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This work was designed to provide the Australian structural radiata pine 
processing industry with some indications for improving stress grading 
methods and/or technologies to give an increase in structural grade 
yields, and significantly reduce processing costs without compromising 
product quality. To achieve this, advanced statistical techniques were 
used in conjunction with state-of-the-art property measurement systems 
applied to the same sample of sawn timber. Acoustic vibration analyses 
were conducted on green and dry boards. Raw data from existing in-line 
systems was captured on the same boards. The Metriguard HCLT stress 
rating system was used as the “reference” machine grading because of 
its current common use in the industry. A WoodEye® optical scanning 
system and an X-ray LHG scanner were also able to provide relevant 
information on knots. The data set was analyzed using classical and 
advanced statistical tools to provide correlations between data sets, and 
to develop efficient strength and stiffness prediction equations. 
Reductions in non-structural dry volumes can be achieved. 
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INTRODUCTION 
 

The use of timber in load bearing applications in building construction requires 
the estimation of the mechanical properties of each structural wooden member. Because 
of its natural variability, timber used for structural purposes has to be graded according to 
relevant mechanical properties, such as strength or stiffness. In Australia, the design 
properties for pine specified in the Australian Standard AS 1720.1 (1997) were based on 
several large national in-grade testing programs. The characteristic values were then 
determined based on nationally pooled data from these tests and using the calculation 
procedure in AS/NZS 4063 (1992). A suite of stress grades used for machine-graded 
softwoods in Australia was defined (Bolden et al. 1994) and later refined (Boughton and 
Juniper 2010). In the Australian industry, this grading is performed through widely used 
automatic systems. Machine strength grading of sawn timber is based on correlations 
between grade indicating properties and measured physical properties (AS/NZS 1748, 
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1997). When new types of machines are implemented, they are calibrated with timber 
samples representing the wood material which the machine will grade. 

Stiffness is the easiest characteristic to estimate since it can be non-destructively 
measured directly by different techniques like machine stress rating or acoustic devices. 
The measured stiffness has to be calibrated against the standard reference stiffness, e.g. 
four point static bending (AS/NZS 4063 1992). The discrepancy always observed is 
understandable through the dissimilarity of the measurement methods, static versus 
dynamic, local versus global, and different modes of loading. Strength is more problem-
atic to estimate as it cannot be measured directly, except in a destructive test, and it is 
mainly related to local phenomena. 

Improved confidence in estimating strength and stiffness values for green and 
dried timber enables grading closer to design values, thus improving structural grade 
volumetric recoveries in sawn boards, resulting in a more efficient and profitable use of 
the resource. In comparing grading methods, the most relevant correlation is between the 
grading parameter and the strength measured from a specimen taken from the most 
strength-impairing physical feature along the length. The most effective methods have 
higher correlation coefficients as they are most able to correctly classify timber on the 
basis of strength. 

Published results about the ability of different non-destructively measurable 
parameters applied to the same sample of sawn timber to predict timber bending strength 
using in-line grading equipment are based on few wide scope investigations (Hanhijärvi 
et al. 2005 and 2008; Blackmore et al. 2010). In some cases, the purpose of all these 
investigations has not necessarily included the establishment of relationships between 
non-destructive parameters and mechanical properties. 

During Combigrade Phase 1, Hanhijärvi et al. (2005) reviewed the results from 
five previous investigations into non-destructive testing for strength prediction published 
between 1984 and 1997. Based on this review the following conclusions were drawn. The 
degree of success in accounting for variations (coefficient of determination, R²) varied 
between studies, probably due to differing materials and methods. The highest coefficient 
of determination relative to bending strength by any parameter tested achieved R²=0.7. 
The modulus of elasticity (MOE) is the best single variable for prediction of strength 
(modulus of rupture, MOR), followed by the knot area ratio (KAR), and density. The 
prediction capability (R² value) can be improved if two parameters are used together as 
predictors. 

Other relevant findings were reported in the literature. Görlacher (1984) found 
that the natural frequency (dynamic MOE) correlated well with static test results, as did 
Blass and Gard (1994) in their tests on Douglas fir. In separate studies Sandoz (1989) and 
Diebold et al. (2000) found R²=0.45 and 0.53 respectively for ultrasonic speed and 
strength. On a small number of specimens Oja et al. (2000) found a prediction of R²=0.41 
for X-ray (density and knot volume) and strength of sawn boards. Halabe et al. (1995) 
showed that the green stress wave velocity or the corresponding green MOE can directly 
be used to predict the dry static bending MOE. 

