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In this study, an artificial neural network (ANN) approach was employed 
for modeling the moisture absorption (MA) and thickness swelling (TS) 
properties of oriented strand board (OSB) in various applications. A 
series of ANN models were developed for the analysis and prediction of 
correlations between processing parameters and MA and TS of OSB. An 
ANN model was found for modeling the effects of OSB treatment 
variables on the MA and TS. The required data for training and testing of 
the model were obtained from the experimental results of Salay (2010). 
In designing this model, the MA and TS of the OSB were determined 
using OSB treatment variables, including board layup type, resin type, 
application rate of resin, and wax content. When experimental data and 
results obtained from the ANN were compared by regression analysis 
using Matlab, it was determined that both groups of data (test and train) 
were consistent. It was demonstrated that the well-trained feed forward 
and back propagation multilayer ANN model is a powerful and sufficient 
tool for the prediction of MA and TS; therefore, by using ANN outputs, 
satisfactory results can be estimated, rather than measured and hence 
time and cost are reduced in all the required experimental activities. 
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INTRODUCTION 
 

Wood-based composites, such as OSB and plywood have been slowly replacing 
solid wood in many structural applications. OSB is utilized internationally in a wide array 
of applications, including commercial and industrial buildings, residential construction, 
packaging, furniture, and more. OSB has taken a major market share over the last two 
decades and is still driven by strong demand (APA 2005). 

One of the most important factors negatively affecting the use of OSB is its 
moisture absorption properties. Under long-term cyclic humidity exposure conditions, 
wood-based composites lose their strength; therefore, to prevent moisture absorption and 
thickness swelling in OSB, its manufacturing variables must be modified (Wu 1999; Wu 
and Piao 1999; Moya et al. 2009). 

Artificial neural networks (ANNs) are suitable for modeling various manufac-
turing functions due to their ability to learn complex non-linear and multivariable 
relationships between process parameters. 
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Modeling with Artificial Neural Networks  
The concept of artificial neural networks was inspired by biological neural 

networks that consist of many nerve cells called neurons that process information in the 
brain. Its architecture essentially mimics the biological system of the brain. 

The brain has many excellent characteristics such as parallel processing of 
information, a learning function, self-organization capabilities, and so forth. ANNs are 
information processing systems that are constructed through the imitation of the thinking 
and working abilities of the human brain (Oztemel 2006). 

ANNs are capable of processing information in a parallel distributed manner, 
learning complex cause and effect relationships between input and output data, dealing 
with nonlinear problems, generalizing from known tasks or examples to unknown tasks. 
ANNs are good for tasks involving incomplete data sets, fuzzy or incomplete 
information, and for highly complex and ill-defined problems for which humans would 
usually decide on an intuitional basis. Moreover, they can be faster, cheaper, and more 
adaptable than traditional methods (Ceylan 2008). ANNs technology brings completely 
different concepts to computing. Neural computing is a non-algorithmic method of 
computing that is able to take full advantage of massive parallel computer architectures. 
ANNs learn an application; they are trained through examples rather than programmed by 
software (Ince 2004). In general, an ANN is made up of a large number of simple 
processing elements known as nodes or neurons, which are organized in layers. Each 
neuron is connected to other neurons by communica-tion links (connections), each of 
which has an associated numerical value known as a ‘‘weight’’. These weights determine 
the nature and strength of the influence between the interconnected neurons. Information 
is stored in the inter-neuron connections. A node has many inputs, but only one output. 

