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Characterizing the variance of material properties of natural fibers is of 
growing concern due to a wide range of new engineering applications 
when utilizing these natural fibers. The aim of this study was to evaluate 
the variance of the Young’s modulus of sunflower bark by (i) determining 
its statistical probability distribution, (ii) investigating its relationship with 
relative humidity, and (iii) characterizing its relationship with the 
specimen extraction location. To this end, specimens were extracted at 
three different locations along the stems. They were also preconditioned 

in three different relative humidity environments. The 
2
-test was used for 

hypothesis testing with normal, Weibull, and log-normal distributions. 
Results show that the Young’s modulus follows a normal distribution. 
Two-sample t-test results reveal that the Young’s modulus of sunflower 
stem bark strongly depends on the conditioning’s relative humidity and 
the specimen’s extraction location; it significantly decreased as the 
relative humidity increased and significantly increased from the bottom to 
the top of the stem. The correlation coefficients between the Young’s 
modulus of different relative humidity values and of specimen extraction 
locations were determined. The calculation of correlation coefficients 
shows a linear relation between the Young's modulus and the relative 
humidity for a given location. 
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INTRODUCTION 
 

 In recent decades, the use of natural fibers such as wood, hemp, flax, jute, and 

sisal in composites has substantially increased due to growing environmental concerns; 

these fibers exhibit good qualities in terms of environmental safety, recyclability, low 

cost, and mechanical properties. These natural fibers can be classified in two groups 

depending on their production: primary plants and secondary plants. Primary plants are 

those grown for fiber production and to which agricultural fields are dedicated. 

Secondary plants produce a primary product, and their by-products are used as natural 

fibers. Agricultural by-products such as wheat straw, rice straw, and corn pith exhibit 

environmental compatibility. Some of these agricultural products possess qualities similar 

to those of natural fibers from primary plants, and they are generally cheaper. They are 

therefore being used in different biocomposite applications (Kargarfard and Latibari 

2011; Panthapulakkal et al. 2006; Sun et al. 2013; Wang and Sun 2002; White and Ansell 

1983; Yang et al. 2003).  
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 Boards made of rice husk and sawdust exhibit good material properties, such as 

mechanical strength and water resistance, as well as noise and thermal insulation, with a 

competitive price when compared to wood board. Yang et al. (2003) reported that the 

noise and thermal insulation properties of rice straw have led to its substitution for wood 

in particle board and insulation board in wooden constructions. Viswanathan and 

Gothandapani (1999) produced and tested ceiling boards from agricultural rice husk and 

sawdust waste. They found that the produced sheets showed similar physical properties to 

those of commercial samples with respect to moisture content, water absorption rate, and 

mechanical strength. These advantages make agricultural by-products extremely 

competitive for use in composites, especially for industrial applications that require a 

compromise between mechanical properties, environmental compatibility, and cost.  

 We focus here on a promising agricultural by-product, sunflower stems. In 

Europe, sunflowers are widely cultivated for the edible oil extracted from their grains; 

however, there is no significant industrial use of the sunflower stems, which are shredded 

after the flowers are harvested. In a dry stem, the density of bark is 0.35, which is about 

16 times greater than the pith. Considering a set of ten stems, it has been observed that 

the weight of the bark is equal to 89±33 grams. This corresponds to 94% of the total mass 

of the stem. The abundant sources (FAOSTAT 2010) and favorable mechanical 

properties of the bark (Sun et al. 2013) make it possible to use this by-product for bio-

sourced composite materials. Nevertheless, a main drawback is the lack of its reliability 

due to the large variance of its properties. Hence, characterizing the variance of its 

mechanical properties is necessary for future biocomposite applications.  

 The variance of several natural fiber properties has been studied in the literature. 

The first study concerns the statistical analysis of fiber strength distribution and fiber 

dimension aspect distribution using symmetrical Gaussian and non-symmetrical Weibull 

/ log-normal distributions. Zafeiropoulos et al. (2007) highlighted the effect of surface 

treatment on flax fiber strength by the analysis of variance (ANOVA) based on the 

assumption that fiber strength follows a normal distribution. The surface treatment effect 

was also studied using a Weibull distribution (Zafeiropoulos and Baillie 2007). However 

the ANOVA method cannot be used in this latter case; thus, the significance analysis is 

performed only by observing whether the mean values are within confidence intervals. 

