRODUCTION 
 

 Nowadays, the biorefinery concept is gaining more and more interest throughout 
the world (Lee et al. 2006; Ragauskas et al. 2006). This concept includes the separation 
of lignocellulosic materials for value-added products. Three main compounds (cellulose, 
hemicelluloses, and lignin) constitute lignocellulose, and any one of these purified 
compounds can have valuable applications. For instance, cellulose can be converted 
through enzymol-yisis to produce ethanol (Keshwani et al. 2009; Gnansounou et al. 
2010), hemicellulose can be used as tabletting material or for preventing blood 
coagulation (Xu et al. 2006), and lignin can be used in the production of polyurethanes or 
biocomposites. A large number of processes that focus on a bio-refinery have been 
reported. These approaches include the steam explosion/ ethanol process, the SPORL 
process (Zhu et al. 2010), and the ethanol/ ultrafiltration process (Liu et al. 2011). 

Lignin, being one of the most abundant families of polymers, is an enormous 
renewable resource and has captured the attention of technologist and entrepreneurs 
(Suhas et al. 2007). However, a conventional pulping process using strong alkali or 
sodium sulfide to cleave the protolignin into black liquor (an effluent from the pulping 
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process that is rich in lignin and chemicals). During this procedure, the structure and 
properties of lignin are changed, and the utilization is limited, so it can only be used for 
low-added value applications and the production of energy (Chakar et al. 2004). 
Fortunately, the solvent used for organosolv pulping can separate lignin in better quality, 
including such attributes as a high purity, an absence of sulphur contaminants, and a less 
condensed molecular structure. As a consequence, such lignin has a wide potential usage. 
A number of processes involving organic solvents have been investigated, using solvents 
such as ethanol, acetone, dioxane, and methanol. The use of some of these solvents in a 
pulping process has even achieved commercial or pre-commercial scale (Yawalata et al. 
2004). 

The high-boiling solvent (HBS) 1,4-butanediol, which was employed in this 
work, is a newly developed aqueous solvent system that can be used as a delignification 
agent for raw materials (Kishimoto et al. 2001, 2002). The remarkable characteristic of 
this solvent is its high boiling temperature (228oC), which translates into lower pressure 
during pulping. The cleavage of the intra- and inter-polymeric interactions between the 
different biopolymers that constitute plant materials can occur during HBS pulping 
within a temperature range between 170 and 220oC. 

The solubility of lignin in the solvent system has direct importance for HBS 
pulping, which can be used to estimate the finishing point of pulping as a fundamental 
parameter. However, there are few reports on this issue. In this study, the enzymatic 
hydrolysis/mild acidolysis lignin (EMAL) of bagasse was used as raw material, and the 
solubility of lignin in the HBS-water was investigated. The objective was to determine 
the solubility of lignin in HBS-water, as interpreted by means of the solubility parameter 
theory.   
 
 
EXPERIMENTAL 
 
Material 

EMAL of bagasse was used as the starting material. The procedure for isolation 
followed a two-step method (Argyropoulos et al. 2002). The first stage used a mild 
enzymatic treatment on ball-milling bagasse meal, which was extracted by benzene-
ethanol for 8h; then a mild acidolytic step was carried out (the dioxane:water ratio was 
85:15; hydrochloric acid concentration was 0.05mol/L) for 2h. The lignin can be obtained 
after rotary evaporated, precipitated and freeze drying. 
 
Apparatus and Chemicals 

A UV-vis spectrophotometer (HACH DR5000, equipped with a 1 cm path length 
flow cell, resolution: 1nm) was used for the absorption analysis. An ultrasonic bath was 
used to assist in dissolving lignin.  

31P-NMR spectra were recorded with a Bruker DRX-400 FT-NMR spectrometer 
in chloroform-d with cholesterol as an internal standard. The chemicals used for NMR 
detection were purchased from Sigma-Aldrich. 

All chemicals used in the experiments were from commercial sources. 
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Working Method 
 The lignin solubility in 1,4-butanediol/water was determined by UV-vis spectro-

scopy at 280 nm. The coefficient of absorbance (B) as shown in Eq. 1 was obtained by 
measuring the absorbance of EMAL using UV-vis spectra as described in previous 
literature  (Pasquini et al. 2005),  

 
280A

S
B

                                          (1) 

 
where S is the solubility of lignin in solvent (g/L), A280 is the absorbance at wavelength of 
280nm, B is the coefficient of absorbance. 
 
 
RESULTS AND DISCUSSION 
 
UV-vis Absorbance of EMAL of Bagasse in HBS 

 It is well known that the characteristic absorbance of lignin varies when using 
different solvents. In this study 1,4-butanediol was used as a reference for all UV-vis 
detection. The spectra of EMAL and the response plot for lignin concentration are shown 
in Fig. 1. 

 
Fig. 1. UV-vis spectra of EMAL and response plot for lignin concentration determination. The 
lower figure was obtained at a wavelength of 280 nm. 
 

