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An engineered composite that combines a wood fiber core, a 
bicomponent fiber face, and a bicomponent fiber back was evaluated for 
its elastic response using laminate theory. Using the properties of the 
individual laminae as input variables, the laminate’s elastic modulus, 
axial strain, and lateral strain were determined by means of the model, 
and compared with values determined experimentally. The model yielded 
an axial elastic modulus of 950 MPa, which did not differ substantially 
from the measured value of 920 MPa. Statistical analyses showed that 
the measured and calculated strains were not significantly different in 
either the axial or lateral directions. The model underpredicted the strains 
along the fiber direction of the bicomponent fiber sheets by 
approximately 4%. A greater difference (12%) between predicted and 
measured values was observed in the lateral direction. 

 
Keywords:  Bicomponent fiber; Fiberboard; Needlepunching; Composite; Laminate; Elastic modulus; 

Shear modulus; Poisson’s ratio 

 
Contact information:  Department of Forest Biomaterials, North Carolina State University, Campus Box 

8005, Raleigh, NC 27695 USA; *Corresponding author: perry_peralta@ncsu.edu  

 

 
INTRODUCTION 
 

 A composite in the engineering sense is any material that has been physically 

assembled from two or more materials to form one single bulk, but the resulting product 

would still have identifiable and distinct constituents within its structure. Composites are 

engineered to take advantage of the characteristics of each of the materials. 

Usually, composite materials will consist of two separate components, the matrix 

and the filler. The matrix is the component that holds the filler together. It usually 

consists of various epoxy-type polymers, but other materials may be used. Metal matrix 

and thermoplastic matrix composites are some of the possibilities. The filler is the 

material that has been imbedded into the matrix to lend its advantage (usually strength) to 

the composite. 

Composite materials have been widely utilized in the field of civil engineering, 

both in new constructions as well as in the reinforcement of existing concrete structures 

(Corradi et al. 2006). Most recently, these composites have also become popular in the 

forest products industry. Carbon and glass fiber reinforcement, in conjunction with an 

epoxy matrix, have been used for the reinforcement of wood and glulam beams 

(Triantafillou 1997; Triantafillou and Plevris 1991; Gentile et al. 2000). These types of 

reinforcement, called fiber-reinforced polymers (FRPs), are characterized by excellent 

mechanical properties, but the cost of both the fiber and the resin material can be 

prohibitive. Incompatible thickness swell characteristics also cause problems with regard 

to delamination (Lopez-Anido et al. 2005; Prian and Barkatt 1999). 
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There is currently no feasible method for efficiently reinforcing wood fiber 

products other than extruding the wood fiber with a polymer to form a wood plastic 

composite. Bicomponent fiber sheets offer the potential of reinforcing a wood fiber 

composite. Bicomponent fibers consist of at least two components, running parallel in the 

fiber throughout the length (Hutten 2007). Each of the components of the fiber retains its 

own characteristic properties. With sheath-core bicomponent fibers, the core component 

is completely surrounded by the sheath component. The sheath component has areas of 

interaction with the core and the surrounding medium. Commonly, the sheath polymer 

has a lower melting temperature than the core. During heating, the sheath will melt and 

diffuse through the surrounding fibers, acting as a binder (Bosak et al. 2005). Earlier 

work described one method of reinforcing a wood fiber panel by using 

polypropylene/polyester bicomponent fiber sheets in conjunction with needlepunching to 

form a sandwich laminate composite panel (van Dyk et al. 2009). The panel in question 

was manufactured by needlepunching a 1495 g/m
2
 wood fiber web placed in between 

bicomponent fiber sheets. The panels were punched from both sides and then hot pressed 

for 3 min at 177 °C at a minimum pressure of 68 MPa. In order to fully understand the 

mechanical behavior of these panels, the elastic response of each of the laminae needs to 

be investigated, along with the response of the laminate. 

