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Air-coupled ultrasound has shown excellent sensitivity and specificity for 
the nondestructive imaging of wood-based material. However, it is time-
consuming, due to the high scanning density limited by the Nyquist law. 
This study investigated the feasibility of applying compressed sensing 
techniques to air-coupled ultrasound imaging, aiming to reduce the 
number of scanning lines and then accelerate the imaging. Firstly, an 
undersampled scanning strategy specified by a random binary matrix was 
proposed to address the limitation of the compressed sensing framework. 
The undersampled scanning can be easily implemented, while only minor 
modification was required for the existing imaging system. Then, discrete 
cosine transform was selected experimentally as the representation basis. 
Finally, orthogonal matching pursuit algorithm was utilized to reconstruct 
the wood images. Experiments on three real air-coupled ultrasound 
images indicated the potential of the present method to accelerate air-
coupled ultrasound imaging of wood. The same quality of ACU images 
can be obtained with scanning time cut in half.  
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INTRODUCTION 
 

 After considerable development, air-coupled ultrasound (ACU) C-scan imaging 

has found a greater number of applications in the inspection of wood and wood composites. 

The work by Gan et al. (2005) demonstrated ACU’s capacity for high-resolution imaging. 

Ring density and the presence of micro-cracks can be imaged. Fleming et al. (2005) 

investigated the presence of insects inside the solid wood packing materials. The presence 

and movement of beetle larva were identified when the larva was placed on the wood. 

Studies on the bonding assessment of glued timber and microstructure classification in 

particleboards were also reported. The geometry of the artificial defects of glued timber 

was presented clearly. The density distributions and particle profiles in particleboards were 

also obtained using a non-linear model (Hilbers et al. 2012a,b; Sanabria 2012; Sanabria et 

al. 2013). In an earlier paper the authors reported using the ACU C-scan technique to test 

Metasequoia glyptostroboides boards. Knot, hole, heartwood, and sapwood were shown 

clearly in the obtained images. Information regarding position, shape, and size can be 

extracted easily (Fang et al. 2015). 

 Although ACU C-scan imaging can be used to form images under laboratory 

conditions, there is a problem that must be overcome. To acquire adequate information and 

reconstruct high-quality images, it is desirable to scan the wood at sufficiently high 
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sampling densities. Under the constraints of large measurement numbers and low motor 

speed, ACU C-scan imaging is considerably time-consuming (Blomme et al. 2014). A 

common approach is to decrease the sampling density, which could shorten the scanning 

time. Unfortunately, the decreased sampling density frequently results in a poor image, and 

it even causes the image to suffer from aliasing due to the restriction of the Nyquist-

Shannon sampling theorem. Therefore, only a small number of successful attempts with 

industrial relevance have been mentioned in the literature until now (Chimenti 2014). 

 During past decades, efforts have been made to address this problem. A multi-

channel system was introduced to achieve a high scanning speed. Strycek and Loertscher 

(2000) developed an eight-channel Flatbed Scanner, which provides the capability of 

scanning at a rate of 350 square meters/hour. Blomme et al. (2014) reported another 

twelve-channel scanning system for scanning large material areas. However, the multi-

channel system tends to result in higher cost because more transducers have to be used. 

Moreover, the cross-coupling of signals poses a formidable challenge to the realization of 

inspection. Ultrasound waves propagate to the adjacent transducers as guided waves, as 

well as to the matched transducer. It becomes very difficult to separate unwanted signals 

from the useful ones (Strycek and Loertscher 2000). 

 Recently, compressed sensing (CS), proposed by Donoho (2006) and Candès et al. 

(2006), shows high promise for recovering signals (or images) with excellent accuracy 

while acquiring only a small fraction of them. CS has inspired a number of efficient new 

designs for image acquisition, including hyperspectral imaging (Jia et al. 2015), synthetic 

aperture radar (SAR) imaging (Yang et al. 2013), electron paramagnetic resonance imaging 

(EPRI) (Johnson et al. 2014), etc. Previous studies indicate that using the CS approach in 

ACU C-scan imaging may become attractive and reduce the scanning duration 

significantly. 

