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Elephant grass (Pennisetum purpureum Schum.) is a fast-growing native 
African plant species that produces commercially useful lignocellulosic 
biomass. It has been used in many countries to replace wood for paper, 
particleboard, and fiberboard. There is a close relationship between the 
mechanical properties of elephant grass cell walls and the performance of 
its products. The objective of this research was to investigate the cell wall 
mechanical properties at different growth periods of five types of elephant 
grasses, i.e., P. americanum cv. Tift 23A×P. purpureum cv. Tift N51 (HP), 
P. purpureum cv. Tift N51 (N51), P. purpureum cv. Huanan (Huanan), P. 
purpureum cv. Sumu No.2 (Sumu-2), and (P. americanum× P. purpureum) 
× P. purpureum cv. Guimu No.1 (Guimu-1). The hardness and elastic 
modulus of the cell walls were investigated by means of nanoindentation. 
The results showed that the hardness and elastic modulus of these 
elephant grasses increased as growth period increased. However, the rate 
of increase varied for the different types of elephant grass, which could 
help guide the evaluation of the properties of this kind of bio-fiber resource 
for the production of high-quality biocomposite products. 
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INTRODUCTION 

 

Elephant grass (Pennisetum purpureum Schum.) is a plant species native to Africa 

that possesses high rates of growth and lignocellulosic biomass production (Aroeira et al. 

1999; Xie et al. 2011). This plant was introduced to South America and Australia over a 

century ago (Strezov et al. 2008), and was also introduced to China in the twentieth century. 

Elephant grass is potentially suitable as a source of refined fuel products such as bio-oil, 

char, and combustible gases (Strezov et al. 2008), or for bioenergy production by direct 

biomass combustion (de Morais et al. 2009). In some countries, elephant grass also finds 

use as a food source for livestock (Mpairwe et al. 1998) and can be used to feed ruminants 

(Ajayi 2011).  

Because of the interest in non-wood fibers as raw material for pulp and paper 

products, research has been conducted to evaluate elephant grass as a raw material for pulp 

and paper production (Madakadze et al. 2010). It has also been found to be a suitable raw 

material for the production of particle board, fiberboard, and composite products (Nguyen 

et al. 2010, 2011). 
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Raw material chemical composition, kraft pulp yield and properties, and fibre 

characteristics of elephant grass have been determined in an effort to evaluate them as raw 

materials for pulp and paper production. Elephant grass had α-cellulose and Klason lignin 

contents of 45.6 and 17.7%, respectively. Pulp yield, following a mild kraft process, was 

50% for elephant grass. The weight-weighted fibre length averaged 1.32 mm. Pulp freeness 

was 139 mL for elephant grass. Elephant grass had a burst index above 5.85 kP.m2 g-1. 

These characteristics demonstrate the suitability of elephant grass for pulp production 

(Madakadze et al. 2010).  

The pennisetum fiberboard made with urea-formaldehyde resin could be used as 

the core material for veneer overlaying. The mechanical property of pennisetum fiberboard 

was increased obviously by veneer overlaying on its surface (Nguyen et al. 2010; 2011). 

To utilize elephant grass more efficiently as a raw material for pulp, paper, particleboard, 

and fiberboard, it is important to understand the mechanical properties of the plant’s cell 

wall, as these properties strongly affect the quality of biocomposite products produced from 

such feedstock (Liao et al. 2012). 

The nanoindentation technique is useful for determining the elastic modulus and 

hardness of wood cell walls along longitudinal direction (Gindl et al. 2002; Gacitua et al. 

2007; Jakes et al. 2008) and may be used to measure the cell-wall mechanical properties 

of the stalks of crops including cotton, soybean, rice straw, wheat straw (Wu et al. 2010), 

silver grass (Liao et al. 2012), bamboo (Wang et al. 2013a), hemp stalk (Li et al. 2013), 

reed stalk (Wang et al. 2013b), and castor stalk (Li et al. 2014).  

Nanoindentation is widely used for measuring micro scale mechanical properties 

of materials that are relatively isotropic in their elastic properties, and addressing whether 

the modulus measured in an indentation test represents that of some specific 

crystallographic direction or some average value is not an issue. On the other hand, some 

materials have complex hexagonal crystal structures, and because of this, results from these 

materials can be used to provide some insight into the importance of elastic anisotropy 

(Oliver and Pharr 1992).  