Both methods find that surface treatment does not significantly change fiber strength. The 

elementary flax fiber studies of Joffe et al. (2003) and Andersons et al. (2005) revealed 

that fiber strength is reasonably well-approximated by the two-parameter Weibull 

distribution. Distribution parameters were determined using the maximum likelihood 

method. For wheat straw fibers, a good fit was observed between fiber strength and the 

two-parameter Weibull distribution (Panthapulakkal et al. 2006). The dimension aspect 

distribution of wood pulp fibers was studied by Pulkkinen et al. (2006) with normal, log-

normal, Weibull, and gamma distributions. Among these, Weibull distribution was found 

to fit the experimental distributions. Yao et al. (2008) found that fiber length and aspect 

ratio distributions for all fibers in rice straw fiber-reinforced composite followed a log-

normal distribution.  

 The second type of study on variance concerns the analysis of physical and 

structural property relationships (Charlet et al. 2010). The conclusion is that variance in 

the mechanical properties of flax fiber may be primarily due to the variation in the 

cellulose content from one fiber to another, and also to the randomness of the location 

and size of defects along each fiber. Concerning sunflower stem properties, it was found 

in a previous study (Sun et al. 2013) that the variance of the Young’s modulus of 
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sunflower bark specimens is not only due to natural variability in plants, but may also be 

due to the conditioning’s relative humidity and to the specimen extraction location along 

the stem. However, the sample size was not large enough to conduct a statistical test and 

to give confidence in the results.  

 Consequently, 810 mechanical tests were conducted in the present study to 

provide a sufficient number of results to study the variance of the Young’s modulus. In 

the first part, we describe the mechanical experimental set-up, including specimen 

preparation. In the second part, we present the statistical tools used in this study: 

statistical distribution histograms of Young’s modulus, χ
2
-test, two-sample t-test, and 

correlation coefficients. In the third part, both the statistical distribution of the Young’s 

modulus and the influences of relative humidity and specimen extraction location on the 

Young’s modulus are investigated using statistical tools (significance tests and 

correlation coefficients) applied to our experimental results. 

 

 
EXPERIMENTAL 
 

Specimen Preparation and Mechanical Tests 
 Bark specimens were extracted from different stem locations and conditioned at 

different relative humidity (RH) conditions before each test to evaluate the influence of 

these parameters on the Young’s modulus of the bark. 

 

Bark specimens 

 The sunflower species used for this study was LG 5474 (Limagrain Verneuil 

Holding LVH), grown in Perrier, France, in 2010. The locations on the sunflower stem 

where bark specimens were extracted are presented in Fig. 1. Stems were selected that 

were 765 mm in length. One end of the stem was the location of the first stem node above 

the roots. From this end of the stem, three different height sections (bottom, middle, and 

top) that were 75 mm in length were cut out to obtain bark specimens. Using these three 

sections enables the influence of the specimen extraction location on the Young’s 

modulus to be evaluated. Each section was longitudinally divided (along the fiber 

direction) into six parts (see cross section A-A in Fig. 1).  

 
Fig. 1. Specimen extraction locations 
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These six parts were processed to obtain rectangular bark specimens. For this, the 

inner part of the bark was carefully polished with sandpaper to remove the protruding 

material (i.e., xylem-type tissue). This process did not influence the test result because 

the quantity of xylem-type tissue removed was small when compared to the quantity of 

bark. In this study, 270 bark specimens were obtained to provide sufficient data for 

statistical tests. They were cut from 15 different stems. This means that there were 90 

specimens at each specific height location, which accounted for one-third of the total 

quantity. Each specimen was reconditioned at a different RH before each mechanical test. 
 

