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Physical Behavior of Hydro-thermally Treated Oil Palm 
Wood in Different Buffered pH Media 
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This study investigated changes in the physical properties of oil palm 
(Elaeis guineensis) wood (OPW) using various buffered media for the 
hydrothermal treatment process. The buffered media were prepared 
separately for three different treatment conditions: pH of 8, pH of 5, and 
tap water. These treatments were compared with unbuffered, control 
samples. The OPW samples were taken from the outer part of the trees. 
The OPW samples were treated with the buffered media at a temperature 
of 140 °C for 120 min. The parameters evaluated were wood density (ρ), 
equilibrium moisture content (EMC), mass loss (ML), water absorption 
(WA), volumetric swelling (SV), anti-swelling efficiency (ASE), and water 
repellent efficiency (WRE), for both treated and untreated samples. The 
buffered media significantly affected the EMC (%), ρ (g/cm3), ML (%), and 
WA (%), with no significant effects on the ASE (%) and WRE (%). It was 
concluded that the hydrothermal treatment in the buffered medium with a 
pH of 8 had the most significant effect on the physical properties of OPW. 
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INTRODUCTION 
 

Oil palm (Elaeis guineensis) is a major agricultural commodity in Malaysia and 

generates more than 90 million tons of waste annually from empty fruit bunches, oil palm 

trunks (OPT), and oil palm fronds during the replanting process (Abdul Khalil et al. 2011). 

Oil palm wood (OPW) has several inherent defects, such as a high moisture content, low 

dimensional stability, low wood density, and a high proportion of parenchyma tissue, that 

affect its utilization. These defects increase the cost of processing and manufacturing. 

However, some of these weaknesses can be improved with appropriate treatment and 

conditioning; OPW has both exterior and interior uses (Kamarulzaman et al. 2004; Razak 

et al. 2008). However, disposing of oil palm stems by burning them pollutes the air and the 

environment, and it is considered an irrational action (Bhat et al. 2010).   

Hydrothermal treatment is considered to be an eco-friendly method for wood 

modification without any usage of chemicals (Borrega and Kärenlampi 2009). Heat 

treatment can play an important role to increase the competitiveness of fast growing 

plantation wood by overcoming some of its weaknesses (Borrega and Kärenlampi 2009). 

Hydrothermal treatment is a cost-effective approach to enhance the inferior properties of 
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OPW. Moreover, the presence of water affects the chemical structure of thermally modified 

wood, and heat is easily transferred into the wood. Wood properties can be improved 

considerably by converting hydrophilic OH- groups into more hydrophobic groups. Heat 

treatment of wood reduces its hygroscopicity, which leads to less swelling and enhanced 

fungal resistance compared with untreated wood (Tjeerdsma et al. 1998; Kamden et al. 

1999).  

Acidic conditions and high temperatures can degrade wood by hydrolysis. During 

hydrothermal treatment, acidic conditions is produced by forming acids from the wood 

itself. Formic and acetic acids are produced during the heating process, especially at high 

temperatures (Tjeerdsma et al. 1998). The degradation rate of carbohydrates is high under 

acidic conditions, which is promoted by the high availability and low crystallinity of 

hemicelluloses (Theander and Nelson 1988). 

Previous studies have revealed that only the outer parts of the mature OPT can be 

used as solid wood. These sections of the trunk produce the best quality OPW (Ratanawilai 

and Kirdkong 2006; Bakar et al. 2008; Rahayu 2001). Even so, the inherent defects 

mentioned earlier are still high in wood obtained from these parts. As a result, 

comprehensive treatment must be carried out to solve these problems. Treatment with a 

modified compression method has proven to be effective in solving the first three 

unfavorable characteristics: high moisture content, low dimensional stability, and low 

wood density (Ratanawilai and Kirdkong 2006; Bakar et al. 2008). During the 

hydrothermal process, the pH level of a hydrothermal medium may become more acidic. 

Buffered mediums can be used to maintain less change in pH level during hydrothermal 

treatment to control the destructive effects caused by the released acids. According to this, 

hydrothermal process can be applied to the OPW, determining how buffered mediums 

would affect the physical properties that need to be evaluated. 