The task of an artificial neuron j is simple and consists of receiving input 
signals (xi) weighted by connection weights (wij) from neighboring neurons. The sum of 
these weighted signals provides the neuron’s total or net input (netj). Then, the activation 
threshold of neuron j represented by a positive or negative θj value is added to the net 
input, and through applying a mathematical function (f(.)) (generally non-linear and 
known as an activation or transfer function) to net input, output value yj is computed and 
sent to other neurons. This process is summarized in Eq. 1 and Eq. 2 and illustrated in 
Fig. 1 (Palmer et al. 2006). 
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 The basic structure of an ANN model usually consists of three distinctive layers: 
the input layer, where the data are introduced to the ANN, the hidden layer or layers, 
where the data are processed, and the output layer, where the results of the ANN are 
produced. The most popular and widespread artificial neural network architecture, called 
Multi-Layer Perceptron (MLP), is illustrated in Fig. 2. In this type of architecture, data 
are always transmitted from the input layer to the output layer (Haykin 1994). 
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  Fig. 1. General functioning of an artificial neuron 
 

 
 
 Fig. 2. A schematic description of artificial neural network configuration 
 

Of the various models, the feed forward model of MLP is the most widely and 
successfully used in applied work and engineering problems, because it is capable of 
resolving a wide variety of problems, gives efficient results, and is easily provable 
mathematically (Schmoldt et al. 2000; Ibrahim et al. 2011). 

To determine the optimum topology (architecture) and performance of the ANN, 
several parameters are adjusted, such as the number of neuron layers, the number of 
neurons in each layer, the transfer functions, the learning rule, learning coefficient ratio, 
the number of learning cycles, and the initialization of the weights and the biases (Cointe 
and Rouger 2005). The parameters, which are varied based on the complexity of the 
problem, are determined by the designer, and the choice of specific parameters is more or 
less subjective (Avramidis and Wu 2007). 

ANNs are trained with known data and then tested with data not used in training. 
The error measurements between the desired vs. actual output produced by the ANN are 
performed in both training and testing processes by using various diagnostic methods 
(instruments). The instruments provide diagnostic information that can be considered as 
indications of the ANN’s good or poor performance. Two well-known, common ANN 
instruments are the root mean square error (RMSE) and the mean absolute percentage 
error (MAPE). This process is summarized in Eqs. 3 and 4 (Sagıroglu et al. 2003). 
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In Eqs. 3 and 4, ti is the actual output values, tdi is the neural network predicted 

values, and N is the number of objects. 
A central phase in ANN analysis is ‘learning’ or ‘training’. During this phase, the 

network learns by adjusting the relationships between its nodes. The input data are 
presented to the network, which is asked to modify the values of weights and biases so 
that it finds the desired output by successive iterations. ‘Learning’ occurs through 
thousands of iterations, in which the network’s ability to predict the output correctly on 
the basis of the input data constantly improves through continuous adjustments of the 
relationships until convergence happens. The network compares the calculated output 
with the desired one and modifies the values of its weights to give minimal 
error (Grønholdt and Martensen 2005; Cointe and Rouger 2005). The finding of the set of 
weights that minimize the error between the neural network predicted values and 
observed values is called the training of the network (Pollard et al. 1992). 

Usually, the neural network performance is tested with a testing set that is not part 
of the training set. The testing set can be seen as the representative cases of the general 
phenomenon. If the network performs well on the testing set, then it can be expected to 
perform well on the general case as well. Once the learning is done, the weights and the 
biases of the network are fixed and a new set of examples that are not in the training 
sample can be submitted (Cointe and Rouger 2005). 

ANNs play an important role in predicting and modeling the linear and non-linear 
problems in different fields of engineering and have received considerable interest in 
recent years. Also ANN modeling has been used in the field of wood science; some 
studies are briefly mentioned as follows: 

Khalid et al. (2008) designed an automatic wood recognition system based on 
artificial neural networks. Esteban et al. (2009) demonstrated that artificial neural 
networks can be used as an effective tool for identifying similar species with a high 
percentage of accuracy. Guangsheng and Li (2008) have shown that the artificial neural 
network is one of the best methods for wood quality forecasting. 

Some studies have been performed by artificial neural network modeling for 
prediction of some mechanical properties of wood (Samarasinghe et al. 2007; Mansfield 
et al. 2007) and, for detection and classification of wood defects (Nordmark 2002 and 
Kurdthongmee 2008). 