Humidity conditioning 

 Specimens were conditioned in chambers at different RH values before testing to 

evaluate the influence of the specimen’s moisture content on the Young’s modulus. The 

RH conditioning values used for this study were 0% RH, 33% RH, and 75% RH. The 

conditioning chamber at 0% RH was an oven set at 60 °C and equipped with P2O5 des-

iccant. The 33% RH and 75% RH conditioning chambers were constructed using the 

method described in ISO Standard 483:2006 (ISO 483, 2006), i.e., different saturated 

aqueous solutions were placed in the chambers: saturated solution of magnesium chloride 

for 33% RH; and saturated solution of sodium chloride for 75% RH. The temperature in 

the chambers was equal to the room temperature. According to the experimental 

observations obtained in a previous study (Sun et al. 2013), specimens were kept in the 

chamber for at least three days to reach moisture equilibrium. The room temperature at 

the end of the conditioning stage was 20 ± 2 °C. 

 

Mechanical tests  

 Tensile tests were carried out on a Deben MICROTEST 2KN testing machine 

(Deben UK Ltd., Edmunds, Suffolk, UK), which is suitable for testing small specimens. 

The machine was equipped with a 2-kN load cell. The cross-head displacement rate 

during the tests was equal to 2 mm/min. The clamping length was 30 mm. Specimens 

were carefully clamped to prevent fiber damage and to ensure that the clamping force 

was sufficient to avoid any test slippage. The room temperature during the mechanical 

tests was 20 ± 2 °C. 

 

Statistical Analysis Methods 
 As noted above, the experimental results obtained in the study of Sun et al. (2013) 

exhibited significant variability. We therefore proceeded to characterize this variance 

using suitable statistical tools. The probability distribution function was first studied to 

determine the variance properties of the Young’s modulus obtained at each RH and 

specimen extraction location. Knowing the probability distribution function is also 

important for choosing the correct statistical method for significance testing. The RH 

value and specimen extraction location were examined to determine if they had a 

significant influence on the Young’s modulus. Finally, correlation coefficients were 

calculated to determine the potential statistical dependency of RH and extraction location 

on the Young’s modulus. 

 

Probability distribution test  

 Histograms were used to determine some assumptions concerning the probability 

distribution of the Young’s modulus of sunflower bark. A statistical hypothesis test was 

then performed to determine the distribution followed by the sunflower bark. 
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I) Statistical histograms 

In statistical analysis, the histogram, one of the most relevant graphs, visually and 

directly presents the frequency distribution of a dataset (Chiang 2003). Hence, the 

frequency distribution histograms of the Young’s modulus were plotted. These distribu-

tion histograms were used to model the probability distribution function of the data. 

Statistical hypothesis testing, described in the following section (“Statistical hypothesis 

testing of probability distributions”), was performed on these datasets with the various 

probability distribution functions estimated from the histograms. The selection of the bin 

number (or bin size) is important for the representation and the description of histograms. 

A large bin number may generate perturbations, while a small bin number may lead to a 

loss of information. Previous methods for determining the bin numbers (Sturges 1926; 

Scott 1979) have these disadvantages. In the present work, we propose a method that has 

recently been suggested by Shimazaki and Shinomoto (2007). In the cited paper, the 

optimal bin number is determined by minimizing an estimated cost function obtained 

from a modified mean integrated square error (MISE) method. The MISE supplies the 

error between the estimated probability density represented by the histogram and the 

actual (and unknown) probability of a dataset. 

 

II) Testing statistical hypothesis of probability distributions 

Once the statistical data had been obtained, it was necessary to determine the 

probability distribution. For this purpose, we used statistical hypothesis testing on the 

experimental Young’s modulus distribution of the bark. The hypothesis testing for the 

probability distribution consists of the following steps:  

• Stating a null hypothesis H0: The probability distribution of the Young’s modulus, 

, of the sunflower bark extracted at a certain location and preconditioned 

at a certain RH follows either a normal, log-normal, or Weibull distribution. 

• Deciding whether to reject or accept H0: The decision is often taken with a 

probability threshold, , which is called the significance level. If the p-value<, 

then H0 is rejected and the difference between the probability distribution of the 

 and the currently tested distribution is significant. If the p-value>, then 

H0 is accepted, and the difference between the probability distribution of the 

 and the currently tested distribution is not significant. This means that 

we cannot reject the hypothesis that the data follow the current tested distribution 

function. The  value is conventionally chosen to be 0.05 because this is the 

critical point between weak and strong evidence against H0, as described by 

Wasserman (2004). The p-value is the probability of wrongly rejecting H0 if it is 

in fact true. Thus, the p-value is also a measure of the evidence against H0.  