As can be seen in Fig. 1, the UV-vis absorbance of EMAL has a characteristic 
absorption peak from 280 nm to 320 nm, which agrees with the literature (Chen et al. 
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2006). The absorbance response plot for lignin determination was carried out by varying 
lignin concentration in 1,4-butanediol. Obviously, there was a linear relationship between 
UV-vis absorbance at 280 nm and the content of lignin introduced, within the range 0.3 
to 1.3.  
 
Time for Determination 

 The procedure of lignin dissolving into a 1,4-butanediol/water is an equilibrium 
process of a solid dissolved into liquor, which requires a certain time to reach using 
ultrasonic promotion at room temperature. The lignin solubility in 1,4-butanediol/ water 
depended on the time, as shown in Fig. 2. 

 
 Fig. 2. Absorbance at 280nm versus time 

 
During the ultrasonic treatment process, the contents of the vial co-existed as 

solid (lignin) and liquor (1,4-butanediol/water dissolve with lignin); therefore, the lignin 
content in solvent can be considered the lignin solubility at a specific condition. As can 
be seen in Fig. 2, the solubility of lignin increased from 0 to 240 minutes. If the time after 
immersion was increased to 360 minutes, the absorbance remained constant. Based on 
this conclusion, 240 minutes was the amount of time selected for the lignin solubility 
measurements. 
 
Determination of Lignin Solubility 

Solubility determination was carried out by weighing an excess amount of lignin 
(100mg) and adding it to 5mL of solvent mixture, where the 1,4-butanediol concentration 
was varied from 20% to 90% (v/v) . The vials were then sealed and put into an ultrasonic 
bath for 240 minutes. After that, the solubility of each sample was determined according 
to Eq. 1, and the results are presented in Fig. 3. 
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 Fig. 3. Lignin solubility versus 1,4-butanediol concentration at 25oC 

 
It can be seen that the solubility of lignin was highly dependent on the 1,4-

butanediol concentration and showed an increasing trend. At the beginning, the solubility 
was only 2 g/L; then the value doubled when the 1,4-butanediol concentration reached 
50%. When the 1,4-butanediol concentration further increased to 80%, the solubility 
rapidly increased to about 15 g/L, which is about 7 times the solubility of the 20% 1,4-
butanediol sample. However, when the 1,4-butanediol concentration was increased to 
90%, the solubility lowered. This agrees with what the literature reports, i.e., the higher 
solvent concentration would affect the lignin solubility (Ni et al. 1995). 
 
Solubility Parameter Theory 

As reported by Schuerch (1952),  the solubility of the mixture was affected by the 
solvent, which can be explained by the solubility parameter theory (δ-value) (Hildebrand 
et al. 1936). This theory is used for non-polar and slightly polar systems and considers 
their hydrogen bonding capacity (Balogh et al. 1992). According to Schuerch (1952) the 
ability of a solvent to dissolve a solute is a function of the cohesive energy density and 
hydrogen bonding capacity of the solvent. A good solvent for a certain solute, such as 
lignin, has a Hildebrand's solubility parameter value close to that of lignin. When 
different solvents have the same value, the ability to dissolve lignin increases with 
increase in their capacity to form hydrogen bonds. Therefore, the δ-value of the lignin 
and those of the solvent mixtures were determined to explain the diversity of solubility 
results that were observed in the experiment. 
 
The δ-value of lignin 

 Lignin, which is a network polymer, can be dissolved into solvent. Several 
methods for estimating the δ-value of polymer were proposed. One of them was based on 
the contribution of atomic and functional groups when the structure of the repeating unit 
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of the polymer is known (Ni et al. 1995). The repeating unit in lignin is called the 
phenylpropane unit. The estimated equation is as follows, 

 

iE e                        (2) 

 

iV v                        (3) 

 
where the ei and vi are the additive atomic and functional group contributions for the 
energy of vaporization (E) and molar volume (V), respectively, of a phenylpropane unit. 
Data concerning the atomic and functional group contributions to E and V are listed in 
Table 1. The δ-value is then calculated by the following equation: 
 

1/2=( / )E V                       (4) 
 
Table 1. Solubility Parameter of Typical Step Phenylpropane Units of Lignin 

Atom 
or 

group 

Unit G Unit H Unit S 
∆ei 

(cal/mol) 
∆vi 

(cm3/mol) 
∆ei 

(cal/mol) 
∆vi 

(cm3/mol) 
∆ei 

(cal/mol) 
∆vi 

(cm3/mol) 
OH 7120 10.0 2×7120 2×10.0 7120 10.0 
CH2 1180 16.1 1180 16.1 1180 16.1 
C= 1030 -5.5   1030 -5.5 
CH 820 -1.0 2×820 2×(-1.0) 820 -1.0 

Phenyl 
Trisubstituted 

7630 
33.4 

Tetrasubstitued 
7630 

14.4 
p 

7630 
52.4 

CH3 1125 33.5 2×1125 2×33.5   
O 2×800 2×3.8 3×800 3×3.8 2×800 2×3.8 
∆vi*  18  18  18 
Total 20505 112.1 29340 144.9 19380 97.2 