There also have been some studies in the field of wood-based composite 
materials. Artificial neural networks were used to predict the mechanical properties of 
particleboard (Fernández et al. 2008; Cook and Chiu 1997), to optimize the process 
parameters in a particleboard manufacturing process (Cook et al. 2000), and to detect of 
structural damage in medium density fiberboard panels (Long and Rice 2008). Esteban et 
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al. (2010) presented artificial neural networks as a predictive method to determine 
moisture resistance of particle and fiber boards. 

Some studies have been conducted on the use of artificial neural networks for 
classification and inspection of wood veneer (Drake and Packianather 1998; Packianather 
and Drake 2005; Castellani and Rowlands 2008; Packianather 1997; Packianather and 
Drake 2000). 

Artificial neural networks were used in the drying process of wood and the 
analysis of moisture in wood (Wang and Liu 2003; Wu and Avramidis 2006; Ceylan 
2008; Zhang et al. 2006; Avramidis and Iliadis 2005; Avramidis and Wu 2007), 

The potential of using neural network in the determinate of hexose and pentose 
amounts in wood analysis (Yasar 2005), in the prediction of wood dielectric loss 
factor (Avramidis et al. 2006), and in the modeling of product recovery for trees (Zhang 
et al. 2006) has been investigated in some studies. 

Even in view of the work just cited, the use of artificial neural networks (ANNs) 
to make predictions on the moisture absorption (MA) and thickness swelling (TS) 
characteristics of wood-based composites is a new concept. 

The goal of this study was to use ANNs as an alternative way of modeling and 
determining how MA and TS characteristics of OSB are affected in different treatment 
variables. In the study, a feed forward and back propagation multilayer ANN model was 
developed and used. 
 
 
EXPERIMENTAL 
 
Material 

The development of ANN models significantly depends on the experimental 
results. In the present work, relative humidity, board layup type, resin type, application 
rate of resin, and wax content were considered as the prime processing variables. 

This study incorporated data obtained from earlier experimental works (Salay 
2010). The materials and method of the experimental works are briefly mentioned as 
follows: Based on the data obtained from Salay’s studies, it was reported that target 
density and thickness for all southern pine oriented strand boards were 623kg/m3 and 
12.7 mm., respectively. The pressing cycle was the same for all boards. Platen pressure 
ranged from 6000 to 7000 kPa depending on board type and resin content. The press 
temperature was measured as 180°C. Forty different board treatments were used. 
Experimental variables are listed in Table 1 according to Salay (2010). 
 
Table 1. Treatment Variables for the Oriented Strand Board (Salay 2010) 

Board Layup Resin Base Rate 
(% solids) 

Resin Content 
Wax % % of 

base 
PF % 
solids 

pMDI % 
solids 

Single-layer 
Three-layer 

Phenol formaldehyde (PF) 
(base=4.5%) 

Isocyanete (pMDI) 
(base=2.0%) 

65 
83 

100 
117 
134 

2.92 
3.74 
4.50 
5.27 
6.03 

1.30 
1.66 
2.00 
2.34 
2.68 

0.5% 
1.0% 

40 treatment combinations (2 x 2 x 5 x2) 
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From each test board (457 mm2), 50 mm2 samples were sawn and used for testing. 

Samples were oven dried at 100.3°C for twenty-four hours, then moved to a desiccator 
over CaCl2 to cool. Weight and thickness measurements were taken in an environmental 
chamber at 20°C and both 80% and 90% relative humidity, separately, until equilibrium 
was achieved (Salay 2010). 

In this study, the least square means of all treatments for MA and TS at 80% and 
90% relative humidity were used for ANN modeling. 
 
Method 

The proposed ANN model was designed by software developed using the 
MATLAB Neural Network Toolbox. The data obtained from experimental works (Salay 
2010) were organized. Among these data, 60 (75% of total data) samples were selected 
for ANN training process, while the remaining 20 (25% of total data) samples were used 
to verify the generalization capability of ANN. The training and the test data grouped 
were randomly utilized to train the artificial neural network by constituting different data 
sets. The data sets used in the prediction model are shown in Tables 2 and 3. 