Combigrade project phase 1 and 2 (Hanhijärvi et al. 2005 and 2008) included 
research on the potential of strength grading of dry timber with combined measurement 
techniques (X-ray, gamma ray, acoustic vibration, ultrasound, stress rating, and optical 
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assessment). The measure of the ability of a method to predict the grade determining 
properties is solely based on simple linear regression analysis through the coefficient of 
determination. Findings from the Combigrade project Phase 1 and 2 are summarized in 
the following conclusions. Spruce and pine populations behave differently in regard to 
the predictors, with stronger correlation between predictors and strength usually achieved 
by pine. Stiffness parameters gave the best single-variable predictions of bending strength 
with MOE measured by either static method, vibration method, or by ultrasonic method. 
X-ray scanning of boards achieved similar coefficients of determination to MOE 
measurements. Based on R² values, knot parameters provide good predictions of strength 
and density for pine, but not for spruce. Irradiation equipment (X-ray and gamma ray) 
provides slightly better strength prediction than visual surface inspection method such as 
KAR. Sloping grain measurements did not have the potential to predict strength. 
Combinations of devices provided correlations with reference MOR of R²=0.80 to 0.85 
for pine and 0.60 to 0.65 for spruce. Combination of knot measurements with density and 
annual ring width provides effective predictions for strength with R²=0.7 (pine) and 0.6 
(spruce). Based on their results, the authors concluded that the best single parameter 
predictors of bending strength are the stiffness related parameters measured by either 
static method, vibration method or by ultrasonic method. However, X-ray scanning of 
boards (with several measured quantities) as a single measurement reaches the same 
level. As single methods for predicting strength, these can reach R² values of 0.5 to 0.6 
for spruce and 0.7 to 0.75 for pine. It is difficult to improve dramatically their R² values 
with auxiliary measurements. However, combining stiffness parameters with knot or 
density measurements or X-ray measurement with stiffness parameters does improve the 
result enough to be profitable. 

Brancheriau and Baillères (2003) performed acoustic tests on low-grade structural 
boards of larch (Larix europaea). Direct use of acoustic response spectra as predictive 
variables to estimate MOE and MOR in both edgewise and longitudinal vibration is the 
unique feature of the method. Estimates of MOE values were also computed using 
eigenfrequencies of the vibrating objects. Partial Least Squares (PLS) analysis of acoustic 
signals showed that the strength could be accurately estimated. The estimation was 
appreciably better than results obtained by linear regression with dynamic MOE. 

These results, performed using various species, prove the potential of prediction 
improvement when a suitable analytical approach is developed. Conservatism in grading 
due to the lack of confidence in estimating stiffness and bending strength values for dried 
timber graded using traditional methods represents a huge loss for the pine processing 
industry in Australia. Improving structural grade yields results in a more efficient and 
profitable use of the Australian plantation softwood resource. The objective of this paper 
was to provide a basis for improved green and dry grading of Australian radiata pine to 
allow increased structural grade yields and reduced processing costs. The aim was to 
study the potential of different non-destructive methods that can be applied in-line to 
predict strength and stiffness of green and dry sawn boards. The potential of increasing 
prediction accuracy with combined methods was assessed. To achieve this, advanced 
statistical techniques were used in conjunction with state-of-the-art property measure-
ment systems. 
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EXPERIMENTAL 
 
Materials 

The full study used material from three separate softwood resources in Australia 
(Baillères et al. 2009), but this paper will focus on only one. 

Twenty-seven logs with an average centre diameter of 420 mm (range 300 mm to 
580 mm) representing the strength-limited radiata pine (Pinus radiata) resource of 
Western Australia were provided for testing. The strength-limited radiata pine repre-
sented material with a low strength to stiffness ratio, and the 27 logs were selected from a 
resource known to produce this material. From all of the timber produced by these 27 
logs only 429 boards were selected at random for the project. They were drawn at random 
from the production line. A deliberate decision was made to cut only one size (100 x 38 
mm) from the log to prevent any bias due to the fact that larger pieces are cut from 
specific parts of the log. By cutting only one cross section, there was no bias to specific 
types of fibre in the sample; therefore the cutting pattern could not introduce an 
accidental bias of the results. 
 
