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Pulp and paper mills represent a major platform for the use of abundant, 
renewable forest-based biomass as raw material. The pulping processes 
produce a large amount of black liquor solids, which is currently burnt in 
a conventional Tomlinson recovery boiler for recovery of energy and 
inorganic chemicals. This combustion technology can recover chemicals 
with good efficiency, and steam and power can be produced for the mills. 
However, Black Liquor Gasification (BLG) can be used to substitute for 
the combustion process for potential higher energy efficiency, lower 
greenhouse gas emissions, and more safety. With BLG technology, 
current pulp and paper mills can be extended into future biorefineries. In 
this work, a thermodynamic equilibrium model using Gibbs free energy 
minimization approach and the software FactSage are utilized to analyze 
the thermodynamic equilibrium constraints of the complex multiple phase 
reactions and the effects of different operating conditions during black 
liquor gasification. The modeling results can help better understand the 
black liquor gasification process and be useful in process modeling and 
analysis of the future BLG-based biorefinery. 
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INTRODUCTION 
 
 Biomass conversion to renewable and green fuels and energy, biomaterials, and 
chemicals has become more and more important due to the limited availability of fossil 
fuel, the need for of greenhouse gas emissions reduction, energy independence, and 
improving rural economics (Huang et al. 2010). Pulp mill black liquor is a large biomass 
resource. The total global potential of black liquor conversion to renewable transportation 
fuels and energy is equivalent to over 45 million cubic meters of gasoline per year, i.e. 
2% of global fuel demand. This also implies a potential annual reduction in fossil CO2 
emission of more than 100 million tonnes (ChemREC 2008). 
 Black liquor from pulp and paper mills mainly consists of lignin, inorganic 
chemicals (spent pulping chemicals), other organics such as hemicellulose and short 
chain cellulose, and water. The dissolved inorganics need to be recovered and regener-
ated as the active pulping chemicals, NaOH and Na2S, for reuse in the pulping process. 
Currently, black liquor is burned in a recovery boiler for recovery of energy and 
inorganic chemicals. The recovery boiler is an established piece of technology, working 
well to meet the demands for energy and chemicals recovery in the kraft process. 
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However, this technology is difficult to be further improved. Also, it has high emission of 
greenhouse gases such as CO2, and the steam turbine after combustion has a lower energy 
efficiency than a gas turbine. In addition, black liquor recovery boilers are known to be a 
serious safety concern with periodic explosions due to the interaction between molten 
inorganic smelt and water from the boiler system. It is also known that recovery boilers 
are one of the major capital investments in a pulp and paper mill, with costs exceeding 
over 50% of the total capital costs (~$0.5 billion) in a modern kraft mill. Also, due to the 
very high capital costs, and economies of scale, they are not amenable to smaller scales 
and hence not suitable for smaller scale capacity expansions. For these reasons, many 
researchers have been exploring gasification as a better alternative. Biomass gasification 
has already been identified as a core technology in the thermochemical conversion of 
biomass to syngas, which can then be used directly in combined heat and power (CHP) 
system for producing steam and electricity, separated into hydrogen for fuel cell vehicles, 
or utilized for synthesis into transportation liquid fuels including methanol, dimethyl 
ether (DME), gasoline and diesel fuel, etc. Compared to combustion, gasification of black 
liquor solids has the following advantages (Larson et al. 2006; Rezaie et al. 2006; Naqvi 
et al. 2010): 

 Higher process efficiency; 
 Reduction in greenhouse gas emissions (compared to combustion, the amount 

of CO2 significantly decreases in gasification as it is partly converted to other 
components such as CO); 

 Safer; 
 More suitable for incremental capacity expansion; 
 Can produce high-value revenue streams and increase overall profitability, 

with multiple-products including methanol, dimethyl ether or DME, gasoline 
and diesel fuel, biomaterials, and chemicals. 