 
The application of ANN 

The ANN models, which have different network structures and parameters were 
constituted, and ANNs training processes were performed with MATLAB package 
software to determine weight and bias values and to minimize the mean square error. In 
order to determine the performance of networks, the models were tested using a set of 
data (namely test data) containing input–output pairs which were not utilized for training 
processes. Thus the most sensitive (appropriate) ANN result was targeted. 

The obtained predicted values as a result of the testing process were compared 
with the real (measured) values. The model providing the best prediction values with 
respect to the root mean-square error (RMSE) ratio, calculated with Eq. 3, and the mean 
absolute percentage error (MAPE) ratio, calculated with Eq. 4, was chosen as the 
prediction model. 

In Tables 2 and 3, the values calculated by utilizing this prediction model for the 
training and test data, real values, percentage error ratio, and the RMSE and MAPE 
values are indicated. 

In this study, the ANN structure (architecture) chosen as the prediction model 
includes the input layer consisting of five input nodes: namely, relative humidity (%), 
board layup type, resin type, wax content (%), and application rate of resin (%). The 
output layer consisted of two output nodes: namely, moisture absorption (MA) and 
thickness swelling (TS). Two hidden layers were in the structure as well with 10 neurons 
in the first hidden layer and 10 neurons in the second hidden layer. The ANN architecture 
is shown in Fig. 3. The numbers of hidden layers and neurons in the hidden layers was 
determined by trying various networks.  

In the solution of the problem, Feed Forward and Back Propagation multilayer 
ANN was chosen to calculate errors and adjust the weights of the neurons. 
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Fig. 3. The MLP network architecture used for the training and modeling of MA and TS. 
 

In the present work, hyperbolic tangent sigmoid and linear transfer functions were 
preferred as the activation function of the nodes in the hidden layers and output layer, 
respectively; traingdm (gradient descent with momentum backpropagation algorithm), 
Levenberg Marquardt algorithm, and the mean square error (MSE) were used as the 
network training function, the activation function, and the performance function, 
respectively. The mean square error (MSE) was calculated using Eq. 5, 
 

( )∑
=

−=
N

i
ii tdt

N 1

21MSE  (5) 

 
Where, ti is the actual output (targeted values), tdi is the neural network output (predicted 
values), and N is the total number of training patterns. 

The data in the training and test sets must be normalized in order to increase the 
efficiency of the neural network. Inputs and outputs were min-max normalized within the 
range of -1-1 for ANN modeling by the operation given in Eq. 6 in Matlab. In this 
equation, Xnorm is the normalized value of a variable X (real value of the variable), and 
Xmax and Xmin are the maximum and minimum values of X, respectively. 
 

12 −
−

−
×=

minmax

min
norm XX
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It was assumed that the 0.001 targeted mean square error value would be 

sufficient for the training of the artificial neural network. 
 
 
RESULTS AND DISCUSSION 
 

When MSE of ANN training process reached 0.001, the training was terminated 
and change of MA and TS were modeled with obtained network parameters. 

The amount of error variation depending on iteration of the selected artificial 
neural network is shown in Fig. 4; and the number of epoch, at which training of the 
model was stopped, is 933. 
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Fig. 4. The graphic of error variation depending on iteration of the ANN 
 

The MAPE and RMSE values, the predicted values, and % error for MA and TS 
are given in Tables 2 and 3. The ANN prediction was very close to the actual data. 
 
Table 2. Training Data Set and MA and TS Prediction Model Results 

No 
Relative 
Humidity 

(%) 

Board 
Layup 

Resin 
Type 

Wax 
(%) 

Resin 
Content 

(%) 