This study will present a method for quantifying the engineering constants of the 

wood/bicomponent fiber composite developed by van Dyk et al. (2009), as well as the 

constants of each of the composite’s constituent laminae. Furthermore, modeling of the 

behavior of the laminate formed with the different materials in question will be discussed. 

 

Model to Predict Elastic Constants of a Lamina 
If thickness strain is ignored, Hooke’s law for plane stress in the 1,2–plane for 

orthotropic material may be written in terms of engineering constants as follows (Daniel 

and Ishai 2006): 
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where σ1 and σ2 represent the axial stresses; τ12 is the shear stress; ε1 and ε2 are the axial 

strains; γ12 is the shear strain; ν12 and ν21 are the Poisson’s ratios; E1 and E2 are the moduli 

of elasticity; and G12 is the shear modulus. It can be seen that four independent elastic 

constants are needed to characterize the material. The bicomponent layer of the laminate 

will be considered as an orthotropic material subjected to plane stresses. Based on the 

techniques used during the forming of the laminate panels, and data obtained for 

thickness swell studies, it was decided that the wood fiber core of the wood–bicomponent 

laminate panels was isotropic, and it was treated as such in the model. An isotropic 

material has three material constants (E, ν, and G), two of which are independent.  
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Macromechanical Model to Determine Elastic Behavior of a Laminate 
The stresses in the different layers of a laminate can be expressed in terms of the 

laminate mid-plane strains and curvatures as follows (Daniel and Ishai 2006): 
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Equation 2 shows that the stresses vary linearly only through the thickness of each 

lamina. The stresses may change in magnitude from lamina to lamina because the 

transformed reduced stiffness matrix is dependent on the material and orientation of the 

ply. The stresses can be integrated in the thickness direction to yield the force resultants 

(N) and the moment resultants (M):  
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where, 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Van Dyk et al. (2013). “Modeling dual fiber composites,” BioResources 8(3), 3672-3684.  3675 

=1

0

  number of layers

 index for the ply number

 thickness of each ply (where =1 to )

 thickness of the laminate

 z coordinate of each ply (where =0 to )

     Layer 1 is bounded by  

k

n

k

k

i

n

k

h k n

h h

z i n

z







 





1

-1

-1

and 

     Layer  is bounded by  and 

     Layer n is bounded by  and 

force per unit width of the laminate cross section

moment per unit width of the laminate cross section

k k

n n

z

k z z

z z

N

M





  

 

Equations (2), (3), and (4) may be combined and then manipulated to give a single 

equation for calculating the strains and curvatures at the reference surface in terms of the 

force and moment resultants: 
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The [A] matrix, called the extensional stiffness matrix, relates the resultant in-plane 

forces to the in-plane strains. The [D] matrix, called the bending stiffness matrix, relates 

the resultant bending moments to the plate curvatures. The [B] matrix, called the 

bending-extension coupling stiffness matrix, couples the force and moment terms to the 

mid-plane curvatures and mid-plane strains. The 6 × 6 matrix consisting of the 

components of [A], [B], and [D] is called the laminate stiffness matrix or the ABD matrix. 
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EXPERIMENTAL 
 

One method for measuring the elastic constants and the shear modulus needed for 

the model described in the previous section involves the use of two tensile test 

specimens, one with the primary material axis oriented along the longitudinal axis of a 

specimen and the second with the primary material axis oriented at 10 degrees to the 

longitudinal axis of the specimen (Chamis and Sinclair 1977). A T-rosette is installed on 

the on-axis specimen to measure the Poisson’s ratio, while a three-element rectangular 

rosette is installed on the off- axis specimen (Fig. 1). 

 

 
Fig. 1. Layout of the T-rosette (1a) and rectangular rosette (1b) strain gauge in the on-axis and 
10-degree off-axis test specimens, respectively. P denotes the applied force. A, B, and C indicate 
the x, y, and 45° gages found on the rosettes, respectively. 

 

The following describes strain gauge application techniques. Samples were 

prepared for the application of the strain gauge by lightly scuffing the surfaces with a 

high-grade sand paper. A placement grid was measured out on opposite faces to align the 

gauges. The gauges were placed face up in the center of a 25 mm by approximately 75 

mm piece of clear adhesive tape to assist and maintain gauge alignment during gluing. 