*Correction factor for divergence in the v value (Ni et al. 1995) 
 

To calculate the δ-value of the lignin present in EMAL from bagasse, the 
structural elements and functional groups of this lignin need to be known. The lignin is 
made up of three types of repeating phenylpropane units:  guaiacyl (G), syringyl (S), and 
p-hydroxyphenyl (H)  (Ni et al. 1995). Typical structures for these G-, S-, and H-type 
phenylpropane units are shown in Fig. 4. As shown in Table 1, the calculation of the δ-
value for the G, S, and H units yielded values of 13.52 (cal/cm3)1/2, 14.23 (cal/cm3)1/2, and 
14.12 (cal/cm3)1/2, respectively. 

The 31P-NMR analysis of the EMAL was carried out to determine the ratio of the 
three types of lignin repeating units. As shown in Fig. 5, the p-hydroxyl moiety showed 
the highest content, followed by guaiacyl. In EMAL from bagasse, the syringyl unit 
showed the lowest content, which agrees with the literature (Sun et al. 1999). The molar 
ratio of lignin type G, H, and S contained in bagasse was G (140-138.8 ppm), H (138.2-
137.4 ppm), and S (143.1-142.38 ppm) = 2.65:5.07:1. Therefore, the average solubility 
parameter for the lignin was determined to be 14.0(cal/cm3)1/2, which is accordance with 
previous reports that ALCELL lignin (13.7 (cal/cm3)1/2) and hydrolyzed almond shell 
lignin (14.60(cal/cm3)1/2) (Quesada et al. 2010; Ni et al 1995) . 
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  Fig. 4. The repeating units of EMAL from bagasse 

 
  Fig. 5. 31P-NMR spectrograms of EMAL of bagasse 
 
The δ-value for HBS solvent mixture 

According to Schuerch (1952), the δ-value for low molecular weight liquids can 
be calculated as, 

 
1/2=[( - ) / ]wH RT M  ρ             (5) 

 
where ΔH is the vaporization heat in cal/mol, T is the normal boiling point in K, ρ is the 
density in g/cm3 , and Mw is the molecular weight in g/mol. 

The data required concerning vaporization heat, normal boiling point, and density 
were obtained from Perry et al. (1984) and Invensys Simsci ProII (version 8.3). The 
results obtained for the calculation of the δ-value of the 1,4-butanediol/water are listed in 
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Table 2. As can be seen, the δ-value of mixture decreased as the 1,4-butanediol concen-
tration increased. 

 
Table 2. Solubility Parameters of 1,4-butanediol/water  

Concentration(%) 0 20 30 40 50 60 70 80 90 100 

△H*(cal/mol) 9723 10684.8 11085.9 11559.0 12140.6 12880.9 13864.9 15218.3 17049.8 18325.4

T(K) 373.15 425.7 435.8 444.4 452.4 460.3 468.5 477.4 487.8 501.2 

ρ* (g/cm3) 0.997 1.003 1.005 1.007 1.010 1.012 1.015 1.016 1.018 1.020 

Mw(g/mol) 18.000 21.516 23.815 26.652 30.238 34.917 41.277 50.425 64.705 90.122 

δ(cal/cm3)1/2 22.31 18.25 17.75 17.24 16.73 16.20 15.66 15.06 14.30 11.09 

*Obtained at 25oC and 1atm. 
 

Based on the δ-value theory, lignin has maximum solubility when the δ-value of 
1,4-butanediol/water is close to its own (14.0(cal/cm3)1/2).  According to data from Table 
2, one can expect that the mixture above 70% 1,4-butanediol concentration should result 
in the highest solubility, followed by the lower values of 1,4-butanediol concentration. 
Actually, the predictions of the solubility parameter theory agreed with the experimental 
results very well. This is also supported by our previous study, which indicated that 
higher 1,4-butanediol concentration would lead to  higher delignification (Wang et al. 
2011). The exception was in the case of 90% 1,4-butanediol, for which the solubility was 
lower than in 70% and 80% 1,4-butanediol. This may caused by the decreased of 
hydrogen-bonding capacity of the solvent (Quesada et al. 2010). 
 
 
CONCLUSIONS 
 
1. Enzymatic hydrolysis/mild acidolysis lignin (EMAL) from bagasse was selected to 

determine the solubility of lignin in 1,4-butanediol/water. The maximum lignin 
solubility was exhibited at the 1,4-butanediol concentration of 80% (v/v).  

2. The solubility parameter theory (δ-value) can explain the relationship between 
solvent concentration and  lignin solubility successfully. The δ-value of EMAL of 
bagasse was 14.0 (cal/cm3)1/2, which is close to the HBS concentration of 80% (v/v).  

3. Higher concentrations of 1,4-butanediol concentration will lower lignin solubility. 
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