Wu (2010) investigated the nano-mechanical properties of crop-stalk cell walls, i.e. 

those of cotton (Gossypium herbaceum) stalk, soybean (Glycine max) stalk, cassava 

(Manihot esculenta) stalk, rice (Oryza sativa L.) straw, and wheat (Triticum aestivum L.) 

straw by means of nano-indentation and atomic force microscopy (AFM), in order to 

evaluate their potential as materials for reinforcement. The elastic modulus of wheat straw 

was found to be 20.8 GPa, which was higher than that of the other four crops. The highest 

hardness was observed in cotton stalk at 0.85 GPa. The elastic moduli of the crop stalks 

were lower than those of most of the hardwood species, but higher than that of some 

softwoods and of lyocell fiber. The mean value of the hardness of the five crop stalks’ cell 

walls was higher than those of wood or lyocell fiber. Besides, nano-mechanical properties 

of switchgrass and cotton cellulose nanocrystals (CNCs) were measured using nano-

indentation (Wu et al. 2013). Mechanical testing showed that the reduced modulus (Er) and 

the hardness (H) of switchgrass CNC films were higher than those of the cotton CNC films.  

The objective of this research was to investigate the effect of growth stage and grass type 

on the cell-wall mechanical properties of elephant grass using the nanoindentation 

technique. 
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EXPERIMENTAL 
 
Materials 
Sample preparation 

Recent Chinese research into the planting and applications of elephant grass is 

predominantly focused on five varieties of the plant: P. americanum cv. Tift 23A×P. 

purpureum cv. Tift N51 (HP), P. purpureum cv. Tift N51 (N51), P. purpureum cv. Huanan 

(Huanan), P. purpureum cv. Sumu No.2 (Sumu-2), and (P. americanum × P. purpureum) 

×P. purpureum cv. Guimu No.1 (Guimu-1). Of these, HP and Sumu-2 are grown in China 

across a wide range of latitudes, while Huanan and Guimu-1are cultivated in southern 

China because of their unsuitability to the colder climate of the north. There are plans for 

the cultivation of N51 in the future. Their genotypes, evaluated with a description of their 

origin, are listed in Table 1. These five kind of air-dried elephant grass stalks were obtained 

from the Garden of Jiangsu Academy of Agricultural Sciences (China). They were sampled 

at three different intervals during their life cycle, 3-months, 4-months, and 6-months, with 

the 1st sampling taking place on August 2 (a growing time of three months), the 2nd on 

September 2 (a growing time of four months), and the last at approximately six months, at 

the time of the local first frost and the cessation of growth in the plants. 

 

Table 1. Elephant Grass Genotypes with a Description of Their Origin 

Cultivar Species Germplasm origin Citation 

Hybrid Pennisetum 
(HP) 

Pennisetum 
americanum × P. 
purpureum 

USA, 1981 Registered in 1989 
in China (Wu1999) 

N51 P. purpureum 
Schum. cv. N51 

USA, 1985 Unregistered in 
1989 in China 
(Wu1999) 

Huanan P. purpureum 
Schum. cv. 
Huanan 

Indonesia, 1960 Registered in 1990 
in China (Wu 
1999) 

Guimu-1 (Pennisetum 
americanum × P. 
purpureum) ×P. 
purpureum cv. 
Guimu No.1 

Improved cultivar from hybrid 
between ‘hybrid’ and ‘Mott’, 
2000, Institute of Animal 
Science, Guangxi Academy 
of Agricultural Sciences in 
China 

Registered in 1990 
in China (Forage 
Product 
Certification 
Committee,2001) 

Sumu-2 P. purpureum 
Schum. cv. Sumu 
No.2 

Improved cultivar from 
P.purpureumSchum.cv.N51by 
Institute of Animal Science, 
Jiangsu Agricultural Sciences 
and  Zhejiang Shaoxing 
Baiyun Construction Co., 
LTD. in China 

Registered in 2010 
in China (Ma et 
al.2011) 

 

Grass samples were cut into 4 to 5 blocks of 5 mm (L) by 2 mm (W) by 1 mm (T). 

The specimens were then sealed in FoodSaver polymer film, according to the process 

shown in previous research (Meng et al. 2013). Each small grass sample was placed 

between two films and pressed by an electric iron with the temperature set at 160 °C. The 

pre-sealed samples were then embedded in Spurr’s resin (ChemAce Chemical Supply, 
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USA) and cured in an oven at 70 °C for 8 h. The surfaces of the cured specimens were 

prepared with three kinds of knives to obtain a very smooth surface. The smoothed 

specimens were conditioned at 21 °C and 60% relative humidity in the nanoindentation test 

room for at least 24 h before testing. 