 The pulp and paper industry has a huge potential to modify the pulp and paper 
mills to integrated forest biorefineries (IFBR) that can produce multiple products in 
addition to paper, by more fully utilizing the woody material and additional forest 
residues. The additional incremental costs for realizing a commercial pulp mill-based 
biorefinery can be minimized by leveraging the existing infrastructure (Huang et al. 
2010). The modifications of a current pulp mill into IFBR include hemicellulose pre-
extraction prior to pulping and further conversion to biofuels, replacement of the 
Tomlinson recovery boiler system by a biomass-based integrated gasification combined-
cycle (BIGCC) to produce syngas and combined heat and power (CHP) with greater 
energy efficiency using both gas turbine and steam turbine, and further conversion of 
syngas into different products such as methanol and DME as well as Fischer-Tropsch (F-
T) liquid transportation fuels (Agenda 2006; IEA 2007). Production of liquid fuels and 
chemicals via gasification of kraft black liquor has the potential to provide significant 
economic returns for the pulp mills (Larson et al. 2007). 
 In general, there are two large categories of biomass gasification for producing 
syngas: partial oxidation using air/oxygen as gasifying agent and steam gasification using 
water vapor. The first process is an overall exothermic reaction, so energy for partial 
oxidation is obtained from the biomass itself. The other process, steam gasification, is 
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endothermic, and requires an external heat source to produce a better quality and 
hydrogen-rich fuel gas (Baratieri et al. 2008). 
 Two major black liquor gasification technologies have been tested successfully 
(Babu 2005). One is the Manufacturing and Technology Conversion International 
(MTCI©) steam reforming process operating at a low temperature of about 600ºC. This 
process produces synthesis gas rich in hydrogen (>65 vol%) with a higher heating value 
of about 10.4 MJ/dry Nm3. Two MTCI BLG plants with capacities of 115 ton/d and 120 
ton/d respectively have been commissioned at the Norampac mill in Trenton, Ontario, 
Canada and the Georgia Pacific paper mill in Big Island, Virginia, USA. The other major 
type of BLG is the ChemRec© process operating at a high temperature of about 950ºC 
and either a low pressure (air blown, ~2bar) or a high pressure (oxygen blown, ~30bar). 
A low pressure ChemRec gasifier with a capacity of 300 t BLS/day was constructed in a 
Weyerhaeuser mill in New Bern, North Carolina, USA. The pressurized oxygen-blown 
ChemRec gasifier (30bar) with a capacity of 20 ton BLS/day was constructed in 2001 and 
successfully operated in Piteå, Sweden in conjunction with a pulp and paper mill 
(Burciaga 2005).  
 Thermodynamic equilibrium analysis is often used to determine the thermo-
dynamic constraints on biomass gasification. The resulting equilibrium compositions can 
be used for process modeling and techno-economic analysis in the research and develop-
ment of a new gasification technology for biomass conversion. Unlike the common 
biomass resources such as wood, corn stover, and swithgrass etc., black liquor contains 
not only the three common elemental components of biomass – carbon, hydrogen, and 
oxygen, but also significant amounts of inorganic components such as sulfur and sodium. 
Thus, black liquor gasification (BLG) involves multiple phases of inorganic solids and 
solution (e.g., Na2CO3, Na2S), in addition to the gas phase (mainly H2, CO, CO2, H2O, 
and CH4), small amounts of condensed hydrocarbon (tar), and simple solid phase matter 
(char, mainly carbon) similar to the common biomass gasification. In addition, during 
BLG the distributions of sulfur and sodium between gas and condensable (inorganic 
solids/ solution) phases need to be considered and are important, as sulfur and sodium are 
the two major elements of the pulping chemicals (Na2S, NaOH). So far, there have been a 
large number of studies on thermodynamic modeling of biomass gasification presented in 
the literature (Baratieri et al. 2008; Jayah et al. 2003; Li et al. 2004; Mountouris et al. 
2006; Melgar et al. 2007; Guan et al 2007; Mahishi and Goswami 2007; Lu et al. 2007; 
Huang and Ramaswamy 2009; Cohce et al. 2009; Weerachanchai et al. 2009), including 
combination of biomass with other fossil fuels such as coal and natural gas. Even though 
black liquor from pulp and paper mills is one of the largest renewable fuels contributing 
to bioenergy, there has been very limited published literature on black liquor gasification, 
especially in thermodynamic equilibrium modeling. This could be potentially due to the 
fact that combustion is the predominant commercial process for burning black liquor as 
well as due to black liquor gasification being in its infancy and due to the enormous 
complexities associated with it. It is to be noted that, even though there are number of 
pilot-scale black liquor gasification installations in the world, full-scale commercial BL 
gasification is yet to be realized. Results presented here can help advance this important 
technology. Backman et al. (1993) studied the effects of different operating conditions 
(gasification temperature, pressure, and the air to black liquor solids ratio) on carbon 
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yield, and sulfur and sodium distributions at equilibrium by simulation. However, the 
equilibrium compositions of product gas and smelt, the gasification performance metrics 
such as cold gas efficiency and higher heating value, etc., were not reported. In addition, 
their study was focused on air gasification. Larsson et al. (2006) used the chemical 
equilibrium model to systematically study the influence of inaccuracies in thermo-
dynamic data on black liquor gasification. However, black liquor steam gasification, the 
focus of the work presented here, was not studied in their work. 
 Another alternative to the conventional recovery furnace in the kraft pulping 
process is the black liquor steam gasification system with addition of TiO2 for direct 
causticization. Thermodynamic equilibrium calculations for this case have been reported 
in the literature (Nohlgren and Sinquefield 2004; Dahlquist and Jones 2006). This alter-
native causticizes Na2CO3 to NaOH directly in the gasifier and eliminates the need for a 
lime kiln. However, this process has not been commercially demonstrated. 
 In this paper, a thermodynamic equilibrium approach and the software FactSage 
are utilized to analyze the thermodynamic equilibrium constraints of the complex 
multiple-phase reactions and the effects of different operating conditions during black 
liquor steam gasification. The effects of process parameters on black liquor steam 
gasification are systematically analyzed, including the influence of temperature, pressure, 
and steam to dry black liquor ratio on product gas composition, smelt composition, 
elemental phase distribution, cold gas efficiency, and higher heating value (HHV) of the 
product gas at equilibrium. 
 