The objectives of this research are to determine the physical behaviors of oil palm 

wood when heated in three different buffered mediums as suitable hydrothermal 

treatments: alkaline buffer with pH 8, acidic buffer with pH 5, and water medium. 

 

 

EXPERIMENTAL 
  

Materials and Methods  
Sample preparation 

Three mature oil palm trees were randomly harvested at the Universiti Putra 

Malaysia’s oil palm plantation. Three logs, 2 m in length, were taken above the tree breast 

height. The logs were then processed and flat sawn into boards with dimensions of 60 × 5 

× 5 cm (length × width × thickness) (Fig. 1). The outer OPW timbers were selected based 

on similar wood densities. To avoid losses from fungus and moisture, the boards were kept 

in a cold room at 4 °C. 

Hydrothermal treatment was carried out in three buffered mediums, i.e., pH 5 and 

8 and water medium, at 140 °C for 120 min. Tap water with pH of 6.7 was used as one of 

the treatment media. For measuring the mass loss, the sample was first oven-dried and then 

put on the digester. For other measurments, green samples with the moisture of about 114% 

were placed in a digester (JSR Instruments, Digester 30.4, Uttarakhand, India) and treated 

with the three buffered media. Thus, all OPW samples were under buffered and unbuffered 
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(control) hydrothermal treatments. To prevent changes in the pH during the heating 

process, buffered media were used to keep the pH constant (Talaei 2010). 

 

 

 
 
 
 
 
 
 
 
 

Fig. 1. Flat sawn cutting for board preparation 

 

After the hydrothermal treatments, the samples were gradually cooled to room 

temperature before they were cut into 20 × 20 × 20 mm specimens, which were used to 

evaluate their physical properties. About 10 samples were prepared for each determined 

property. Untreated samples were used as the controls for comparison purposes. The 

samples were then transferred into a conditioning room with a temperature of 20 ± 2 °C 

and a relative humidity (RH) of 65 ± 3 % until they reached a constant weight, i.e., 

equilibrium moisture content (EMC, 12 ± 2%). Once all the samples reached a constant 

weight, the percent moisture content (MC, %), EMC (%), mass loss (ML, %), water 

absorption (WA, %), anti-swelling efficiency (ASE, %), water repellent efficiency (WER, 

%), and oven-dry wood density (ρ, g/cm3) were calculated. All of the tests were conducted 

in accordance with the procedures specified by the British-adopted European standard test 

methods for small, clear samples of timber, BS 373 (1957). These properties were 

calculated as follows: 

𝑀𝐶% = (
𝑊1−𝑊𝑂𝐷

𝑊𝑂𝐷
) × 100        (1) 

 

𝐸𝑀𝐶% = (
𝑊𝐸𝑀𝐶%−𝑊𝑂𝐷

𝑊𝑂𝐷
) × 100                (2) 

where, MC% is the initial moisture content of the green samples (%), EMC% is the 

equilibrium moisture content (12 ± 2%), W1 is the initial weight (g), WOD  is the oven-dry 

weight (g), and WEMC% is the weight for the equilibrium moisture content state (g), 
 

𝜌 =
𝑊𝑂𝐷

𝑉𝑂𝐷
     (3) 

where, ρ is the wood density (g/cm3), WOD is the weight after oven-dry (g), and VOD is the 

oven-dry volume (cm3);   

 

𝑀𝐿% = (
𝑊1𝑂𝐷−𝑊2𝑂𝐷

𝑊2𝑂𝐷
) × 100         (4) 
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where, ML% is the mass loss (%), W1OD  is the oven-dry weight of the samples before 

being treated (g), and W2OD is the oven-dry weight of the samples after treatment (g), 

            

𝑊𝐴% = (
𝑊𝑡−𝑊𝑂𝐷

𝑊𝑂𝐷
) ×100          (5) 

where, WA% is the water absorption (%), Wt is the weight of the wet samples after 

immersion in distilled water (g), and WOD is the weight of the oven-dry samples (g), 
 