Therefore, the smaller the p-value is, the stronger the evidence against H0: 

 p-value<0.01: very strong evidence against H0;  

 0.01<p-value<0.05: strong evidence against H0;  

 0.05<p-value<0.1: weak evidence against H0;  

 p-value>0.1: little or no evidence against H0. 

 In the present work, the 2
-test was conducted for hypothesis testing using the 

chi-squared goodness-of-fit function, chi2gof, in the statistical toolbox of the MATLAB 

software program (MATLAB 2009). Using this function enabled us to obtain the p-value 

to perform hypothesis testing. The  2
-test was performed by assembling the data into 

bins, calculating the observed and expected counts for these bins, and computing the  2
-
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test. The expected counts should be at least 5 to validate the  2 
approximation. The  2

-

test is sensitive to the choice of bins. There is no optimal choice for the bin width for the 

 2
-test; however, reasonable choices should produce similar results. The chi2gof function 

of MATLAB sets the number of bins to 10 by default, and bins with an expected count 

less than 5 are pooled with neighboring bins until the count in each extreme bin is at least 

5. The  2
-test equation is, 

  

  
                         (1) 

    

where Oi are the observed counts in each bins concerned by the tested data, Ei is the 

expected count in each bin corresponding to the current tested probability distribution, 

and N is the number of bins. The corresponding p-value is found in the statistical 2
-test 

table.  

 

Significance test  

 The purpose of the significance test is to evaluate the significance of the 

differences in the mean values of the Young’s modulus obtained at various locations and 

RH values. This allows us to determine if the specimen extraction location and the 

moisture content of the specimens influence the Young’s modulus. Testing methods 

depend on the normality of the data. The two-sample Student t-test is the most commonly 

used method to evaluate the differences in the means of two datasets. To use the t-test, 

the datasets must exhibit a normal distribution. As described earlier, the normality 

assumption can be evaluated by observing the data distribution (via histograms) and by 

performing a normality hypothesis test. The mean value of a dataset is denoted as mean 

( ). The two-sample t-test procedure consists of the following steps (Wasserman 

2004): 

 

• Establishing the null hypothesis H0: For example, mean( ) = 

mean( ) is denoted as  = . 

• Applying the statistical test: 

 

 
 

 

(2) 

 

where  and  are the dataset standard deviations and and  are the dataset 

sample sizes.  

• Finding the p-value in the Student t distribution table. 

• Comparing the  value (e.g.,  = 0.05) and the p-value: As has been described 

earlier in the previous section (“Probability distribution test”). Here the 

difference between mean( ) and mean( ) is significant when the p-

value<. This test can be performed using the two-sample t-test function, ttest2, 

in the statistical toolbox of the MATLAB software program (MATLAB 2009).  
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 In the case of non-normality of the data, the Mann-Whitney U test (a non-

parametric test of the H0) can be performed in the place of the two-sample t-test (Sijtsma 

and Emons 2010). The main advantage of the U test is it does not require a normally 

distributed data set. The U test method is different for small and large samples 

( , >20). Because the present study has a large sample size, the determined U value in 

the test is assumed to be normally distributed. Taking the H0 of mean( ) = 

mean( ) as an example, the test procedure is as follows: 

 

• Arranging the data: Arranging all the data of the two datasets  and 

 into a single ranked series, then adding up the ranks of the data that 

come from the dataset  and . The sums are denoted as R1 and R2, 

and they have the relationship + = ( + )( + +1)/2. 

 

• Determining U = min( , ) with: 

 

 

 

(3) 

 

• Calculating  and , the mean and standard deviation of U, respectively:  

 

 

 
  

(4) 

• Calculating the standard normal statistic:  

 

 

 
(5) 

• Determining the p-value from the statistical z-table (normal distribution): The 

decision rule here is the same as that described for the two-sample t-test. This 

test can be carried out using the Wilcoxon rank sum test function, ranksum, in 

the statistical toolbox of the MATLAB software program (MATLAB 2009). 