 
MULTI-PHASE CHEMICAL REACTIONS 
 
 The chemical equilibrium calculations do not involve specific reactions. In order 
to help understand and analyze the black liquor steam gasification, however, the 
chemistry involved in the gasification reactions is firstly described here. Black liquor 
gasification is a very complex multi-phase reaction system involving dozens or even 
hundreds of reactions depending on operating conditions. Among these, the major 
reactions similar to those of coal gasification and common biomass steam gasification are 
as follows (Higman and Burgt 2003): 
 Boudouard reaction: 
 

 2COCOC(s) 2    MJ/kmol172r H    (1) 
 
where (s) represents solid phase. 
 
 Water gas primary reaction: 
 

 22 HCOOHC(s)   MJ/kmol131r H     (2) 
 
 Methanation reaction: 
 

 42 CH2HC(s)    MJ/kmol75r H     (3) 
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 When the carbon conversion is complete, we can reduce the above three solid-gas 
heterogeneous reactions into the following two homogeneous gas-phase reactions: 
 Water-gas shift reaction (CO shift reaction) (obtained by (2) – (1)), 
 

 222 HCOOHCO    MJ/kmol41r H    (4) 
 
 Methane steam reforming reaction (obtained by (2) – (3)),  
 

 224 3HCOOHCH    MJ/kmol206r H   (5) 
 
 In addition to the above reactions, black liquor gasification also involves the 
following reactions associated with some of the inorganic compounds: 
 Sodium sulfate reduction and associated heats of reaction at 930ºC (Grace 1985), 
 

 2242 CO2l)S(s,Nal)(s,SONa2C(s)   42r SONaMJ/kmol171H (6) 
 

 CO4l)S(s,Nal)(s,SONa4C(s) 242   42r SONaMJ/kmol509H (7) 
 
where (s, l) represents solid and liquid (molten solution) phases. 
 Sulfur solid-gas distribution reaction (Grace 1985): 
 

 SHl)(s,CONaCOOHl)S(s,Na 232222      (8) 

 
 Reaction (6) is the reduction of Na2SO4 into Na2S, which is a key chemical 
reactant in kraft pulping. Reactions of other inorganic substances, for example, 
thiosulfate in black liquor with CO, CO2, and water also leads to the formation of 
carbonate, but these are less important (Sricharoenchaikul et al. 2003). In fact, 
combustion or gasification is the only unit operation during which reduction of Na2SO4 
into Na2S can be achieved. The reaction (8) is exothermic. It represents the distribution of 
sulfur between gas phase in the form of H2S and smelt in the form of Na2S (s, l).  
 