Moisture Absorption Thickness Swelling 

Measured Predicted Error 
(%) Measured Predicted Error 

(%) 
1 80 single layer PF 0.5 117 11.40 11.42 -0.18 5.70 5.61 1.52 
2 80 single layer PF 1 117 9.30 9.34 -0.41 4.80 4.87 -1.40 
3 80 single layer PF 0.5 134 9.90 9.96 -0.65 5.10 4.99 2.13 
4 80 three layer pMDI 0.5 83 11.40 11.37 0.23 7.00 7.01 -0.16 
5 90 three layer pMDI 1 83 15.50 15.47 0.17 10.50 10.54 -0.43 
6 90 three layer PF 1 100 15.10 15.17 -0.47 10.60 10.71 -1.02 
7 90 single layer pMDI 1 83 14.30 14.65 -2.46 12.70 12.96 -2.02 
8 80 single layer PF 1 83 9.50 9.48 0.26 5.70 5.55 2.60 
9 90 single layer pMDI 1 100 14.70 14.45 1.71 10.80 10.36 4.07 

10 80 three layer PF 0.5 83 9.00 9.01 -0.14 4.70 4.85 -3.12 
11 80 three layer PF 1 134 9.90 9.85 0.46 5.60 5.39 3.75 
12 90 three layer pMDI 1 134 13.90 13.84 0.42 8.20 8.35 -1.85 
13 80 three layer pMDI 0.5 117 11.00 11.11 -1.01 5.90 5.52 6.45 
14 80 three layer pMDI 1 83 11.10 10.87 2.11 5.20 5.56 -6.92 
15 90 three layer pMDI 0.5 83 14.40 14.51 -0.77 11.40 11.30 0.88 
16 80 single layer PF 1 100 7.60 7.50 1.34 3.30 3.72 -12.72 
17 80 single layer PF 0.5 100 9.90 9.86 0.39 4.30 4.44 -3.24 
18 80 three layer PF 1 100 10.10 10.07 0.33 6.00 5.80 3.33 
19 80 single layer pMDI 1 65 8.00 8.07 -0.90 5.00 4.82 3.64 
20 80 single layer pMDI 1 100 10.60 10.51 0.88 6.90 7.25 -5.05 
21 80 single layer PF 0.5 65 10.50 10.49 0.11 5.20 5.19 0.28 
22 90 single layer PF 0.5 65 14.30 14.41 -0.75 12.70 12.66 0.30 
23 80 three layer PF 0.5 100 10.70 10.23 4.43 6.70 5.97 10.91 
24 80 three layer pMDI 1 65 10.30 10.48 -1.76 5.50 5.16 6.15 
25 80 three layer pMDI 0.5 65 9.80 9.81 -0.06 5.50 5.56 -1.15 
26 90 single layer PF 0.5 100 14.90 14.71 1.31 11.90 11.87 0.24 
27 90 single layer pMDI 1 65 15.20 15.05 1.01 16.40 16.31 0.56 
28 90 three layer pMDI 0.5 134 15.60 15.63 -0.18 8.70 8.73 -0.30 
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29 90 single layer PF 0.5 117 15.10 15.29 -1.25 11.40 11.46 -0.55 
30 90 single layer PF 0.5 134 15.70 15.59 0.69 12.70 12.66 0.28 
31 90 single layer PF 1 134 14.60 14.42 1.25 9.00 9.33 -3.69 
32 90 three layer PF 1 117 15.40 15.31 0.55 11.30 11.19 1.02 
33 80 single layer PF 1 65 8.90 8.97 -0.77 5.20 5.04 3.01 
34 80 single layer PF 1 134 7.80 7.80 0.05 3.50 3.60 -2.76 
35 90 three layer PF 0.5 83 15.30 15.36 -0.38 13.90 13.89 0.04 
36 90 three layer pMDI 0.5 65 15.50 15.43 0.48 11.70 11.77 -0.56 
37 90 single layer PF 1 65 15.40 15.40 -0.02 14.00 13.96 0.30 
38 90 three layer PF 0.5 134 16.10 16.06 0.24 12.00 11.98 0.17 
39 90 three layer PF 1 65 16.20 16.20 -0.01 15.10 15.15 -0.30 
40 90 three layer pMDI 0.5 117 16.00 15.95 0.34 10.50 10.43 0.64 
41 90 three layer PF 0.5 117 16.10 16.17 -0.45 13.70 13.67 0.21 
42 90 three layer pMDI 1 100 14.50 14.66 -1.08 9.40 9.33 0.70 
43 80 three layer pMDI 1 100 10.10 10.26 -1.56 5.10 5.00 1.97 
44 90 single layer PF 1 117 13.10 13.25 -1.14 9.20 8.90 3.23 
45 80 three layer pMDI 0.5 134 11.10 10.97 1.14 5.20 5.59 -7.52 
46 80 three layer pMDI 1 134 10.30 10.28 0.17 5.60 5.48 2.18 
47 80 single layer pMDI 1 117 7.90 7.92 -0.25 4.60 4.52 1.77 
48 90 three layer PF 0.5 100 15.70 15.58 0.74 13.10 13.14 -0.31 
49 90 single layer pMDI 0.5 100 14.30 14.32 -0.14 12.30 12.26 0.33 
50 80 three layer PF 0.5 117 9.80 10.26 -4.69 5.50 6.17 -12.18 
51 80 three layer PF 0.5 65 10.40 10.43 -0.26 8.10 8.04 0.68 
52 80 three layer PF 1 83 11.20 11.22 -0.14 6.50 6.50 0.06 
53 80 single layer pMDI 0.5 100 10.60 10.56 0.33 6.50 6.56 -0.95 
54 90 single layer PF 1 83 13.50 13.49 0.11 11.00 11.10 -0.87 
55 80 single layer pMDI 0.5 83 9.70 9.70 0.03 6.10 6.07 0.50 
56 90 single layer pMDI 1 134 13.90 13.98 -0.60 9.70 9.66 0.44 
57 90 single layer pMDI 0.5 83 15.70 15.69 0.03 12.50 12.54 -0.32 
58 80 single layer pMDI 0.5 134 9.20 9.21 -0.16 5.40 5.34 1.15 
59 90 single layer pMDI 0.5 117 15.90 15.87 0.18 13.20 13.31 -0.82 
60 80 three layer PF 1 117 9.80 9.83 -0.32 5.30 5.65 -6.51 