Methods 

In Australia normal in-grade testing for evaluation of characteristic properties 
values uses random-position tests (AS/NZS 4063). A random test is where the central 
position of the test span is allocated using a random number generator to determine the 
measurement datum along the board without consideration of any properties or features 
of the timber in allocating test position. A biased test involves selection of a particular 
feature or position on the piece and deliberate placement in the centre of the test span in 
order to focus the results on the feature selected. For edge-biased bending tests, the 
selected feature is placed on the tension edge. The random test is specified for 
determining characteristic values. However, grading requirements in Australia still 
require the grade of an individual piece to be related to the performance of the weakest 
point on the piece. Hence in testing the effectiveness of the grading operation, it is valid 
and necessary to compare the properties of the weakest (grade determining) location on 
the piece with the relevant grading parameters. The use of biased position testing to 
compare timber properties with grading parameters is consistent with grading qualifica-
tion testing in AS/NZS 1748.2:2011. 

In commercial grading, the verification testing by some producers normally use 
random-position tests and the test results feed back to the threshold settings to ensure that 
the design characteristic values are reliably obtained by each graded product. For this 
study, most use was made of the biased position test data. Successful grading methods 
will have a high correlation with the strength measured through a biased test. Although it 
is possible to achieve meaningful results from random-position tests, very large sample 
sizes are required to ensure that there are enough “weak points” tested to truly evaluate 
the grading method. The scatter of the results is generally high, as the test span may not 
contain any of the limiting material that actually determined the grade of the piece 
(Leicester et al 1998). 

Logs provided for the trials were selected from a mix of butt logs (30%) and top 
logs (70%) in order to focus the sample on timber normally expected to have a low 
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strength-to-stiffness ratio and ensure sufficient representation of low values of MOR. 
Each log was sawn into 100 x 38 mm sizes. 

After completion of vibration tests in the green (unseasoned) condition, boards 
were transported to a commercial softwood plant for sawing and high temperature kiln 
drying to a target moisture content of 12%. After stabilization the test materials were 
dressed to 90 x 35 mm, a standard structural cross-sectional dimension used in the 
Australian building sector. The final length of the boards varied between 2.41 m to 
5.05 m. 

The trial flow is given below: 
 
1. Vibration tests on green and dry boards 
2. Machine stress rating of dry boards 
3. X-Ray scanning of dry boards 
4. Optical scanning of dry boards 
5. Standard static bending test of dry boards 

 
Vibration tests 

The acoustic vibration measurements were captured using Bing® products 
(CIRAD, http://www.xylo-metry.org/en/softwares.html) software. The technique is also 
known as the resonance method, as it takes into account the resonance frequencies of a 
beam from its response to an impact. Bing® allows determination of the bending and 
compression MOE by analysis of the natural vibration spectrum of a piece of wood 
(dynamic MOE). Shear modulus and internal friction can also be assessed on beams of 
various cross section shapes (Brancheriau and Baillères 2003). 
 
Machine stress rating 

Metriguard 7200 High Capacity Lumber Tester (HCLT) equipment was used to 
measure MOE profiles. The boards were bent flatwise by rollers downward and then 
upward. The bending force and the deflection in both bending sections were measured 
and local MOEs at intervals of 13.88 mm were automatically calculated. The average and 
the low point MOE were provided on the full length (excluding the leading and trailing 
820 mm end sections of boards). The predictors used for the analysis were the average 
(HCLTavg), the minimum value (HCLTmin), and the value at the centre of the test span 
(HCLTtest) from the MOE profile. 
 
X-Ray scanning 

A Linear High Grader (LHG) uses X-Ray technology to analyze density variation 
allowing the identification of knots within boards. The LHG was developed by Coe 
Newnes/McGehee ULC (Canada). Two parameters were extracted from the X-Ray 
profile: LHGkar (estimation of knot area ratio) and LHGwkar (same as LHGkar with a 
specific weighted window). 
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Optical scanning 
A WoodEye® optical scanning system was used to record defect type, size, and 

location with a spatial resolution around 1 mm. The WoodEye® scanning system used 
combines: grey scale camera, colour camera, tracheid effect laser, and profile detection 
laser. The sensor-system scans each piece on all four sides for a wide range of natural 
features. Each is classified, for example a knot may be described as a black knot, sound 
knot, or fibre knot. Board geometry is also fully described in the output of the scan.  
 
Standard static bending tests 

The specimens were conditioned to a temperature of 20 ± 3°C and in an 
environment having a relative humidity of 65 ± 5%. This conditioning was maintained 
until the moisture content was stable. Moisture content was checked using an electric 
resistance moisture meter to confirm that the boards had been conditioned to the range 
specified in the AS/NZS 4063 standard (10 - 15 %). 