 
APPROACH FOR THERMODYNAMIC EQUILIBRIUM ANALYSIS 
 
 In this study, the thermodynamic software FactSage 6.1™, developed jointly 
between Thermfact/CRCT (Montreal, Canada) and GTT-Technologies (Aachen, 
Germany), was used as a tool to predict the equilibrium compositions of gas and solid 
phases and analyze the effects of operating conditions. FactSage’s Equilib module for 
thermodynamic equilibrium analysis is based on the Gibbs free energy minimization 
approach. The basic principle of the Gibbs free energy minimization algorithm is as 
follows (Handbook 2010): 
 The total Gibbs free energy of the gasification system is 
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where ni = moles; 0
ig = standard molar Gibbs energy; R = ideal gas constant; T = 

temperature; Pi = gas partial pressure; Xi = mole fraction; and i = activity coefficient. 

 With the FactSage Equilib module, given the biomass elemental compositions and 
the mass, and operating conditions such as gasification temperature, total pressure, and 
the amount of water vapor input as oxidant, ni, Pi, and Xi are determined by minimizing 
the total Gibbs free energy G function (9).  
 Smith and Missen (1991) can be referred to for further details on the general 
algorithm of the Gibbs free energy minimization approach.  
 
Selection of database, species and phases 
 FactSage contains the Fact53 compound database and some special databases 
such as FACT oxide database and FACT salt database, etc. In our modeling, we selected 
Fact53 and FTpulp databases.    
 The FTpulp database has recently been developed for thermodynamic and phase 
equilibrium calculations involving molten and solid alkali salts related to the black liquor 
combustion for heat and inorganic chemicals recovery in pulp and paper mills (Database 
2010). Since gasification is actually a partial oxidation/combustion process, the FTpulp 
Database can be borrowed for thermodynamic modeling of black liquor gasification. 
After selection of databases and phases involved, all possible relevant species are auto-
matically included in the FactSage equilibrium model. Table 1 below shows some major 
species in our FactSage BLG model.  
 
Table 1. Some Chemical Species in the FactSage Equilibrium Model 
Phase Compounds 
Gas H2O, H2, CO, CO2, CH4, COS, H2S, Na, NaOH, NaCl, NaH, (NaOH)2, (NaCl)2, 

K, KOH, KCl, KH, (KOH)2, (KCl)2, H, HCl, H2CO, HS, SO2, S2, H2S2 
Liquid (molten 
solution) 

Na2CO3, Na2S, NaOH, NaCl, Na2SO4, K2CO3, K2S, KOH, KCl, K2SO4 

Solid Na2CO3, Na2S, NaOH, NaCl, Na2SO4, K2CO3, K2S, KOH, KCl, K2SO4, C 
 
Cold gas efficiency and HHV of product gas 
 The cold gas efficiency is defined as 
 

 100[%]efficiencygasCold
f

gg 



HHV

VHHV

     (10) 
 
where HHVg is the higher heating value in product gas [MJ/Nm3], HHVf the higher 
heating value in feedstock, in the unit of MJ/kg BLS (black liquor solids), and Vg the 
standard volume of the dry product gas (Nm3/kg BLS). 
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 The HHVg value of product gas represents the gas quality. It can be calculated 
with the following formula (Li et al. 2004), 
 
 H2SCH4COH2g  y25.105  y39.82  y12.63  y12.75  HHV   [MJ/Nm3] 

 
where yH2, yCO, yCH4, and yH2S are the mole fractions of H2, CO, CH4, and H2S, 
respectively. 
 
 Vg is calculated by, 
 
  /1022.4  )        (  BLS

-3
H2SCH4COH2g WnnnnV     [Nm3/kg BLS] 

 
where nH2, nCO, nCH4, and nH2S are the number of moles of H2, CO, CH4, and H2S, 
respectively. WBLS is the dry weight of black liquor solids. 
 The typical HHV of BLS is in the range of 13.4 to 15.5 MJ/kg·BLS (Frederick 
1997), and the range of elemental compositions of BLS was also reported (Larsson et al. 
2006). BLS having experimental HHVf of 13.840 MJ/kg BLS, and the following 
elemental compositions (Table 2) is used as feedstock in this simulation based on the 
work of Marklund (2006).  
 