 MAPE 0.74 2.37 
 RMSE 0.13 0.22 

 

 
 
Fig.  5. The relationship between experimental results (values) and ANN predicted values for MA 
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 Figs. 5 and 6 show the relationship between the real values and calculated values 
obtained using the prediction models. The comparative plot of these values is given in 
Figs. 7 and 8. 
 

 
 
Fig. 6. The relationship between experimental results (values) and ANN predicted values for TS 
 
Table 3. Test Data Set and MA and TS Prediction Model Results 

No 
Relative 
Humidity 

(%) 

Board 
Layup 

Resin 
Type 

Wax 
(%) 

Resin 
Content 

(%) 

Moisture Absorption Thickness Swelling 

Measured Predicted Error 
(%) Measured Predicted Error 

(%) 
1 90 three layer pMDI 1 65 15.90 18.15 -14.17 10.10 12.36 -22.37 
2 90 three layer PF 1 134 15.30 15.20 0.65 12.20 12.71 -4.22 
3 80 single layer pMDI 1 83 9.90 9.15 7.54 5.30 5.89 -11.20 
4 90 single layer PF 1 100 13.70 12.73 7.11 9.40 9.50 -1.07 
5 80 single layer pMDI 0.5 117 10.60 9.67 8.75 5.60 5.61 -0.11 
6 80 three layer pMDI 0.5 100 9.80 10.19 -4.00 5.40 5.03 6.85 
7 80 three layer PF 0.5 134 10.30 10.27 0.25 6.20 6.21 -0.23 
8 90 three layer pMDI 1 117 14.50 14.06 3.06 8.90 8.49 4.61 
9 90 three layer pMDI 0.5 100 16.00 14.88 6.98 9.90 11.04 -11.52 