 

Correlation coefficient between different testing conditions  

 Specimens were expected to show a statistical dependence according to their 

extraction location and the RH. This dependence may be estimated by calculating the 

correlation coefficient. The correlation coefficient represents the strength of a linear 

relationship between the variables (in this study, the specimen extraction locations and 

the RH). It is calculated with the correlation coefficients function, corrcoef, of the 

MATLAB software program (MATLAB 2009). DATA is an N×2 matrix in which the 

rows are the observations and the columns are the two different testing conditions (e.g., 

different RH for the same specimen extraction location, or different specimen extraction 
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locations for the same RH). N is the number of specimens for which the testing results 

are used. It is smaller than 90 because in the present study some specimens were 

damaged during the cycle of the tests. The correlation coefficient R(i,j) of the 2×2 

symmetric correlation matrix R is calculated as follows:  

 

 

 
(6) 

 

where  is the covariance matrix of DAT A, and  is the correlation coefficient 

between two testing conditions that correspond to row i and column j in the R matrix. 

 

 

RESULTS AND DISCUSSION 
 
Mechanical Test Results 
 The Young’s modulus of the sunflower bark tested at different specimen 

extraction locations and RH is now discussed. The box plot of the experimental results is 

presented in Fig. 2. Two trends can be observed: the Young’s modulus increased as the 

specimen extraction height increased, and it decreased as the RH or the specimen 

moisture content increased. However, the high standard deviations make it difficult to 

confirm these trends. A significance test was therefore performed to evaluate the 

significance of the difference between these results (see “Influence of RH and specimen 

extraction location”) from the probability distributions determined in “Probability 

distribution”. In each case, the correlation relationship between the Young’s modulus 

obtained for different RH and the specimen extraction location is determined. The results 

obtained are presented and discussed in “Young’s modulus correlation coefficient 

between different testing conditions”. 

 

 
 
Fig. 2. Box plot of the Young’s modulus of bark 
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Probability distribution function 

 Figure 3 represents a typical histogram and probability function plots. The plotted 

dataset is for the specimens at 0% RH for the bottom location. In Fig. 3-(a), the fitted 

normal, Weibull, and log-normal distributions are superimposed. The empirical 

normalized cumulative distribution functions (CDF) for these three distributions are 

presented in Fig. 3-(b)-(c)-(d). Both the histogram and the empirical CDF plots were in 

good agreement with the fitted normal, Weibull, and log-normal distributions. Thus, the 

nine datasets in Fig. 2 may potentially follow normal, Weibull, and log-normal 

distributions. The objective now was to refine this first conclusion by performing 

hypothesis tests assuming either normal, Weibull, or log-normal distributions. It is worth 

recalling that (i) the null hypothesis cannot be rejected when the p-value is greater than 

0.05, and (ii) the greater the p-value, the weaker the evidence against the null hypothesis 

(Wasserman 2004). 

 

 
Fig. 3. Histogram and probability plot at 0% RH and bottom location: (a) Histogram; (b) normal 
probability plot; (c) log-normal probability plot; and (d) Weibull probability plot 
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From the results of the distribution test presented in Fig. 4, it can be said that all 

the p-values were greater than 0.1. The only exception to this observation was for the 0% 

RH-top dataset assuming a Weibull distribution; in this case, the p-value was equal to 

0.018 and thus much smaller than 0.05. This is because the observed counts were 

significantly lower than the expected total counts for the Young’s modulus range of 4.37 

to 6.09 GPa and the observed counts were greater for the range of 6.09 to 6.95 GPa. This 

observation can be verified by examining the details of the test results. In conclusion, the 

normal and the log-normal distributions are followed by all nine datasets. This conclusion 

is obtained at a 95% significance level, where  is equal to 0.05 (remembering that  

corresponds to the value from which H0 is accepted or rejected); thus, we can examine 

whether one of these two distributions is more representative of the datasets by 

comparing the p-values obtained for each of them. Among these nine datasets, six of 

them corresponded to a situation where the p-value of the normal distribution test was the 

highest, whereas the remaining three corresponded to a situation where the log-normal 

distribution was the highest. The p-value of the normal distribution function is, therefore 

in most cases, greater than that of both the Weibull and the log-normal distribution 

functions. This indicates that the evidence against the null hypothesis that the datasets 

follow a normal distribution is the weakest. Therefore, the final conclusion is that the 

datasets are more inclined to follow a normal distribution function. The two-tailed t-test 

was therefore only performed for the normal distribution function to determine the 

influence of both the RH and the specimen extraction location. This is discussed in the 

following section. 