Table 2. Elemental Compositions (wt% on dry basis) 
 C H O S Cl Na K 
BLS 34.9 3.4 35.07 5 0.11 19.4 2.12 
 
 
RESULTS AND DISCUSSIONS 
 
Effect of Temperature 
Smelt equilibrium mole number and composition 
 The equilibrium mole number of the major components in the non-gaseous or 
liquid+solid phase (smelt) as a function of temperature at a fixed pressure (P) of 30 bar 
and a fixed steam-to-dry black liquor ratio (SBR) of 0.6 (kg/kg) is shown in Fig. 1(a). It 
can be seen from this figure that the carbon content decreases with increasing tempera-
ture until it becomes zero (completely converted) at around 750°C and above. This is 
because the overall gasification reactions, mainly (1) and (2), are endothermic, and the 
increasing temperature favors the carbon conversion. Besides, at temperatures less than 
around 750ºC, solid Na2S is no longer stable (at a relatively high pressure), almost all of 
it is converted to Na2CO3, and the amount of Na2CO3 hardly changes. This is because the 
equilibrium constant of the reversible reaction (8) at T < 750°C and P = 30 bar is very 
small. In addition, Na2SO4 is in very small quantity in the system (<1.5×10-6 mol at P=30 
bar & T = 500-1500°C), so the production of Na2S from the reactions (6) and (7) can be 
omitted. At above 750°C, from the constrained exothermic reaction (8) we can see that 
there is Na2S formed and the Na2S content increases while Na2CO3 decreases with 
temperature according to the Le Chatelier's principle. 
 



 

PEER-

 

 
Huan

Fig. 1
 
 
funct
equil
aroun
equil
mole
 

Fig. 1
 

REVIEWED ART

g & Ramaswa

1(a). Smelt eq

The equil
tion of temp
ibrium comp
nd 750ºC, a
ibrium mole
s of  the  sol

1(b). Smelt eq

TICLE 

amy (2011). “

quilibrium mol

librium mol
erature at P 
position of N
and then de
e number of
lid  phase de

quilibrium com

“Gasification t

e number as 

e percent of
= 30 bar an

Na2CO3(s) in
ecreases wit
f Na2CO3 do
ecrease signi

mposition as a

thermo,” Bio

a function of 

f the major 
nd SBR = 0.
ncreases with
th further i
oes not chan
ficantly with

a function of t

biore

oResources 6

temperature

components
.6 (kg/kg) is
h temperatur
increasing te
nge significa
h temperatur

temperature 

esourc

6(3), 3210-32

s in the soli
s shown in F
re, reaches a
emperature. 

antly (Fig. 1
re because so

ces.com

230.  321

 

id phase as 
Fig. 1(b). Th
a maximum a

Though th
(a)), the tota
olid carbon i

 

m 

17 

a 
he 
at 
he 
al 
is  



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Huang & Ramaswamy (2011). “Gasification thermo,” BioResources 6(3), 3210-3230.  3218 

gasified and decreases with T significantly until it is completely converted at around 
750ºC. Thus, the equilibrium mole percent of Na2CO3 over the total solid moles increases 
quickly with T for T < 750ºC, which is different from the equilibrium mole profile in Fig. 
1(a). The distribution profile of other components with temperature is similar to that in 
Fig. 1(a). Note that the critical temperature of 750ºC mentioned here is for the current 
system at P = 30 bar and SBR = 0.6 (kg/kg) and it is dependent on P and SBR. It is worth 
noting that even though there have been some published studies on black liquor steam 
gasification (Li and Heiningen 1994; Wei et al. 2006; Preto et al. 2008), the equilibrium 
mole concentrations and/or compositions of solid phase of the steam gasification system 
have not yet been reported in the literature. 
 
Effect of temperature on product gas composition 
 The equilibrium mole concentration of the gas components as a function of 
temperature at P = 30 bar and SBR = 0.6 (kg/kg) is shown in Fig. 2(a). From this figure 
we can see that the equilibrium moles of H2 increases with temperature, reaches a maxi-
mum value, and then decreases slightly with further increase in temperature. The moles 
of CO increases while the equilibrium moles of CH4, and H2S decrease with temperature 
for the whole temperature range. In addition, CO2 increases slightly, and then decreases 
with temperature. This follows the Le Chatelier's principle. For T<750C, solid carbon 
C(s) is not converted completely, the analysis of the temperature effects should be based 
on the reactions (1)-(3) and (8) (exothermic) as follows: 
 