10 90 single layer PF 0.5 83 14.10 14.37 -1.91 10.80 12.58 -16.47 
11 90 single layer pMDI 0.5 134 14.30 15.76 -10.21 11.90 12.12 -1.87 
12 80 three layer pMDI 1 117 10.00 10.19 -1.90 4.90 5.35 -9.16 
13 90 three layer PF 0.5 65 15.80 15.86 -0.38 16.80 15.02 10.58 
14 80 single layer PF 0.5 83 9.10 9.65 -6.05 4.50 5.58 -24.03 
15 90 single layer pMDI 1 117 14.30 14.18 0.82 11.10 9.69 12.67 
16 80 three layer PF 1 65 10.40 9.91 4.69 6.50 6.43 1.12 
17 80 single layer pMDI 1 134 10.00 9.08 9.21 4.30 4.47 -3.87 
18 90 single layer pMDI 0.5 65 14.30 17.46 -22.07 10.60 11.55 -8.94 
19 90 three layer PF 1 83 14.70 15.34 -4.38 11.90 11.41 4.15 
20 80 single layer pMDI 0.5 65 10.70 10.02 6.35 5.10 4.93 3.32 

 MAPE 6.02 7.92 
 RMSE 1.08 0.96 
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Fig. 7. The comparison of the real and calculated values for MA 
 

 
 
Fig. 8. The comparison of the real and calculated value for TS 

 
In order to assess the validity of the networks and their accuracy, it is often useful 

to perform regression analysis between the network response and the corresponding 
target. The regression curves of the output variables for the experiment and ANN data set 
are shown in Figs. 5 and 6 (training RMA = 0.99879 and RTS = 0.99802, testing 
RMA = 0.93745 and RTS = 0.96084). As the correlation coefficients approach 1, prediction 
accuracy increases and indicates good agreement between the experimental results and 
the model predication. The values of R2

MA and R2
TS in the testing set are 0.88 and 0.92, 

respectively, which indicates that the network obtained explains at least 0.88% and 
0.92% of the observed data. This value supports the applicability of using ANNs in the 
present study. 
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The mean absolute percentage error (MAPE) results are shown in Tables 2 and 3. 
The results indicate a consistent agreement between the outcomes of the ANN modeling 
and the experimental results. This implies that the ANN model can be used to optimize 
MA and TS properties of OSB. 

Comparisons of the results between the outcomes of ANN modeling and 
experimental values for MA and TS are plotted in Figs. 7 and 8; close examination 
reveals that the fits were quite reasonable. In most cases, the neural network prediction 
was very close to the actual value; however, some values were not as close as others. This 
is attributed to errors caused by the material, the measurements, and process parameters. 
These errors, however, could be neglected given that the leaning level of the ANN is 
95%. 

The ANN can be used for optimization. For example, the optimization of the resin 
content for OSB can be carried out through an analysis of evaluated network response 
and the MA and TS plots. Relative humidity (%), board layup type, resin type, and wax 
content (%) are fixed (80%, single layer, phenol formaldehyde (PF), and 0.5%, 
respectively), the application rate of resin (%) is changed, and MA and TS results are 
obtained (Fig. 9). As seen from the graphics, intermediate values are not performed on 
the experiment set but are obtained from the designed system. 
 

 
 
Fig. 9. The change in least square means for MA and TS with increasing resin content 
 
 
CONCLUSIONS 
 

This paper presents an artificial neural network (ANN) application used for the 
prediction of moisture absorption (MA) and thickness swelling (TS) of oriented strand 
board (OSB). 

The comparison of ANN and experimental results for MA and TS are shown in 
Figs. 7 and 8. The results of graphic comparisons showed similarities between the experi-
mental study and the ANN model and supported the reliability of the model. 
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Mean absolute percentage error (MAPE) and root-mean squared error (RMSE) 
were used to evaluate the performance of the proposed ANN in the prediction technique. 
The mean absolute percentage errors were 0.74% for MA and 2.37% for TS in training, 
and 6.02% for MA and 7.92% for TS in testing. These levels of error are satisfactory for 
MA and TS. As seen from the results, the ANN approach has a sufficient accuracy rate 
for the prediction of MA and TS of OSB. 

ANN modeling can be used for the modeling (the optimization) of MA and TS at 
various OSB treatment variables without the need to develop a mechanism (Fig. 9); 
therefore, time, material, and costs can be saved.  
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