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The effects of alkaline treatment and a compatibilizing agent on the 
tensile properties of sugar palm fibre-reinforced high impact polystyrene 
(HIPS) composites were studied. Two concentrations of an alkali solution 
(4% and 6%) and two percentages of a compatibilizing agent (2% and 
3%) were used in this study. The alkaline treatment was carried out by 
immersing the fibres in 4% and 6% alkali solutions for 1 hour.  A 40 wt. 
% of sugar palm fibre (SPF) was blended with HIPS and the 
compatibilizing agent using a Brabender melt mixer at 165 °C. All the 
treated fiber composites showed tensile strength enhancement 
compared with untreated composites. The maximum strength increase 
was 35%, which was achieved by 4% alkali treatment; however, there 
was no improvement in the tensile modulus. 
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INTRODUCTION 
 
 Recently, more attention has been placed on using natural fibres instead of 
synthetic fibres (glass fibre especially) in fibre-reinforced polymer composites. Polymer 
composites reinforced with synthetic fibres have negative environmental and health 
effects. Advantages of using natural fibres in place of synthetic fibres include lower 
density, better biodegradability, less environmental risk, ease of separation, easy 
availability, enhanced energy recovery, a non-corrosive nature, and usually lower costs 
(Singha and Thakur 2007). Various natural fibres such as  hemp, flax, abaca, sisal, jute, 
henequen, kenaf, ramie, oil palm, pineapple leaf, banana pseudo-stem, sugarcane 
bagasse, coir, rice husk, wood, and bamboo reportedly have been used for the 
reinforcement of polymer composites (Saheb and Jog 1999). 
 Sugar palm or Arenga pinnata tree is a popular plant in Southeast Asia, in 
particular in Malaysia and the Philippines, which is a promising source of 
natural fiber. The black fiber is produced from the mature tree after 5 years (Mogea et al. 
1991). Figure 1 shows the location of the fibre on the sugar palm tree. This kind fiber has 
many applications due to its superior strength and durability. 
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Fig. 1. Sugar palm tree and the location of the sugar palm fibre 
 

Extensive studies have been reported on the performance of incorporation natural 
fibre in thermoplastics matrix. George et al. (1993) reported on the processing 
characteristics and mechanical behavior of pineapple leaf fibre reinforced low-density 
polyethylene (PALF/LDPE) composites. They studied the effects of fibre orientation, 
fibre loading, and fibre length on the composites. Hornsby et al. (1997) discussed the 
mechanical properties of polypropylene composites containing flax and wheat straw 
fibres. The inclusion of 5% by weight of maleic anhydride-modified PP could enhance 
the tensile strength, which was shown to promote adhesion between fibres and matrix. 
Joseph et al. (1999) optimized mixing parameters by varying the mixing time, rotor 
speed, and chamber temperature when tailoring sisal/PP composites. Their work proved 
that melt-mixed composites showed better tensile properties than those of solution-mixed 
composites. Several chemical treatments, i.e. alkali, isocyanate, peroxide, maleic 
anhydride, and maleic anhydride graft-copolymer treatment had been conducted by 
previous researchers for the enhancement the mechanical properties of natural fibre 
reinforced the thermoplastic composites (Joseph et al. 1996; Arbelaiz et al. 2005). 

The role of sugar palm fibres in the reinforcement of thermoplastic composites, 
however, has not been fully studied. This research explores the new concept of 
combining sugar palm fibres with high impact polystyrene thermoplastic composite 
materials. High Impact Polystyrene (HIPS) is a type of polystyrene in which polybuta-
diene is added during polymerization. Polystyrene is used in high-quality goods, and its 
suggested application in this research is roof tiles.  The tensile properties of SPF-HIPS 
composites were examined, and the chemical treatments of the fibres were carried out to 
improve the mechanical performance of the composites. 
 
 

Sugar Palm Tree 

Sugar Palm Fibre 
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MATERIALS AND METHODS 
 
Materials 

The high impact polystyrene (HIPS) used as the matrix polymer was Idemitsu PS 
HT 50 supplied by the Petrochemical (M) Sdn Bhd, Pasir Gudang, Johor, Malaysia. The 
sugar palm fibre (SPF) was obtained from Aceh, Indonesia. The fibres were crushed with 
a pulverisette machine for shortening and sieved through 30 and 50 mesh screens.  

There were two types of treatment used in this study: (1) mercerization using an 
alkali solution and (2) using the polystyrene-block-poly(ethylene-ran-butylene)-block-
poly(styrene-graft-maleic-anhydride) as a compatibilizing agent. NaOH and the 
compatibilizing agent were supplied by Aldrich Chemical Company, Malaysia. 
 
Treatment Processing 

The first treatment was mercerization, or alkali treatment. It was carried out by 
immersing the short fibres in an NaOH solution for 1 hour at room temperature. Two 
concentrations of NaOH were used: 4% and 6%. The fibre/solution ratio used was 1:20 
(w/v).  

The treated fibres were then washed with distilled water to remove residual NaOH 
thoroughly. The drying process of fibres was conducted by oven at 100 0C during 2 days. 
The second treatment included applying two different weight concentrations (2 and 3 wt. 
%) of the compatibilizing agent. 
 