Gauges were then held in place on the sample with the correct alignment by means of the 

tape, and partially lifted off prior to gluing leaving 35 mm of the tape in contact with the 

sample. An epoxy adhesive was prepared (Vishay M-Bond AE-10) in accordance with 

the supplier’s specifications, and applied lightly to the surface of the gauge and the 

sample with a glass applicator. The adhesive tape was gently rolled down from the still-

attached end by means of the applicator, squeezing out any excess resin. If done 

correctly, the gauge alignment is maintained through the entire process. A 25 mm by 25 

mm silicon rubber pad was then placed on the gauge to evenly distribute the pressure, 

followed by a 25 mm by 25 mm block of wood. An 11-kg weight was placed on top of 

the entire assembly. The resin was left to dry overnight. 

The Poisson’s ratio, υ12, can be calculated as follows from the strain 

measurements made with the T-rosette on the on-axis specimen: 

 

12
B

A





           (6) 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Van Dyk et al. (2013). “Modeling dual fiber composites,” BioResources 8(3), 3672-3684.  3677 

where εA is the normal strain along the principal material axis which has the highest 

elastic modulus and εB is the strain along the material axis with the lowest elastic 

modulus. The remaining calculations are based on υ12 and the strain measurements 

obtained from the off-axis tensile test. 

The strain gauge data obtained with the rectangular rosette shown in Fig. 1 can be 

used to calculate the shear strain, γxy, as: 
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where εx = εA, εy = εB, and ε45 = εC. Using standard strain transformations, the normal 

strains in the principal material axis (ε1 and ε2) and the shear strain (γ12) can be calculated 

with: 
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where α is the counterclockwise rotation from the geometric axis to the material axis. 

The normal stresses and shear stress for the principal material axis can be 

calculated with: 
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where P is the applied load, b is the specimen width, and t is the specimen thickness. 

The elastic moduli, the shear modulus, and the remaining Poisson’s ratio can then 

be calculated from: 
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The experimental procedure was initially tested using radially sawn sassafras 

(Sassafras albidum) samples. The boards were selected according to straightness of grain. 

Sample beams with dimensions of 400 × 25 × 12.5 mm were cut with the grain aligned 

along the longitudinal axis of the beams for the on-axis tests. A T-rosette (Vishay 125LT) 

was adhered in the center of the 25-mm face, with a second linear strain gauge (Vishay 

125LW) placed on the opposite face. For the 10-degree off-axis test, beams were cut 

from the boards by means of a tapering jig adjusted to 10 degrees. A triangular rosette 

gauge (Vishay 125LR) was used. Seven-mm holes were drilled in the ends of the beams. 

The stress was applied with a pin jig in an MTS testing machine. Strains were recorded 

with a Vishay Micro Measurements P3 Strain Indicator and Recorder. The resultant 

elastic moduli were compared with data obtained from the literature. In order to ascertain 

whether the gauge application was consistent, T and angular rosette gauges were applied 

to the same sample and the data obtained from the linear component of the gauges were 

compared. No significant differences were observed between the two results, which 

indicated that the gauge application technique worked adequately. 

Wood–bicomponent fiber panels and medium-density fiberboard (MDF) were 

prepared according to the techniques described by van Dyk et al. (2009). It was decided 

to limit the tests conducted in this paper to the 2.3-mm panels due to the comparatively 

large differences observed in bending modulus between the 2.3-mm wood–bicomponent 

panels and the MDF control in the dynamic mechanical analysis. Furthermore, the sample 

dimensions were limited by the length of the panels produced to 200 mm × 18 mm × 2.3 

mm. Samples were cut with a fiber orientation of the bicomponent sheets along the 

longitudinal axis of the beams, as well as at 10 degrees with respect to the beam axis. 