   𝑆𝑉% = (
𝑉2−𝑉1

𝑉1
) × 100            (6) 

where, Sv% is the volumetric swelling coefficient (%), V2 is the volume of the saturated 

samples or the sample’s volume after immersion in distilled water (mm3), V1 is the volume 

of the oven-dried samples before saturation (mm3). V is the volume calculated from the 

longitudinal (L), tangential (T), and radial directions, 
 

𝐴𝑆𝐸% = (
𝑆𝑢−𝑆𝑡

𝑆𝑢
) × 100                    (7) 

where, ASE% is the anti-swelling efficiency (%), St is the volumetric swelling coefficient 

of the treated samples (%), and Su is the volumetric swelling coefficient of the untreated 

samples (%); and 
 

 𝑊𝑅𝐸% = (
𝑊𝐴1−𝑊𝐴2

𝑊𝐴1
) × 100            (8) 

where, WRE% is the water repellent effectiveness (%), WA1 is the rate of water absorption 

of the untreated samples, and WA2 is the rate of water absorption of the treated samples. 

     

Buffered solutions were prepared in the laboratory as shown in Table 1. 

 

Table 1. Preparation of the Buffered Solutions 

pH Chemical Composition 

5 257.5 mL Na2HPO4.2H2O (0.2 M) + 242.5 mL C6H8O7.H2O (0.1 M) 

8 486.25 mL Na2HPO4.2H2O (0.2 M) + 13.75 mL C6H8O7.H2O (0.1 M) 

Source: Alexeyev (1967) 
 

Statistical Analysis 
The results were analyzed using a one-way analysis of variance (ANOVA). The 

mean values of the determined properties were evaluated using the Duncan’s post-hoc test 

(Duncan Multiple Range Test; DMRT) at a 5% confidence level. 

 

 

RESULTS AND DISCUSSION  
 

Variation of pH after Hydrothermal Treatments 
Wood acidity after hydrothermolysis was determined by measuring the process 

liquor. Figure 2 shows the pH level achieved after hydrothermal treatment in the two 

buffered mediums and water (pH 6.7). During the hydrothermal process, acid that was 

released into the solution produced a decrease in pH and hemicellulose acetylation. 
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Hydrothermal modification method in the buffered media is an effective method to control 

the destructive effects of acids formed via the degradation of carbohydrates during the 

process (Talaei 2010, 2013). During thermal treatment process, the formation of acetic acid 

resulting from hemicellulose acetyl groups increases the acidity (pH) of treatment medium 

(Tjeerdsma and Militz 2005; Sundqvist et al. 2006). Heat treatment in alkaline and acidic 

buffered mediums decreases the thermally induced degradation in wood. In addition, the 

acidic buffer solution increase crystallinity index and higher rate of lignin. Meanwhile, the 

alkaline buffer considerably controls the carbohydrate degradation in the buffered 

treatment (Talaei et al. 2012a,b; Talaei et al. 2010, 2011; Taghiyari et al. 2011). Therefore, 

the buffer solutions can neutralize and control the the acidity of the medium.  
  

 

 
Fig. 2. Variations of pH of samples in buffered mediums and water, after the hydrothermal 
treatment 

 

Physical Properties of the OPW samples  
The MC of the green OPW samples ranged from 100 to 500% (Kilmann and Lim 

1985; Bakar et al. 2008). Table 2 shows the initial MC and EMC at different buffered 

solutions of treated and untreated OPW. The control samples of OPW had a green MC of 

114% because of the removal of the extractives from the cellular structure of OPW and the 

loss in hydroxyl groups (-OH) post-treatment  (Tjeerdsma et al. 1998; Sandberg et al. 2013; 

Talaei et al. 2013).  