Composite Processing 

The sugar palm fibres (40 wt. %) were mixed with the HIPS matrix using a 
Brabender Plasticorder intensive mixer, model PL2000-6 at 165 °C. The mixing process 
was performed in the following sequence. The HIPS (58 wt. % and 57 wt. %) and 
compatibilizing agent (2 wt. % and 3 wt. %) were first premixed at room temperature for 
3 minutes. The HIPS and compatibilizing agent were then placed in the mixing chamber 
for about 2 minutes at 50 rpm, followed by the addition of the SPF for another 10 min. of 
mixing. The resulting material was then compressed in the mould using a Carver 
laboratory press with metal frame size 150 mm x 150 mm x 1mm at 100 bar and 
temperature 165 °C. Thereafter it was subjected to a process of pre-heating for 5 minutes 
and full press-heating for 5 minutes. The processing pressure is 100 kg/cm2. This was 
followed by cooling for 5 minutes using circulated water with 20 oC temperature, and the 
final resulting composite was formed into sheets. The same technique was also applied 
for the alkali-treated sugar palm fibres with a mixing composition of 40 wt. % alkali-
treated fibre and 60 wt. % HIPS matrix. Finally, samples were produced by cut using the 
dumbbell cutter for tensile test according to ASTM Standard size. 
 
Tensile Testing 

Tensile testing was carried out on an Instron Tensile model 5569 according to 
ASTM D 638. The gauge length was set at 50 mm and the cross head speed was set at 2 
mm/min. The six specimens of each sample were tested.  
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Maleic anhydride as a compatibilizing agent was grafted on the mid-block to 
increase its compatibility with polar coatings and increase its interaction with 
substrates. The reactive functional groups were able to generate in situ formation of 
blocks or grafted copolymers at the interface by hot-melting blending. Reactive 
compatibilization has proven to be an effective method for improving mechanical 
properties, especially tensile strength, of sugar palm-reinforced HIPS composites. 

The tensile moduli of sugar palm fibre-reinforced HIPS composites with chemical 
treatment, however, showed no improvement compared to untreated composites (Fig. 3). 
The stiffness of the composites became lower with chemical treatment. Chow and Ooi 
(2007) also reported the same phenomena; the flexural modulus of polystyrene organo-
montmorillonite nanocomposites decreased after the incorporation of maleic anhydride 
graft polystyrene. A decrease in stiffness from chemically treating composites may be 
caused by several reasons: (a) Compatibilizer acts as lubricant, which renders the 
movement of molecules easier than for those without coupling agent due to higher 
friction, (b) MAH used here was a kind of impact improver that has soft segments and 
will soften molecules chains, (c) Mercerization will remove some glue/extractives/lignin 
etc. in fiber bundles, which contributed to lower stiffness of the treated fibers, exhibiting 
lower tensile modulus. 

 
SEM Analysis 

A SEM micrograph was used to qualitatively assess the interfacial adhesion of the 
fibre and matrix for the composites. Figure 4 shows the fracture surface of untreated SPF-
HIPS composites. The fracture model of fiber pull-out and smooth surface can prove 
there was poor compatibility between native SPF and the matrix. Visuals of treated fibre 
surfaces of treated composites are shown in Fig. 5 and 6.   

 

 
 

Fig. 4. The fracture surface of an untreated 40%SPF-HIPS composite 
 

Fibre pull-out 

Smooth surface of fibres 

Poor interface bonding 
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Figure 5 shows fracture surfaces of the composites treated with 2% and 3% addi-
tion of MAH compatibilizing agent. The thin gap between fibre and matrix indicates 
good adhesion. This is due to infiltration of maleic anhydride in the HIPS matrix. Figure 
6 shows the fracture surfaces of composites treated with 4% and 6% alkali. These 
photographs also show a thin gap between the fibre and the matrix, indicating the good 
interfacial bonding that resulted from the alkali treatment. Alkali treatment also produced 
a rough surface from the abrasion of impurities on the fibre surfaces. Alkali-treated 
composites also showed higher tensile strengths than composites with MAH addition. 

 

    
(a)                                 (b) 

 
Fig. 5. The fracture surface of a SPF-HIPS composite with (a) the addition of 2%MAH, (b) the 
addition of 3% MAH 
 

    
(a)                                 (b) 

 
Fig. 6. The fracture surface of a SPF-HIPS composite treated with (a) 4% alkali, (b) 6% alkali 

 
Effect of the Treatments on Water Absorption Behavior of Composites 

The effects of the compatibilizing agent (2% and 4%) and alkali treatments (4% 
and 6%) of short sugar palm fibres on the water absorption behavior of SPF-HIPS 
composites were examined. Figure 7 depicts the moisture content of the SPF-HIPS 
composites that had been subjected to several treatments after 24 hours immersion. It can 
be seen that water absorption behavior of the composites with MAH treatment was 

Rough surface of fibre 

Fibre pull-out trace 

Fibre pull-out trace 

Fibre pull-out 

Fibre pull-out 

Interface bonding 
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almost the same as that of the untreated composites. There was no significantly difference 
of moisture content between them. However for the alkali treatment, the result shows 
higher water absorption. Alkali treatment makes the fibre more hydrophilic, due to the 
change of cellulose I to cellulose II (Alvarez et al. 2003). 
 

 
 

Fig. 7. The water absorption behavior of the SPF-HIPS composites, after 24 hours immersion 
 
 
CONCLUSIONS 
 

This investigation characterized effects of chemical treatment on natural fibre 
composites prepared from 40 wt. % sugar palm fibre and HIPS matrix. The aim of this 
study was to compare the effects alkali treatment and compatibilizing agent treatment on 
the tensile properties of sugar palm fibre reinforced high impact polystyrene composites. 
The following conclusions can be drawn: 
1. Compatibilizing agent applied to palm fibres decreased composites tensile modulus. 
2. Both alkali treatment and compatibilizing agent treatment increased the tensile 
strength, while the alkali treatment at the 4% level showed the highest tensile strength, 
improvement of about 35% from untreated composites. 
3. Alkali treatment applied to sugar palm fibres increased composites strength more over 
the neat HIPS tensile strength. 
4. Based on this investigation, it is concluded that 4% alkali treatment is the best 
treatment for enhancing the tensile performance of SPF-HIPS composites. 
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