Four-point static bending tests were performed using a testing method in accor-
dance with AS/NZS 4063:1992 (equivalent to European Standard test EN 408, March 
2004). The load for the reference testing was applied and measured with a Shimadzu 
UDH-30 metric ton (300 kN) universal testing machine. The support consists of a solid 
steel roller 240 mm long by 50 mm diameter and a flat mounting plate. In the middle of 
the span the deflection was measured with a strain gauge type linear displacement 
transducer. The bending test span was 1620 mm with load applied at two points, and the 
span-to-depth ratio was 18:1. The load deflection curve was measured up to 1.6 kN for all 
specimens. The global MOE was determined from the slope of the linear relationship 
between the applied load (P) and the resulting deflection (w) using the following equation 
(AS/NZS4063, 1992), 

w
P

bh
lMOE s

∆
∆
⋅⋅= 3

3

108
23  (1) 

with b: width, h: height, and ls: span. After removal of the displacement transducer, 
loading continued until failure of the specimen. MOR was calculated using the equation 
(2), 

bh
PMOR max.18=  (2) 

with Pmax: maximum load.  
 The maximum error of measurement was calculated from the equation (1) and (2) 
by a calculus method using the maximum uncertainty of each sensor and expressed in the 
form of relative errors. The maximum error for static MOE was 11%, and it was 6% for 
MOR. Static tests were performed by placing the critical zone (maximum strength 
reducing defect) in the centre of the test span (European Standard EN 384, §5.2, March 
2004). The location of the maximum strength reducing defect was manually assessed by 
an experienced testing officer. 
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Specific data extraction 
Automated data extraction was undertaken to obtain specific non-destructive 

parameters associated with the optical scanning technique and the acoustic resonance 
technique. The optical profile construction is based on a discrete rendering process over 
the length of the beam in 1 cm steps. Each profile step is associated with a defects’ 
projection in a measurement window with a length of two times the height of the beam. 
The projection window can be rectangular on the entire beam width, rectangular external; 
1/3 of the top and bottom part of the beam height, rectangular interior; 1/3 of the centre 
part of the beam height, or a diamond-shaped pattern centred on the cross section. All the 
profiles are filtered with a Blackman sliding-window of which the size is equivalent to 
the beam height. Descriptions of the WoodEye® parameters are provided in Appendix 1. 
The vibration spectra (resonance technique) were analyzed in order to provide a range of 
vibration signal descriptors described in Appendix 2. The frequency range was 0 to 2000 
Hz in longitudinal vibration (sampling frequency of 20000 Hz with a resolution of 1.2 
Hz). The typical number of Eigenfrequencies analyzed was 3 in longitudinal vibration. 
 
Data analysis 

HCLT devices were considered as the “benchmark” grading machine because of 
their common use in industry. All statistical analysis methods were performed using the 
R software (version 2.9.1) with PLS library (Mevik and Wehrens 2007). 
 
 
RESULTS AND DISCUSSION 
 
Static Bending 

Table 1 displays descriptive statistics for density, MOE, and MOR at a moisture 
content of 12% for all the boards tested (N = 429). MOR parameter had a high coefficient 
of variation (COV = 59%) with values ranging from less than 5 MPa to 100 MPa (1st 
quartile = 14 MPa and 3rd quartile = 32 MPa). 
 
Table 1.  Descriptive Statistics of Density and Static Properties (N=429) 

Property Mean COV (%) 

Density (kg/m3) 510 8 

MOE (MPa) 8000 34 

MOR (MPa) 25 59 

COV: coefficient of variation 

 
The relationship between static MOE and MOR was significant with an R-square 

value of R² = 0.56 (residual standard error = 10 MPa, F-statistic = 540, p-value < 0.001, 
Fig. 1). The general observation was the “trumpet like shape” of the data scatter points, in 
other words residual error on MOR increased with the MOE. This could induce a source 
of heteroscedasticity problems (non-homogeneous variances) when developing linear 
regression equations. 
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Fig. 1. Relationship between static MOE and MOR (R²= 0.56, N=429). 
 
Analysis of Optical and Dynamic Parameters 

Figure 2 shows a histogram of optical defects recorded on the boards. The 
histogram was computed by counting the defects of the same type on all the boards, 
consequently the frequencies displayed are not an average per board; they are from all 
recorded defects. 

 

 
Fig. 2. Histogram of optical defects (color was not taken into account, N = 429). 
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The knot categories were the most frequent (Fig. 2). Black knot and Sound knot 
categories referred to knot defects created from the grey scale cameras. The fibre knot 
category was created from the tracheid laser scattering sensor, which detects fibre 
disturbances. Therefore, often a given knot provides Fibre knot and Black or/and Sound 
knot information. The knot sizes returned for each knot type differed, even for the same 
knot in most of the cases due to the detection methods. Fibre knots tended to return larger 
size measurements than the other classifications. In analyzing the optical data output, 
only the size of a given knot was used, and its classification by colour or measurement 
technique was ignored. For each knot the total projected area covered by the envelope of 
all knot categories was computed. 