 

Table 2. Moisture Contents of OPW Samples in Different Solution Before and 
After Treatment 

 

Properties 
Untreated samples 

(Control) 

Treated specimens in the buffer solutions 

Tap-water pH 5 pH 8 

Initial MC 114.00 116.33 112.22 115.38 
EMC 14.71 10.27 12.45 11.94 

MC, moisture content; EMC, equilibrium moisture content; The pH of tap water was 6.67 
 

There were significant differences between the EMC of the heat-treated samples 

and that of the untreated samples )p < 0.05). Untreated samples had an EMC of 14.7%, and 

showed a decrease of 30.36 % in water, 13.63% at a pH of 5, and 18.79% at a pH of 8. The 

EMC of wood was expected to decrease because of the reduction in the number of -OH 
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groups, which participate in hydrogen bonding with water molecules (Sandberg et al. 

2013). However, the EMC of wood reached a saturation point when the reaction was at 

equilibrium. Therefore, EMC reduction is caused by the increased crystallinity of cellulose, 

which reduces the availability of hydroxyl groups to water molecules  (Salim et al. 2010; 

Yuliansyah and Hirajima 2012).  

 
 

Fig. 3. Variation in EMC (%) for treated and untreated OPW samples [The confidence intervals 
(CI) of treatments were 14.37-15.04; 9.82-10.62; 12.23-12.39; 11.78-12.09, respectively from left 
to right]. 
 

The -OH groups that were present in the hemicellulose component absorbed water. 

The hydrothermal treatments achieved some modifications in the OPW samples. However, 

the modifications that occurred in the chemical composition of hemicelluloses resulted in 

the degradation of -OH groups. This is because hemicellulose can be thermally degraded 

at a lower temperature than cellulose (Wikberg and Maunu 2004). Hence, the fact that 

treated OPW samples had a lower EMC than the control OPW samples was attributed to 

the degradation of hemicellulose during the hydrothermal treatment. Hemicellulose is more 

hygroscopic; its structure contains a larger number of -OH groups compared to cellulose 

and lignin. Therefore, cellulose and lignin contribute minimally to the hygroscopic 

properties (Khalil et al. 2007). Furthermore, the cellulose crystallinity is increased due to 

the degradation of amorphous areas, which decreases the availability of hydroxyl groups 

to water molecules and also reduces the (EMC) (Wikberg and Maunu 2004; Bhuiyan and 

Hirai 2005; Boonstra and Tjeerdsma 2006). 

The density of all OPW samples had been decreased after the hydrothermal 

treatment. Although there were differences in the densities of the treated and untreated 

samples, they were not significantly different (p > 0.05). The mean density before the 

hydrothermal treatment was 0.57 g/cm3, with a decrease of 1.07% in water, 1.27% at a pH 

of 5, and 4.5% at a pH of 8.  

Some studies have indicated that thermal treatment results in a decline in density 

(Tjeerdsma and Militz 2005). The main reason behind this may be related to the instability 

of hemicelluloses with heat. These components easily decompose at high temperatures in 

water-soluble and carbohydrate compounds (Yildiz et al. 2003). During the hydrothermal 

process, degradable materials are gradually emitted from the cell walls and are carried into 

the medium. This process causes a decline in density. Furthermore, this method influences 
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the removal of extractives, hemicellulose hydrolysis, and changes in the lignin and 

cellulose components (Garrote et al. 1999; Sandberg and Navi 2007). At higher 

temperatures, the degradation rates are accelerated and accompanied by a decrease in 

density. 

 
Fig. 4. Variation of wood density for treated and untreated OPW sample [CI of treatments were 
0.53-0.63; 0.52-0.61; 0.53-0.64; 0.52-0.60, respectively from left to right]. 
. 

 

 
Fig. 5. Mass loss percentage of the treated samples in different aqueous pH buffers (The bars 
show standard deviations; CI of treatments were 5.44-7.17; 9.38-12.44; 3.88-10.34, respectively 
from left to right). 