 

 
 
Fig. 4.  p-values for all distribution tests 
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Influence of RH and specimen extraction location  

 The influence of both the RH and the specimen extraction location is now 

analyzed. The p-values obtained from the two-sample t-test performed on the nine 

datasets are given in Fig. 5. It can be seen that the smaller the p-value, the stronger the 

evidence against the null hypothesis. p-values were less than 0.035 for all the test results. 

This indicated that the differences between the mean values of the datasets were 

significant for = 0.05. Concerning the influence of the specimen extraction location, it 

can be concluded from Fig. 5 that the differences between the middle and top locations 

for the three RH values were less significant than those between the bottom and middle 

locations. Indeed, the p-value of the former was the highest:  =2.71x10
-2

, 

 = 3.44x10
-2

, =6.90x10
-3

, and , 

 and < 10
-16

. Moreover, for the two-sample t-test 

between the middle and the top locations, the p-value was the smallest at 75% RH. 

Consequently, the difference between the Young’s modulus obtained at the middle and 

the top locations was the most significant. 

 
Fig. 5. p-values for the two-sample t-test 
 

For the influence of RH, it can be observed at the same location that the p-value 

of the two-sample t-tests between 0% RH and 33% RH was always greater than that 

obtained between 33% RH and 75% RH. Hence, the difference between 33% RH and 

75% RH is the greatest. In conclusion, both the specimen moisture content and the 

specimen extraction location have a significant influence on the Young’s modulus when 

=0.05. Hence, the Young’s modulus significantly decreased with an increase of the 

specimen’s RH conditioning. This confirmed the trend observed in our previous work 

(Sun et al. 2013). In the latter case, it was due to water softening the cell wall of the fiber 

(Li 2006). Furthermore, the decrease was more significant when the RH value increased 
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from 33% to 75%. This was probably because the difference between 33% RH and 75% 

RH is greater. It can also be said that the Young’s modulus of the sunflower bark tended 

to increase with specimen extraction location along the stem. This increase was greater 

from the bottom to the middle than from the middle to the top. This confirmed our earlier 

conclusion (Sun et al. 2013): the increase of the Young’s modulus of sunflower bark with 

specimen extraction location along the stems was due to the increase in the sclerenchyma 

content, which is a rigid material and is more visible between the bottom and the middle. 

This observation of Young’s modulus was also due to the decrease in the porosity of the 

bark along the stem. 

 

Young’s modulus correlation coefficient between different testing conditions  

 Some relevant correlation coefficients extracted from the correlation matrices are 

presented in Tables 1 and 2. In Table 1, the correlation that existed between the Young’s 

modulus and the RH value is clearly evidenced for each specimen extraction location, as 

exemplified by the high correlation coefficient obtained in each case. In Table 2, the 

correlation coefficients were much lower than in the previous case. This indicated that the 

correlation between the Young’s modulus and the specimen extraction location was much 

lower than the correlation between the Young’s modulus and the RH value.  

 

Table 1. Correlation Coefficients between Different RH Values 
 

R(0B, 33B) R(33B, 75B) R(0B, 75B) Mean(B) Standard deviation 
0.81 0.64 0.71 0.72 0.08 

R(0M, 33M) R(33M, 75M) R(0M, 75M) Mean(M) Standard deviation 

0.76 0.57 0.60 0.64 0.10 

R(0T, 33T) R(33T, 75T) R(0T, 75T) Mean(T) Standard deviation 

0.56 0.56 0.46 0.53 0.05 

0, 33, and 75 are 0%, 33%, and 75% RH, respectively; B, M, and T are bottom, middle, and top, 
respectively 

 