 

Methods 
Nanoindentation 

Nanoindentation tests were performed on a TriboIndenter® system manufactured 

by Hysitron, Inc. (Minneapolis, MN, USA). A Berkovich nanoindenter tip with a three-

sided pyramidal shape and an area-to-depth function (Oliver and Pharr 1992) was used for 

all experiments. The single indentation procedure included four steps, as described by Liu 

et al. (2006). A total of 45 indentations were performed and were checked by rescanning 

the image (Fig. 1), as described in a previous manuscript (Zhang et al. 2012). Scanning 

probe microscopy was performed to measure the physical shape of the indentation and 

confirm the nanoindentation position.  
 

 
 

Fig. 1. Post indentation scanning probe microscope image (Note. 1. Secondary cell walls; 2. Cell 
lumen; 3. indentation mark) 

 

From the indentation showed in Fig. 1, the load-displacement curve can be attained. 

Consequently, hardness and reduced modulus were calculated from valid data according to 

Oliver and Pharr (1992) and Wu et al. (2009). The reduced modulus Er (i.e., the composite 

modulus for indenter and sample combination) was calculated from the nanoindentation 

measurements using Eq. 1 (Oliver and Pharr 1992): 
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where P is the indentation load, h and hc are the penetration and contact depths, 

respectively, and Ahc is the projected contact area, which is a function of the contact depth. 

The Meyer hardness (H) is given by Eq. 2, 
 

hcA
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where Pmax is the maximum indentation load. 

 

Determination of holocellulose and lignin contents 

The specimens were smashed and screened to 60 to 80 mesh. The contents of 

holocellulose and cellulose were determined according to the standard GB/T 2677.10 

(1995), and lignin contents were determined according to the standard GB/T747 (2003). 

 

Statistical analysis 

A one-way analysis of variance (ANOVA), linear regression, and parameter 

estimation analysis were conducted using Statistic Analysis System (SPSS; USA) 16.0 

version software. Statistical significance was at the 0.05 level. 

 
 
RESULTS AND DISCUSSION 
 
Reduced Modulus of Cell Walls for Elephant Grass at Different Growth 
Stages 

The reduced cell wall moduli for the five kinds of elephant grass at different growth 

stages are shown in Fig. 2. The growth periods of elephant grass are about 6 months in 

most areas of China. The elephant grass grows more quickly during the first 3-months or 

4-months than other growth periods. From this graph, it can be seen that the reduced 

modulus increased with the progression of elephant grass growth stage. When the growth 

period was 3 months, 4 months, and 6 months, the reduced modulus of HP were 16.9 GPa, 

20.2 GPa, and 20.2 GPa, N51 were 15.4 GPa, 16.3 GPa, and 21.0 GPa, Huanan were 14.4 

GPa, 15.7 GPa, and 17.9 GPa, Sumu-2 were 15.0 GPa, 18.4 GPa, and 20.7 GPa, and 

Guimu-1 were 9.93 GPa, 13.2 GPa, and 16.9 GPa. The differences, however, were not 

significant at the 0.05 level. One of the reasons for the changes was that the chemical 

components of elephant grass changed between the growth periods of 3 months to 6 

months. A relationship exists between plant age and the chemical composition of the plant, 

and this composition influences the cell wall mechanical properties. The primary 

components of plant cell walls are holocellulose (i.e., cellulose, hemicellulose) and lignin 

(Thorstensson et al. 1992). It has been shown that the composition of holocellulose varies 

among different elephant grasses (Herrera et al. 1995). Among these components, cellulose 

dominates the longitudinal properties of cell walls (Bergander and Salmén 2002). For this 

reason, the cellulose content of elephant grass was tested to understand why the reduced 

moduli of cell walls varied. Table 2 lists the contents of holocellulose, cellulose, and lignin 

of the five elephant grasses in their different growth stages. Total content of holocellulose 

and lignin were not equal to 100% due to the extractives. The deduction may be made that 

there exists a relationship between growing time and the micro-mechanical properties of 

elephant grass stalks since both cellulose content and reduced cell modulus increased with 

plant age, although the rates at which the reduced modulus increased differed greatly 

among different types of plants. Table 3 shows the rate of increase of the reduced modulus 

for the third to the fourth month and the fourth to the sixth month of growth. The order, 

from the highest to lowest rate of increase, was as follows: Guimu-1 > Sumu-2 > HP 

>Huanan> N51 for the third to the fourth months of growth, and N51 > Guimu-1 >Huanan> 
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Sumu-2 > HP for the fourth to the sixth months of growth. Bergander and Salmen (2002) 

summarized values for the longitudinal Young modulus of wood cell wall components: 2.0 

GPa for lignin, 7.0 GPa for hemicelluloses, and 167.5 GPa for cellulose. Since the stiffness 

of cellulose is more than 80 times that of lignin, a slight increase of cellulose should 

noticeably alter the stiffness of the composite cell wall. This assumption is supported by 

the finding that changes of the elastic constants of lignin in a model for cell wall stiffness 

have only small effects on the overall longitudinal stiffness (Bergander and Salmen 2002). 