 

The ML at a pH of 5 revealed considerable degradation of the wood contents (the 

exractives, starch, and the cell wall of parancyma tisse). Therefore, acidic conditions may 

significantly increase the degradation of wood polymers via acidic hydrolysis at different 

hydrothermal treatments (p < 0.05) (Tjeerdsma et al. 1998). More specifically, in 

hyrothermal treatment, the exception of hydrogen (H+) and hydroxide (-OH-) ions, the rest 

of ions will not change the pH of the treated medium (especially in 140 °C). Therefore, a 

high amount of H+ and OH- will result into high acidic and alkaline pH values, respectively. 

Moreover, pH of the treated medium using the buffered solutions is kept constant at a 

certain level of pH and also the degradation effect of the released acids can be controled in 

the process of hydrothermal (Talaei 2010). Consequently, the heat treatment in buffered 
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mediums decreases the thermally induced degradation in the wood (Talaei et al. 2012a,b; 

Talaei et al. 2011; Taghiyari et al. 2011). On the contrary, in the conditions with no 

buffering medium (tap water), the acidity will highly increase as observed in water 

condition with a pH of 3.49.  

According to the results, differences in the ML between treatment groups were 

significant (p < 0.05). In addition, the dry weight of the samples decreased after the 

hydrothermal treatment. The ML exhibited a decrease of 6.31% in water, 10.91% at a pH 

of 5, and 7.11% at a pH of 8.  

The main reason for these declines may be related to the removal of extractives, 

starch, and degradation of paranchyma cells. Therefore, according to removal of  

extractives and starch  from the wood structure, their high dissolvability in water and 

aqueous solutions, ML, and decreasing wood density seemed to be reasonable (Talaei and 

Yaghoobi 2009; Talaei et al. 2013).  

 
Volumetric Swelling and Water Absorption 

Based on the analysis, a significant difference in the SV at 2, 24, and 48 h occurred 

between buffered and unbuffered (control) samples (P < 0.05; Fig. 6). The mean volumetric 

shrinkage showed no significant difference among treated samples. Furthermore, the 

maximum and minimum values were in the buffered medium with pH 8 and in control 

samples, respectively. The SV of the control samples at 2, 24, and 48 h were approximately 

6.90, 7.77, and 7.95%, respectively. The SV showed an increase of 83.38, 76.77, and 

75.76% in water; 92.33, 77.92, and 79.19% at pH 5; and 106.15, 86.12, and 85.45% at pH 

8, respectively.] 

 

 
Fig. 6. Volumetric swelling at 2, 24, and 48 h for the treated and untreated OPW samples 

 

The cell wall components can be destroyed during the thermal treatment. So that, 

except for the removal of extractives and starch, a great volume of cell walls of parenchyma 

cells may also be destroyed, resulting in the significant increase of volumetric swelling 

(Bourgois et al. 1989 and Garrote et al. 1999). 

Figure 7 shows that the maximum rate of WA occurred after the first 15 min of 

soaking in distilled water. There were significant differences (p < 0.05) between untreated 

samples and samples treated at a pH of 5, in comparison with samples treated at a pH of 8 

and in water. 
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Fig. 7. Variation in water absorption during 120 min of soaking for treated and untreated OPW 
samples in distilled water  
 

Concerning the WA at 2 and 24 h, significant  differences (p < 0.05) were observed 

between the treated samples in the buffered medium for water and a pH of 8, compared 

with the untreated (control) samples and samples treated at a pH of 5 (Fig. 8) (p < 0.05). 

There were also significant differences in water absorption at 48 h between the samples 

treated in water and those treated at a pH of 5, compared to the untreated samples (p < 

0.05). No significant differences occurred between the treated samples at a pH of 8 and the 

samples in treated water and at a pH of 5 (p < 0.05). However, there was a significant 

difference between treated samples at a pH of 8 and the untreated samples. Furthermore, 

the WA of the untreated samples at 2, 24, and 48 h was 49.24, 63.40, and 65.69%, 

respectively. Results from Fig. 8 demonstrate an increase in the WA for treatment groups: 

81.35, 57.28, and 59.16% for water; 49.63, 31.43, and 32.30% at a pH of 5; and 80.29, 

55.78, and 55.91% at a pH of 8, respectively. 