For each defect two main parameters were computed along each board based on 
the raw optical data (Appendix 1): a material inertia ratio (CTR) and a pseudo knot area 
ratio (pKAR). All grading measurements were compared with the test MOR and MOE, 
so only the measurements that directly affected the MOR and MOE were used. A 
sensitivity study was used to determine the region of interest centred on the test span over 
which the grading measurements were combined. PLS, a specific multiple linear 
regression method (Brancheriau and Baillères 2003), was used with each predictor being 
a position along the span. MOR was the dependent variable. The values associated to 
predictors were the pKAR at the given position. The profiles contained 162 values 
(1.62 m span) which led to 162 predictors for the PLS procedure (N = 429). 
 

 
Fig. 3. Bivariate R² between pKAR profiles and the first PLS component (LV1), dependent 
variable MOR (N = 429). 
 

Only one PLS component was highly significant (8% of variance for the 
predictors and 31% of variance for MOR). Figure 3 displays the bivariate R² coefficient 
between pKAR values along each profile and the first PLS component. It shows that 
pKAR values between the internal loading points had a significant contribution in the 
prediction of MOR (positions of loading points are 54 cm and 108 cm). It was thus not 
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necessary to compute pKAR parameters with profiles outside the internal loading points 
(dimension of the computation window of pKAR parameters). 

Having established the appropriate region of interest for calculating the value of 
each parameter at the test location, the parameters could then be used to develop 
predictive algorithms. A principal component analysis (PCA) was used to study correla-
tions among optical and ‘dry’ dynamic parameters by grouping these parameters into a 
few factors (Number of parameters = 29, N = 429, Table 2). The principal components 
were based on the correlation matrix computation followed by a Varimax rotation. The 
purpose of this rotation was to obtain interpretable orthogonal components (each para-
meter was associated with a minimal number of components). Table 2 presents the results 
of this analysis. The parameters are listed down the table and the components across the 
table. 

Eight principal components were extracted (with an associated Eigenvalue over 
0.95). These components represented 81% of variance of the original parameters. Table 2 
shows that the component PC1 combined the pKAR associated parameters. The CTR 
parameters were linked with PC5 and PC8 with a difference between the mean value 
(PC5) and the 5% percentile (PC8). The 5% percentile was equivalent to the minimum 
value. MOE parameters were linked with PC4. Basic signal descriptors (SCG and SBW) 
and signal energy parameters were scattered between PC2, PC3, PC6, and PC7. SSP, 
MIF, Q1, Q2, Q3, and MPow1 were not highly correlated with one particular component. 
CTR, pKAR, and dynamic parameters contained independent information. 
 
Efficiency of Individual Predictors for Grading 

Each of the grading parameters was tested for its correlation with reference static 
bending MOE and MOR obtained on dry boards. When considering grading parameters 
from green boards, the vibration MOE in compression acquired on green boards provides 
the best correlation with reference static bending MOE and MOR acquired on dry boards 
(R²=0.58 and R²=0.25 respectively). 

When considering grading parameters from dry boards, the Metriguard HCLT 
provided the strongest correlation (R²=0.70) with static MOE, using the minimum MOE 
from the profile on the static bending test span (local measurement). The average MOE 
from Metriguard CLT and the dynamic MOE deliver comparable quality of prediction 
(R²=0.64 and R²=0.65 respectively). Interestingly, the specific MOE (MOE extracted 
from vibration measurement without density information) correlation was in the same 
magnitude of order to the best correlations, indicating that simple vibration (no density 
measurement) systems may form the basis of an effective pre-grading tool. 

For MOR, the dynamic MOE provided R² of 0.28. Three signal descriptors, the 
spectral centre of gravity (R²=0.10), the spectral slope (R²=0.15), and the spectral 
bandwidth (R²=0.16), provide a level of prediction significantly lower than the best 
optical scanner parameters (R² between 0.30 and 0.40). WoodEye® pKAR provided the 
best coefficient of determination with MOR, surpassing LHG X-ray by 0.1 (0.36 vs 0.25 
respectively). The Metriguard minimum MOE contains the majority of the information 
and combining with LHG only improves by a magnitude of 0.06. 
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Table 2.  Bivariate Correlations Matrix (PCA with Varimax Rotation on Optical 
and Dynamic Parameters on Seasoned Boards, N=429) 
 