To ensure that the stress distribution was even in the center of the beams where 

the gauges were placed, the ends were reinforced with an epoxy-reinforced paper sheet. 

The gauges were applied according to the procedure described previously. Samples were 

preloaded in the MTS testing machine at 2.5 mm/min until a load of 8.9 N was reached, 

after which the test proceeded at 1.25 mm/min. The tests were performed within the 

materials’ linear elastic region, but in order to get good resolution the investigators 

followed the P3 Strain Indicator and Recorder manufacturer’s recommendation to apply a 

large enough load to produce a longitudinal strain reading of at least 300 microstrains. 

The tests were stopped when a longitudinal strain reading of at least 600 microstrains was 

reached. 

After conducting the tensile tests on the laminates, the bicomponent lamina was 

carefully removed from the surfaces by means of a paring knife. Care was taken to ensure 

that the gauges were not bent or otherwise damaged during removal. The delaminated 

bicomponent lamina was then retested in the MTS machine according to the procedure 

described above. Strain gauges were also attached to the delaminated wood fiber core 

after removal. The ends of these sections were also reinforced with the epoxy-infused 

paper sheets, and then tested in the MTS. A total of 15 bicomponent laminate panels were 

tested. 

 

 
RESULTS AND DISCUSSION 
 

For the delaminated wood fiber core, the stress-strain curve was used to calculate 

the modulus of elasticity (E), while the axial and lateral strain readings from the T-rosette 
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strain gage were used to determine the Poisson’s ratio (ν). From the E and ν values, the 

shear modulus (G) was calculated using the following equation: 

 

2(1 )

E
G





          (18) 

 

The elastic moduli, Poisson’s ratios, and shear moduli for the delaminated wood 

fiber cores are shown in Table 1. The core had a mean modulus of elasticity of 690 MPa 

(standard deviation 50 MPa), a mean Poisson’s ratio of 0.29 (standard deviation 0.03), 

and a mean shear modulus of 270 MPa (standard deviation 20 MPa). Cai (2006) obtained 

values for the modulus of elasticity in tension for an MDF of 2000 MPa. This large 

discrepancy between the values obtained during this research and those cited in the 

literature can be attributed to the long press times used in this study to ensure that the 

bicomponent fiber surface reinforcement had adequate time at high temperature to melt 

the polypropylene sheath. Urea formaldehyde resin degrades when it is exposed to high 

temperature for long periods of time.  

 

Table 1. Elastic Moduli, Poisson’s Ratios, and Shear Moduli of Delaminated 
Wood Fiber Core (E, ν, and G) and of Delaminated Bicomponent Sheets (E1, E2, 
ν 21, and G12) Obtained from Wood–Bicomponent Laminate Panels 

Sample 
No. 

Wood Fiber Core Bicomponent Fiber Sheet 

E 
(x10

9
 Pa) 

ν 
 

G 
(x10

9
 Pa) 

E1 
(x10

9
 Pa) 

E2 
(x10

9
 Pa) 

ν12 
 

G12 
(x10

9
 Pa) 

1 0.68 0.29 0.26 2.06 0.48 0.28 0.71 

2 0.73 0.26 0.29     

4 0.70 0.21 0.29 2.24 0.64 0.28 0.85 

5 0.60 0.28 0.24 2.38 0.72 0.29 0.53 

6 0.66 0.30 0.25 2.05 0.34 0.28 0.63 

7 0.73 0.30 0.28 2.20 0.35 0.32 0.70 

8 0.73 0.33 0.27 2.21 0.53 0.28 0.87 

9 0.66 0.29 0.25 2.10 0.42 0.28 0.82 

10 0.68 0.30 0.26 2.27 0.58 0.30 0.84 

11 0.70 0.30 0.27 2.17 0.49 0.28 0.68 

12 0.78 0.29 0.30 2.05 0.38 0.30 0.77 

14 0.69 0.29 0.27 2.20 0.42 0.28 0.77 

15 0.63 0.30 0.24 2.38 0.72 0.29 0.53 

Mean 0.69 0.29 0.27 2.19 0.51 0.29 0.73 

St. Dev. 0.05 0.03 0.02 0.12 0.13 0.01 0.12 
 

For the delaminated bicomponent fiber sheets, the Poisson’s ratios (ν12) were 

obtained from on-axis tensile tests; while the elastic moduli in the fiber direction (E1), 