 (1)    T, CO, CO2   (meaning that the moles of CO increases while the  
       moles of CO2 decreases with increasing T) 
 (2)    T, CO, H2 
 
 (3)    T, CH4, H2 
 
 (8)    T, H2S, CO2 
 
 So, as T, CO, CH4, H2S, H2, since the overall CO2 is dependent on the 
competitive effects of reactions (1) and (8), thus leading to slight increase with tempera-
ture, reaching a peak and then decreasing due to the different effect of temperature on 
their respective equilibrium constants. For T≥750C, solid carbon C(s) is converted 
completely, and the analysis of the temperature effects is based on reactions (4), (5) and 
(8). 

From (4) (exothermic): T, CO, CO2, H2, 
From (5) (endothermic): T, CO, CH4, H2,  
From (8) (exothermic): T, H2S, CO2 

 
 Thus, it can be directly seen that the overall temperature effects are: as T, CO, 
CH4, H2S. The overall CO2 is dependent on the combined effects of reactions (4) and 
(8). As the temperature effect on CO2 in the reaction (4) is dominant over that of the 
reaction (5), thus overall, the moles of CO2 decrease with increasing temperature. 
Besides, the overall moles of H2 are dependent on the competitive effects of reactions (4) 
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 It is clear that for black liquor gasification since Na is the major element of the 
pulping chemicals (Na2S, NaOH) the amount of gaseous Na-compounds formed in the 
gas phase should be minimized. The results here can help select suitable conditions 
avoiding the formation of gaseous Na-compounds. For example, the conditions of T = 
1000 and P = 30 bar can avoid distribution of Na in gas phase. 
 
 
CONCLUSIONS 
 
1. A thermodynamic equilibrium model using Gibbs free energy minimization approach 

and the software FactSage are utilized to analyze the thermodynamic equilibrium 
constraints of the complex multiple phase reactions and the effects of different 
operating conditions during black liquor steam gasification. The modeling results can 
help understand the black liquor gasification process and be useful in process 
modeling and analysis of the future BLG-based biorefinery. Unlike conventional 
biomass gasification, there is very limited work presented in the literature on black 
liquor gasification, and the present work attempts to address the same. In addition to 
gasification of the organic components of black liquor, the role of inorganics and their 
constituent reactions during gasification and multiple phases are also considered, for 
the first time. 

2. The model showed important results with regard to compositions of the product gas 
as well as the solid and liquid phases.   

3. At temperature below 750C, solid carbon C(s) decreases with increasing temperature 
until it becomes zero at around 750C, indicating a full carbon conversion at and 
above this temperature. 

4. With increasing T, H2% increases, reaches a maximum, and then decreases; CO 
increases while CO2, CH4, and H2S decrease; Na2CO3 % increases, reaches a maxi-
mum, and then decreases. This provides important equilibrium data for maximizing 
the syngas proportion (i.e. H2 and CO) for further F-T type conversion. At T<750C, 
no Na2S is formed; above 750C, Na2S increase with temperature; the cold gas 
efficiency increases, while HHV decreases with temperature. This is important for 
maximizing the Na2S recovery for re-use in the pulping process. 

5. With increasing pressure, H2 and CO slightly decrease. In addition, Na2S decreases 
while Na2CO3 increases. Besides, the cold gas efficiency decreases with pressure 
while HHV does not significantly change. 

6. The more steam, the more H2 fraction in the gas phase, but the less CO; the more 
steam, the more Na2CO3, but the less Na2S. For SBR<=0.3, with increasing SBR, 
cold gas efficiency increases while HHV decreases slightly. For SBR>0.3, with 
increasing SBR, cold gas efficiency remains unchanged while HHV decreases. 

7. The thermodynamic model provides a simple tool to simulate equilibrium 
compositions during black liquor gasification. It can be applied for process modeling, 
techno-economic and environmental analysis of IFBR. The thermodynamic equilib-
rium model presented here in conjunction with local fluid flow, heat and mass 
transfer model of a specific gasifier type can be used in the design and development 
and optimum operation of future black liquor gasifiers.  
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8. Operating with a 0.3<SBR<0.6 in combination with high P (30 bar) and high T 
(~1000C) appears most beneficial for obtaining a smelt with no C(s) and maximizing 
Na and S capture in the smelt. 
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