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
CTR_AC_M -0.31 0.05 -0.07 0.22 0.99 -0.12 -0.07 -0.30 

CTR_AC_5 -0.39 -0.03 -0.07 0.16 0.09 -0.16 -0.09 -0.94 

CTR_trgl_AC_M -0.31 0.04 -0.07 0.22 0.99 -0.13 -0.09 -0.31 

CTR_trgl_AC_5 -0.62 0.04 -0.07 0.28 0.51 -0.19 -0.10 -0.91 

pKAR_ext_M 0.93 -0.10 0.10 -0.26 -0.33 0.22 0.11 0.52 

pKAR_ext_99 0.89 -0.09 0.05 -0.22 -0.27 0.19 0.05 0.55 

pKAR_int_M 0.89 -0.05 0.09 -0.29 -0.29 0.17 0.13 0.36 

pKAR_int_99 0.83 -0.05 0.01 -0.26 -0.22 0.10 0.06 0.30 

pKAR_trgl_M 0.96 -0.09 0.10 -0.28 -0.35 0.23 0.13 0.49 

pKAR_trgl_99 0.96 -0.09 0.05 -0.25 -0.30 0.19 0.07 0.51 

SCG 0.14 -0.93 0.30 -0.42 -0.08 -0.14 -0.24 0.06 

SBW 0.21 -0.88 0.06 -0.55 -0.11 -0.12 -0.19 0.08 

SSP 0.11 -0.32 -0.44 -0.55 -0.07 -0.18 -0.22 0.04 

MIF 0.03 -0.63 -0.22 0.15 -0.03 -0.06 -0.48 -0.07 

MOE1 -0.28 0.46 -0.16 0.93 0.22 -0.12 -0.02 -0.16 

Q1 -0.25 0.01 -0.30 0.44 0.15 -0.39 -0.06 0.00 

NrjR1 -0.07 0.25 -0.92 0.21 0.07 -0.02 0.04 -0.06 

Pow1 -0.11 0.08 -0.40 0.15 0.10 -0.70 -0.19 -0.14 

SBNrjR1 -0.09 0.26 -0.91 0.19 0.06 -0.03 0.06 -0.06 

MOE2 -0.24 0.41 -0.15 0.93 0.18 -0.08 -0.12 -0.17 

Q2 -0.26 0.05 -0.24 0.50 0.12 -0.43 -0.57 -0.12 

NrjR2 -0.08 0.02 -0.77 0.14 0.08 -0.16 -0.55 -0.11 

Pow2 -0.10 -0.17 0.03 0.05 0.06 -0.82 -0.54 -0.14 

SBNrjR2 -0.09 -0.20 0.03 0.03 0.05 -0.27 -0.93 -0.10 

MOE3 -0.21 0.01 -0.24 0.89 0.21 -0.18 -0.24 -0.18 

Q3 -0.19 -0.26 -0.20 0.38 0.10 -0.42 -0.31 -0.17 

NrjR3 -0.02 -0.64 0.31 -0.04 0.07 -0.32 -0.74 -0.06 

Pow3 -0.12 -0.54 0.40 -0.03 0.06 -0.71 -0.20 -0.07 

SBNrjR3 -0.03 -0.72 0.53 -0.13 0.04 -0.26 -0.01 -0.05 

Correlations below -0.70 and above +0.70 are displayed in bold 
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Efficiency of Combined Parameters for Grading 
PLS regression was applied to estimate the MOR with the optical and the 

dynamic “dry” parameters as predictors (Fig. 4). This modelling method was performed 
before using a multiple linear regression (MLR) in order to underline the different 
combinations of parameters, which could appropriately estimate MOR. The number of 
predictors was 29 with 429 observations. The significant level of correlations between the 
predictors (Table 2) leads to a collinearity issue, which thus excludes the use of MLR. 
 

 
Fig. 4. Bivariate R² coeff. between parameters and PLS components (MOR, R² =0.49, N=429) 
 

For optimizing prediction of strength the coefficient of determination was R² = 
0.49 (residual standard error = 11 MPa, F-statistic = 206, p-value < 0.001). From the PLS 
analysis, one possible set of predictors was extracted when applying a simplification 
procedure (backward elimination method, for example). Two PLS components were 
extracted (LV1, LV2). The links between original predictors and components are shown 
in Fig. 4. pKAR parameters were shown to be the most linked with PLS LV1. Dynamic 
MOEs, one CTR parameter (CTR_trgl_AC_5) and basic signal descriptors (SCG and 
SBW) were also included in LV1. The component LV2 was mainly constituted by 2 CTR 
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parameters (CTR_AC_M, CTR_trgl_AC_M) and a basic signal descriptor (SSP). One 
can notice that a very few dynamic parameters were of importance here. A possible 
explanation of this phenomenon was that only a portion of each board was statically 
tested, whereas dynamic parameters provide overall information of the board. If all 
boards were of static bending span length (1.62 m), then dynamic parameters associated 
with the second longitudinal mode would certainly be much more correlated with PLS 
LVs because the associated antinode of vibration is located in the middle of the tested 
beam, which corresponds to most influential part for MOR (Fig. 3). 
 