Table 2. Correlation Coefficients between Different Specimen Extraction 
Locations 
 

R(0B, 0M) R(0M, 0T) R(0B, 0T) Mean(0) Standard deviation 
0.24 0.01 0.24 0.16 0.11 

R(33B, 33M) R(33M, 33T) R(33B, 33T) Mean(33) Standard deviation 

0.41 0.26 0.10 0.26 0.16 

R(75B, 75M) R(75M, 75T) R(75B, 75T) Mean(75) Standard deviation 

0.42 0.22 0.13 0.26 0.15 

0, 33, and 75 are 0%, 33%, and 75% RH, respectively; B, M, and T are bottom, middle, and top, 
respectively 

 

This difference between correlation coefficients obtained in each case can be 

partially explained as follows. In the first case, the Young’s modulus is obtained with the 

same specimens for various RH values. In the second case, however, the tested specimens 

are not the same because they are extracted from different stems, which can have, for 

instance, different maturation and growth conditions along the stem. These differences 

potentially induce greater variability, which partially contributes to the lower correlation 

coefficients. A typical correlation curve of the Young’s modulus at 0% and 33% RH is 

presented in Fig. 6. The linear dependence is clearly visible. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Sun et al. (2014). “Mechanical properties of sunflower bark,” BioResources 9(1), 922-937.  934 

 

 

 
Fig. 6. Correlation relationship between 0% and 33% RH at the bottom specimen extraction 
location  

  

Similar figures can be obtained for the other RH values and locations (not shown). 

In each case, a linear regression equation was obtained. These equations are shown in 

Table 3.  

 

 
Table 3. Linear Regression of the Young’s Modulus between Different RH 
 

Location RH Linear equations Coefficient of determination r
2
 

 0%-33% 
E33%RH =0.75E0%RH +0.82 
E75%RH =0.6E33%RH +1.28 
E75%RH =0.58E0%RH +1.13 

0.66 

Bottom 33%-75% 0.51 

 0%-75% 0.54 

 0%-33% E33%RH =0.68E0%RH +1.68 0.51 

Middle 33%-75%  E75%RH =0.56E33%RH +1.94 0.36 

 0%-75% E75%RH =0.47E0%RH +2.32 0.31 

 0%-33% E33%RH =0.55E0%RH +2.62 0.54 

Top 
33%-75% 
0%-75% 

 E75%RH =0.62E33%RH +1.77 0.31 
E75%RH =0.47E0%RH +2.45 0.26 
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The average value of the slope of the nine corresponding lines was 0.59 (with a 

standard deviation equal to 0.09). The slope values tended to decrease with increasing 

RH between the different RH values (see column 2) and with increasing height of the 

specimen extraction location (see column 1). The linear regression equations representing 

the correlation between the Young’s modulus and the different specimen extraction 

locations are not presented here because, as explained above, these parameters were less 

strongly correlated, thus leading to determination coefficients that were very small in 

comparison with those reported in Table 3. 

 

 

CONCLUSIONS 
  

1. Hypothesis testing was performed on the datasets obtained in each case. Probability 

distribution tests showed that these datasets follow a normal distribution function. 
 

2. Significance tests showed that the Young’s modulus closely depended on both the RH 

value and the specimen extraction location. This modulus tended to significantly 

increase from the bottom to the top of the stems and tended to significantly decrease 

with increasing RH. Statistically, the difference in Young’s modulus between the 

bottom and middle locations was more significant than the difference between the 

middle and the top locations at all RH values. Furthermore, the differences in the 

Young’s modulus between the middle and the top locations were greater for the 

higher RH values. The difference in Young’s modulus between 33% RH and 75% RH 

was greater than that between 0% RH and 33% RH. This was probably because the 

difference between 33% RH and 75% RH was greater. 
 

3. The correlation coefficients between the Young’s modulus at various RH and 

specimen extraction locations were characterized. It was found that the correlation 

coefficient between the Young’s modulus and the RH value was greater than that 

obtained between the Young’s modulus and the specimen extraction location. Finally, 

the linear regression equations relating the Young’s modulus to the RH values were 

determined, which showed the dependence of the experimental results for a given 

extraction location. 
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