elastic moduli in the lateral direction (E2), and the shear moduli (G12) were obtained from 

the data produced by the off-axis tensile tests. Three samples were rejected after 

completion of the experiments. Bicosheet2 was rejected because the load cell reading 

from the testing machine did not register in the data acquisition system, Bicosheet3 was 

rejected after issues were observed with the strain gage adhesion to the wood fiber core, 

and Bicosheet13 was rejected due to one of the lead wires detaching during the testing 

procedure. A mean E1 of 2200 MPa (standard deviation 120 MPa) and E2 of 510 MPa 

(standard deviation 130 MPa) were observed. G12 and ν12 were 730 MPa (standard 

deviation 120 MPa) and 0.29 (standard deviation 0.01), respectively (Table 1). 
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The values listed in Table 1 for the delaminated bicomponent sheets and the 

corresponding values for the wood fiber core were used as inputs in the model described 

earlier for the whole laminate (Equation 5). By multiplying the inverse of the ABD matrix 

with the applied stress, the resultant strain at that stress level can be determined for the 

wood–bicomponent panels. These values were compared with the measured strain values 

obtained from on-axis tensile tests of the wood–bicomponent panels. In order to control 

for the time-dependent effect on the elastic properties of the material, it was decided to 

use stress and strain values taken at least 2 min after sample loading commenced in the 

MTS. Table 2 lists the experimentally measured ε1 and ε2, as well as values calculated 

from the model. 

 

Table 2. Comparison of the Strains Measured During On-Axis Tensile Tests with 
the Calculated Strains for Each of the Wood–Bicomponent Panels Tested 

Sample 
Measured 
ε1 (x 10−

4
) 

Calculated 
ε1 (x 10−−

4
) 

Measured 
ε2 (x 10−

4
) 

Calculated 
ε2 (x 10−

4
) 

% Deviation between 
Measured and 

Modeled Strains 
 

ε1 ε2 

bicopanel1 3.33 3.37 −0.96 −0.97 −1.1 −1.2 

bicopanel2 3.35 3.21 −0.97 −0.84 4.3 13.0 

bicopanel4 3.44 3.20 −1.02 −0.87 7.0 15.0 

bicopanel5 3.33 3.02 −0.90 −0.83 9.3 8.3 

bicopanel6 3.35 3.34 −0.99 −0.90 0.4 8.9 

bicopanel8 3.35 3.19 −1.13 −0.87 4.7 23.4 

bicopanel9 3.16 3.10 −0.98 −0.90 1.9 8.6 

bicopanel10 3.33 3.52 −0.97 −1.06 −5.8 −8.9 

bicopanel12 3.33 3.19 −1.08 −0.95 4.1 12.1 

bicopanel14 3.37 3.30 −1.31 −1.01 2.0 22.7 

bicopanel15 3.35 3.12 −1.01 −0.91 6.8 10.5 

Mean 3.32 3.22 −1.03 −0.91 4.3 12.0 

St. dev. 0.06 0.14 0.11 0.07 2.8 6.5 

 

T-tests conducted to compare the means of the measured and calculated strains for 

the 1 and 2 directions showed no significant difference, indicating that the model 

previously discussed fit the experimental values well. It can be seen from Table 2 that the 

model underpredicts the strain in the bicomponent fiber direction by 4.3%. The model 

overpredicts the strains for bicopanel1 and bicopanel10. The underprediction can be 

attributed to interactions caused by the fibers passing through the thickness direction as a 

result of needlepunching not incorporated by the model. 