Optimum Combination of Predictors for Grading 

MLR with simplification procedure were used to extract the relevant parameters. 
The model simplification procedure was a forward selection using the Akaike’s criterion 
(Crawley 2005). To deal with heteroscedasticity, a transformation was applied on the 
dependent variable. Many approaches are possible to deal with non-constant variance of 
residues: weighted least squares, mixed model, generalized linear models or 
transformation of the dependent variable (Faraway 2002). Weighted least squares and 
generalized linear models assume that the form of the variance is exactly known. 
However, it is a common procedure to transform the dependent variable by its square root 
or natural logarithm (Faraway 2002). The square root transformation was chosen in this 
study because the inverse transformation (squared) was less sensitive to measurement 
error than for an exponential transformation (the inverse of natural logarithm). 

 
Table 3.  Multiple Linear & Non-linear Modelling of the Strength Property (N=429) 
Dependent Parameters Covariables and coefficients R2 SEC Residue 
MOR HCLT and LHG 

on dry boards 
HCLTmin, LHGkar 
  0.0022, -29, 18 

0.41 11.4 2.6 

 
Optical and dynamic 

on dry boards 
pKAR_trgl_99, MOE1, Q1, SSP 
  -0.31, 0.0019, 0.058, -0.049, 18 

0.49 10.7 2.0 

 
Optical and dynamic 

on green boards 
pKAR_trgl_99, MOE1 
  -0.33, 0.0027, 16 

0.46 10.9 2.4 

MOR  Optical and dynamic 
on dry boards 

pKAR_trgl_99, MOE1, Q1 
  -0.030, 0.00022, 0.0055, 3.5 

0.51 10.5 1.0 

 
Optical and dynamic 

on green boards 
pKAR_trgl_99, MOE1 
  -0.032, 0.00026, 3.9 

0.48 10.7 1.0 

SEC: standard error of calibration (residual standard error) in MPa 
Residue: number of boards with negative error divided by those with positive error 
The last coefficient is the constant of the model 

 
Combining vibration measurements with local information obtained from 

WoodEye® or Metriguard, significantly improves dry MOE prediction (R² from 0.68 up 
to 0.77). There is only marginal improvement by combining all three methods. The 
characteristic knotty nature of this resource heavily impacts the MOE from random tests. 
Combining local parameters with global measurements resulted in a significant improve-
ment in the prediction. Table 3 shows the results obtained in estimating MOR with dry or 
green boards. The first observation was that the results were equivalent between the 
combinations: optical with dynamic and HCLT with LHG. For both combinations the 
standard error of calibration was equal to 11 MPa for the linear modelling. 
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Fig. 5. (a) Relationship between MOR and optical-dynamic parameters on green boards 
(R²=0.46, N=429); (b) Non-linear modelling between MOR and optical-dynamic parameters on 
green boards (R²=0.48, N=429); (c) Residual plot associated with the linear model; (d) Residual 
plot associated with the nonlinear model 
 

Few parameters were extracted; mostly the pKAR parameter (pKAR_trgl_99 
equivalent to the maximum pKAR) and the MOE1 parameter (dynamic modulus 
associated with the fundamental frequency). Dynamic signal parameters (Q1 and SSP) 
were of less importance and were related with the energy loss during the dynamic 
motion. The plots show heteroscedasticity (Fig. 5-c) associated with an imbalance 
between over-estimation and under-estimation for low MOR (Residue ratio between 2.0 
to 2.6, Table 3). Linear models of Table 3 overestimated the MOR (Figs. 5-a and 5-c). 
This phenomenon was corrected by taking the square root of MOR values (Residue ratio 
equal to unity in Table 3, Figs. 5-b and 5-d). 