 

 

 

 

 

 

 

 
Fig. 8. Variations of water absorption at 2, 24, and 48 h 
 

It appears that the chemical and cellular structure, i.e. extractives (up to 9.8%), 

abundant amount of the main free sugars such as sucrose, glucose, and fructose (10%), and 

great content of starch (25%) in the parenchyma cell walls of the OPW were significantly 

degraded and removed after the hydrothermal treatment (Khalil et al. 2007). Thus, the 

porosity and water absorption were increased. Therefore, this response could have been 
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due to the high percentage of contents removed from cell walls (Erakhrumen and 

Olukayode 2009). 
 

Table 3. Mean ASE (%) and WRE (%) Values for Heat-Treated and Untreated 
OPW Samples 

Properties       Time (h)                 Water pH 5 pH 8 

 
 

ASE% 

 
2 

-89.14 

(±61.88) 

-98.81 

(±64.20) 

-116.59 

(±40.15) 

 
24 

-85.44 

(±72.88) 

-80.59 

(±60.74) 

-100.84 

(±48.56) 

 
48 

-85.80 

(±73.63) 

-82.46 

(±61.47) 

-101.44 

(±45.85) 

 
 

WRE% 

 
2 

-79.77 

(±42.88) 

-48.54 

(±34.02) 

-77.32 

(±32.63) 

 
24 

-55.11 

(±25.58) 

-30.12 

(±27.22) 

-54.09 

(±16.11) 

 
48 

-58.43 

(±32.48) 

-34.14 

(±28.02) 

-53.91 

(±22.23) 

ASE%: anti-swelling efficiency; WRE%: water repellent efficiency. Values in parentheses indicate 
standard deviation. 
 

According to Table 3, the ASE for treated samples at 2, 24, and 48 h showed a 

decline of 89.14, 85.44, and 85.80% in water, 98.81, 80.59, and 82.46% at a pH of 5, and 

116.59, 100.84, and 101.44% at a pH of 8, respectively. This showed that the highest 

ASE% was obtained at a pH of 8. 

The WRE was lower for treated than untreated samples after 2, 24, and 48 h, with 

declines of 79.77, 55.11, and 58.43% in water, 48.54, 30.12, and 34.14% at a pH of 5, and 

77.32, 54.09, and 53.91% at a pH of 8, respectively (Table 3). The thermal treatment in the 

buffered mediums actively prevent the degradation of cellulose and hemicellulose (Talaei 

2010). 

The alterations of the chemicals in the structure of wood can be a main reason for 

the more porous nature, the decline of ASE and WRE, and also the high absorbency rate 

(Husin et al. 1985; Tomimura 1992; Siti Norbaini 2009).  Zaihan et al. (2011) reported that 

the water absorbed is more placed within the starch than the cell wall.  In addition, high 

absorbency rate was observed in treated wood due to the thin-walled of the parenchyma 

tissues and more porosity (Paridah et al. 2006).  

 

CONCLUSIONS 
 

This study has provided an account of the effects of hydrothermal modification on 

the physical properties of OPW in the various buffered mediums. The main findings of the 

present study are as follows: 
 

1. The acidity of the treated medium was increased  after hydrothermal process. It follows 

that buffer can decrease and control the destructive effect of acid on the wood structure.  



PEER-REVIEWED ARTICLE  bioresources.com 

 

Ebadi et al. (2015). “Hydrothermal palm wood & pH,” BioResources 10(3), 5317-5329.  5327 

2. The EMC was reduced due to  the effect of  heat treatment. Thus, this reduction affected 

the wood quality by increasing of the cellulose crystalinity and also degradation of the 

amorphous  part.  

3. The wood density was somehow reduced at pH 5 and pH 8 with no differences between 

them. Furthermore, the reduction of weight loss was highly related to the removal of 

high percentage of extractives, starch, and parenchyma tissue from the palm wood.  

4. Due to the neutralization effect of buffer solution, the acidity of medium and the rate 

of  carbohydrates degradation was decreased. This reaction may chemically restrain 

and control the destructive effects of hydrothermal treatment on some structural 

properties of the wood.  
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