In the direction lateral to the main orientation of the bicomponent fibers, a mean 

microstrain of −91 (standard deviation 7) was predicted by the model, while the measured 

microstrain was −103 (standard deviation 11). The model underpredicted the strain in the 

y-direction by 12.0% (standard deviation 6.5). The large deviation can be attributed to 

Bicopanel8 and Bicopanel14, both of which showed deviations from the measured values 

of greater than 20%. As was the case for the longitudinal strain, the model overpredicted 

the strains for Bicopanel1 and Bicopanel10. 

The data in Table 1 were also used to calculate the effective elastic constants of 

the laminate. The model yielded a calculated elastic modulus of 950 MPa, which did not 

differ substantially from the measured value of 920 MPa. These results highlight the 
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benefit of incorporating a stiffer material in a laminate. Since the mean modulus of 

elasticity of the bicomponent fiber sheet along the fiber direction is almost three times the 

modulus of elasticity of the isotropic wood fiber core, it is to be expected that a 

bicomponent fiber sheet can serve as a reinforcing layer to a wood fiberboard. The 

calculated laminate property of 950 MPa represents a 38% improvement in the 

longitudinal elastic modulus over a fiberboard panel, even though the thickness of each of 

the bicomponent fiber sheets was only 9% of the panel thickness. Modeling of the effect 

of the bicomponent fiber sheet shows that increasing the thickness of each of the 

reinforcement layers further to 20% or 30% of the panel thickness will, respectively, 

result in 87% or 131% improvement in the composite panel modulus over a fiberboard 

panel. The Poisson’s ratio of the bicomponent fiber sheet is about the same as the 

Poisson’s ratio of the wood fiber core, thus the measured ratio of the laminate (ν12 = 0.30) 

was close to the value predicted by the model (ν12 = 0.29).    

To further investigate the effects of the various parameters on the results obtained 

from the model, sensitivity analyses were conducted. Parameters investigated were the 

bicomponent fiber sheet moduli (E1 and E2), the wood fiber core modulus (E), and the 

wood fiber core Poisson’s ratio (ν). The mean values obtained for each of the parameters 

were used as initial inputs in the model to calculate the longitudinal and lateral strains (ε1 

and ε2). The parameters were then adapted according to the standard deviation approach 

employed by Skaggs and Bender (1995), who changed the input values by 2 standard 

deviation increments up to 6 standard deviations from the mean. The values calculated 

using this approach were then expressed as a percentage deviation from the values 

calculated using the mean inputs. 

Figure 2 illustrates the variation from the mean when the parameter E1, the 

longitudinal elastic modulus of the reinforcement, is changed. It can be seen that 

increasing the longitudinal stiffness by 2 standard deviations from the mean results in a 

4% reduction in the calculated ε1 and ε2. The reduction is expected, seeing that an 

increase in elasticity will result in lower strains, if the stress is kept constant. The inverse 

occurs when the modulus is decreased by 2 standard deviations. When taken into account 

with the fact that model-calculated strains deviated from the measured strains by 4.3%, 

the importance of correctly identifying E1 becomes apparent. 
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Fig. 2. Strains calculated with the macromechanical model by varying the mean longitudinal 
elasticity of the bicomponent fiber (E1) by 2 standard deviation increments, expressed as a 
percentage of the values obtained using the mean elasticity 
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A ±6 standard deviation change in lateral stiffness E2 of the bicomponent fiber 

sheets resulted in less than 0.05% change in the panel’s longitudinal and lateral strains. 

The low sensitivity of the strains to variations in this input variable can be attributed to 

the closeness in the value of the mean E2 of the bicomponent fiber sheet to the mean E of 

the wood fiber core, coupled with the low standard deviation of E2.   