Alternative models were also tested without taking into account the pKAR 
parameters and the dynamic MOEs (square root of MOR as dependent variable, results 
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not shown in Table 3). The results were (1) five predictors were included in the models 
for dry or green boards; (2) the R² values varied from 0.38 for dry boards to 0.30 for 
green boards; (3) the main parameters in the models were CTR_trgl_AC_5, SSP, SBW, 
and quality factors (Q). The signal parameters were influenced by the moisture content of 
the boards which explained the drop of R² values. These parameters were descriptors of 
the spectrum shape (SSP and SBW) or descriptors of the shape of each individual mode 
(Q). Viscoelastic behaviour and the presence of defects had an influence on these 
parameters. 
 
 
CONCLUSIONS 
 
1. On dry boards of the strength-limited radiata pine wood resource, Metriguard HCLT, 

provides a better strength prediction due to this equipment’s ability to measure 
mechanical local characteristics. The combination of grading equipment specifically 
for stiffness related predictors (Metriguard or vibration) with defect detection systems 
(optical or X-ray scanner) provides a higher level of prediction, especially for MOR. 

2. For MOR assessment, the results were equivalent between the combinations: optical 
with dynamic and HCLT with LHG. For both combinations, the standard error of 
calibration was equal to 11 MPa for the linear modelling. 

3. For the combination optical scanner and acoustic device, pKAR parameters, MOE, 
and dynamic signal parameters related with the energy loss during the dynamic 
motion provided a higher level of correlation than the reference machine grading used 
in this work. 

4. The ability to provide an initial grading on green boards can increase significantly the 
profitability of the mill by saving the cost of drying and subsequent processing for 
non-structural grade boards sold at the same price whether green or dry. Reductions 
in non-structural dry volumes can be achieved by differing combinations of 
equipment, and their strategic location within the processing chain. As an example, in 
this study a combination of optical scanner and vibration measurements devices 
located on the green processing chain could significantly improve the MOR 
prediction even when compared to more conventional equipment like HCLT and 
LHG located on the dry processing chain. This approach should improve the 
efficiency of the mill. The improvement will vary depending of the wood resource. 

5. The results of this work indicate a good potential for grading in the green mill, ahead 
of kiln drying and subsequent processes. 
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APPENDIX 1: WoodEye® profile descriptions 
 
CTR Material inertia ratio = calculated inertia / beam inertia (b.h³/12). 

The inertia is calculated from the sum of inertias according to 
Parallel Axis Theorem (also known as Huygens-Steiner 
theorem). Profile is calculated between the internal loading 
points. Profile is weighted by the bending moment (unit 
maximum moment). Profile is equal to the product of the 
profiles from the 2 beam sides (noted A and C, sides related 
to the height). 

CTR_AC_M Rectangular window, mean value. 
CTR_AC_5 5% percentile (equivalent to a minimum). 
CTR_trgl_AC_M Triangular window, mean value. 
CTR_trgl_AC_5 5% percentile. 
  
pKAR Perimeter ratio = calculated perimeter / beam perimeter 

(2.(b+h)). The perimeter is associated to defect height (sum 
of the heights). Profile is calculated between the internal 
loading points. Profile is equal to the sum of the profiles from 
the 4 beam sides. 

 
pKAR_ext_M 1/3 external height for A and C, rectangular window, mean 

value. 
pKAR_ext_99 99% percentile (equivalent to a maximum). 
pKAR_int_M 1/3 internal height for A and C, rectangular window, mean value. 
pKAR_int_99 99% percentile. 
pKAR_trgl_M Triangular window for A and C, mean value. 
pKAR_trgl_99 99% percentile. 

 
 
APPENDIX 2: Dynamic parameter descriptions 
 
Dynamic MOE associated with the frequency (fi) in longitudinal vibration: 

2
i

i
2.L.fρ.MOE 






=i , { }1,2,3i∈  (3) 

With L: length, ρ: density. 
 
Spectral centre of gravity divided by the fundamental frequency (f1) in %: 

∑∑=
p

p
p

pp
1

Af.A
f
1SCG  (4) 

With Ap: magnitude of the Discrete Fourier Transform. 
 
Spectral bandwidth divided by the fundamental frequency (f1) in %: 
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Spectral slope divided the fundamental frequency (f1) in %: 
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Quality factor (inverse internal friction) associated with the eigenfrequency of rank i: 

i

i

α
π.fQ =i  (7) 

With αi: temporal damping associated to fi. 
 
Modified inharmonicity factor in %: 

2
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Sub-band energy ratio (between the eigenfrequencies of rank i and j): 
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Mean power of the sub-band defined by a pass band of -20dB centered on the 
eigenfrequency of rank i: 
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Sub-band energy ratio defined by a pass band of -20dB centered on the eigenfrequency of 
rank i: 
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