And findings (Fujino and Itoh 1998; Donaldson and Singh 1998; Hafren et al. 1999) 

suggested that the unlignified cell wall consists of cellulose microfibrils organized as 

cellulose-hemicellulose strands embedded in a hemicellulose sheath. The spaces between 

individual cellulose-hemicellulose strands is occasionally bridged by hemicelluloses. 

During lignification, the spaces between cellulose-hemicellulose strands and possibly also 

part of the hemicelluloses sheath covering the cellulose are filled with lignin, thus filling, 

sealing, and hydrophobising the structure. The filling of existing spaces with lignin 

certainly increases the overall stiffness of the structure. 

 

Fig. 2. Reduced modulus of cell walls for the five kinds of elephant grass in different growth 
stage. Note: The error bar of the y-axis is the standard deviation. 

 

8

10

12

14

16

18

20

22

HP N51 Huanan Sumu-2 Guimu-1

Grass type

R
e
d
u
c
e
d
 
m
o
d
u
l
u
s
 
(
G
P
a
)

3  months

4 months

6 months



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Zhang et al. (2015). “Elephant grass properties,” BioResources 10(3), 4252-4262.  4258 

Table 2. Holocellulose, Cellulose, and Lignin Contents of Five Types of Elephant 
Grass (%) 

Growth 
stage 

(months) 

HP N51 Huanan Sumu-2 Guimu-1 

H C L H C L H C L H C L H C L 

3 69.0 33.1 10.0 64.5 35.5 15.1 68.0 35.2 15.7 68.4 29.8 13.4 69.1 33.8 12.4 

4 67.7 36.0 14.2 66.3 35.6 17.3 68.5 36.5 17.8 67.5 37.2 19.4 68.9 34.5 13.0 

6 77.0 36.4 19.7 75.8 37.8 20.2 71.0 36.9 21.6 71.2 38.3 21.3 77.0 34.6 17.3 

H: holocellulose; C: cellulose; L: lignin 

 

Table 3. Increasing Rate of the Reduced Modulus for Five Types of Elephant 
Grass (%) 

Growth 
period 

  HP    N51 Huanan Sumu-2 Guimu-1 

From 3 to 4 
months 

19.7 5.8 8.8 22.8 32.9 

From 4 to 6 
months 

0.07 29.3 14.0 12.5 28.1 

 

Hardness of Cell Walls in Elephant Grass at Different Growth Stages 
A positive relationship was found between the hardness of plant cell walls and their 

lignin content. From Fig. 3, it can be seen that the hardness of cell walls for different kinds 

of elephant grass increased as they grew.  

 

 
Fig. 3. Hardness of cell walls for the five kinds of elephant grass in different growth stage 
Note: from left to right, it represents 3 months, 4 months, and 6 months separately 
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Comparison of Different Cell Wall Mechanical Properties 
The reduced moduli of cell walls in five crop stalks (Wu et al. 2010) and the five 

types of elephant grass are shown in Fig. 4. Wheat straw had the highest reduced modulus 

(20.8 GPa) among the five crops. However, it was marginally smaller than that of N51, 

whose reduced modulus was 21.02 GPa. The rice straw and cassava stalk presented values 

of 19.4 and 19.0 GPa, respectively. The soybean stalk and cotton stalk both exhibited the 

lowest values of 16.3 GPa among the five crop stalks. The mean value of the five crop 

stalks was 18.4 GPa, which was also slightly smaller than the mean value of the five 

elephant grass stalks (19.4 GPa). 

 

 
Fig. 4. Reduced modulus of cell wall in five crops and five elephant grass stalks with a growing 
time of six months (Note: the reduced modulus of cell wall in five crops was from a cited paper 
(Wu et al. 2010), and the reduced modulus of five elephant grass stalks was from the present 
study) 
 

 
CONCLUSIONS 
 

The following conclusions can be drawn from this study. The reduced moduli and 

hardness of five kinds of elephant grasses increase as they mature. Different types of 

elephant grass showed differing rates of increase in reduced modulus and hardness. The 

elephant grass has similar cell wall mechanical properties by comparing to other crop 

stalks, which are from 16 GPa to 22 GPa. These results may prove useful as a guide by 

which the appropriate type and age of elephant grass may be chosen for the production of 

pulp, paper, particle board, and fiberboard. 
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