As expected, an increase in the Poisson’s ratio of the wood fiber core had a 

negligible effect on ε1. It had, however, a strong effect on lateral strain ε2. Increasing the 

Poisson’s ratio of the wood fiber core even by just 2 standard deviations resulted in a 

17% increase in panel lateral strain. A 6 standard deviation increase resulted in a 

whopping 51% increase in lateral strain. The effect of the elastic modulus E of the wood 

fiber core on calculated strains was less dramatic than that of the Poisson’s ratio on ε2 but 

nonetheless was significant. A 2 standard deviation decrease in E resulted in a 9% 

increase in ε1 and ε2; a 6 standard deviation decrease in E resulted in a 32% increase in ε1 

and ε2. As expected, the model is highly sensitive to the properties of the wood fiber core, 

due to the fact that the core accounts for approximately 80% of the volume of the 

material. These results show that care needs to be taken in obtaining the properties of the 

core material when attempting to determine the tensile properties of the laminate. 

To investigate the effect of needlepunching on the tensile properties of the 

material, an on-axis tensile test was conducted on a non-needlepunched wood fiberboard 

that was reinforced with bicomponent fiber sheets. The sample was prepared by 

thermally bonding the bicomponent fiber sheets to the surfaces of the wood fiberboard. 

Tensile tests were conducted as described previously. The modulus of elasticity of the 

non-needlepunched wood–bicomponent panel was 890 MPa. The mean modulus of 

elasticity obtained from on-axis tensile tests conducted on the needlepunched wood–

bicomponent panels was found to be 920 MPa. The E of the non-needlepunched wood–

bicomponent fiberboard was therefore slightly more than 1 standard deviation lower than 

that of the needlepunched wood–bicomponent panels. It is worth noting that the wood 

fiber core used for this particular experiment had an elastic modulus of 615 MPa, which 

is about 75 MPa less than the mean modulus of the needlepunched wood fiber core.  

Further experiments were also conducted to verify the effectiveness of the model 

by adjusting the thickness of the bicomponent fiber reinforcement. These tests were 

conducted on non-needlepunched wood–bicomponent fiber panels. The panels were 

made with bicomponent fiber sheet thicknesses of 0.1, 0.2, 0.3, and 0.4 mm, after which 

they were prepared and tested by means of on-axis tensile tests. The measured strains 

were then compared with the calculated strains (Table 3). The means of the elastic 

constants for the bicomponent fiber sheets shown in Table 1 were used as inputs, while 

the constants for the non-needlepunched cores were obtained from on-axis tensile tests. It 

can be seen from the calculated strain values that the model is able to account for changes 

in the thickness of the reinforcement, with an increase in thickness resulting in a decrease 

in strain as the effective stiffness of the composite rises. 
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Table 3. Measured and Calculated Strains of Non-Needlepunched Wood–
Bicomponent Fiber Panels with a Change in Thickness of the Bicomponent Fiber 
Reinforcement 

Thickness of 
Reinforcement 

(mm) 

Stress 
(Pa) 

Measured 
ε1 (x 10−

4
) 

Calculated 
ε1 (x 10−

4
) 

Measured 
ε2 (x 10−

4
) 

Calculated 
ε2 (x 10−

4
) 

% Deviation 
between 

Measured and 
Modeled 
Strains 

 

ε1 ε2 

0.1 303590 3.8 4.1 −0.99 −1.2 6.19 15.1 

0.2 305280 3.6 3.2 −0.89 −0.93 −11.1 4.51 

0.3 303900 3.1 2.7 −0.71 −0.78 −14.9 8.56 

0.4 307340 2.6 2.3 −0.54 −0.66 −12.5 18.8 
 
 
CONCLUSIONS 
 

1. A model for predicting the mechanical properties of a composite panel, which 

contains wood fiber in the core and a bicomponent fiber sheet used as surface 

reinforcement, was discussed. This model was successfully validated by means of 

experimental data obtained from tensile tests.  

2. Sensitivity analyses were conducted to determine which parameters had the greatest 

effect on strains calculated by means of the model. It was found that lateral strains are 

especially sensitive to changes in lateral stiffness of the bicomponent fiber 

reinforcement, as well as the Poisson's ratio of the wood fiber core.  

3. The model proved to be sensitive to changes in the thickness of the reinforcement, 

and the ability of the model to predict strains at different reinforcement thicknesses 

was experimentally verified. 
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