 However, the conditions under which CS performs well are not necessarily met in 

practice. Under the standard CS framework, each measurement corresponds to a linear 

projection of multiple measurements. It is an inspiring and instructive idea because the 

linear projection produces sufficient incoherence with the representation basis and stable 

foundation for CS application. However, it is indeed impractical for the ACU imaging 

system. The scanning is conventionally implemented along parallel, equally spaced lines 

in the Cartesian coordinate system. The linear projection is hardly possible to be 

implemented. Furthermore, to reconstruct the desired image, a good representation basis is 

required to represent the undersampled data sparsely in the transform domain. 

Unfortunately, it is not immediately clear how to find the representation basis. There is no 

systematic way of selecting such a matrix. It is usually done through trials and experience 

(Quer et al. 2009). In the subsequent sections, the methods for overcoming the practical 

constraints are addressed.  

 

 
Related CS Theory 
 Compressed sensing is based upon an assumption that the sparse signals can be 

reconstructed exactly from many fewer measurements than traditionally believed 

necessary. Consider a discrete-time signal x, which can be viewed as an 𝑁 × 1 column 

vector with elements  𝑥[𝑛] , 𝑛 = 1, 2,⋯⋯ ,𝑁 . With an orthonormal 𝑁 × 𝑁  basis 

matrix Ψ = [𝜓1|𝜓2|⋯ |𝜓𝑁], the signal x can be represented in the transform domain as 

follows (Eq. 1), 
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x = ∑ 𝑠𝑖𝜓𝑖
𝑁
𝑖=1      or      x =  Ψs, (1) 

 

where s is the 𝑁 × 1 column vector of weighting confidents 𝑠𝑖 = 〈x, 𝜓𝑖〉. If only 𝐾 of the 

confidents 𝑠𝑖 in Eq. 1 are nonzero and 𝐾 ≪ 𝑁, signal x can be considered to be sufficiently 

sparse in the transform domain. Then the exact recovery of x is possible.  

 In the CS framework, it is assumed that the signal x is not measured directly. Rather, 

the 𝑀 < 𝑁 linear projections of the original signal onto another suitably chosen matrix Φ 

are measured (Eq. 2), 
 

y = Φx = ΦΨs, (2) 
 

where y is the measurement vector and has a length of 𝑀. Φ is an 𝑀 × 𝑁 matrix which is 

usually called the measurement matrix. 

 The signal recovery problem is transferred to reconstruct s (and thus x) from the 

given measurement vector y  and known matrices Φ  and Ψ . Since 𝑀 < 𝑁 , there are 

infinitely many reconstructed ŝ that satisfy Eq. 2. It has been proposed in the literature 

(Baraniuk 2007) that the ŝ with the smallest 𝑙0-norm can be considered as the desired signal 

due to the sparsity mentioned above. Then the reconstruction can be obtained by solving 

the following constrained optimization problem (Eq. 3): 
 

min‖s‖0    s. t.   y = ΦΨs. (3) 

 

 Unfortunately, solving Eq. 3 is both numerically unstable and Np-complete. 

Subsequently, it was suggested that the minimum 𝑙1 -norm can be employed as an 

alternative to the 𝑙0-norm (Baraniuk 2007). This means that s can be reconstructed by the 

convex optimization method (Eq. 4): 
 

min‖s‖1    s. t.   y = ΦΨs. (4) 

 

 To illustrate the approach with a practical example, a continuous signal, 𝑥(𝑡) =
0.3 cos 100𝜋𝑡 + 0.6 cos 200𝜋𝑡 + 0.1cos 400𝜋𝑡 + 0.9 cos 800𝜋𝑡, was considered. Figure 

1(a) shows the waveform in time domain. The duration is 320 ms. A discrete vector x with 

a length of 256 can be obtained while sampling the continuous signal with a sampling 

frequency of 800 Hz. According to the Fourier transform theory, the vector x can be 

expressed as product of the Discrete Fourier Transform (DFT) matrix Ψ and the confident 

vector s (Eq. 5), 

 

x =  Ψs =

[
 
 
 
 𝑊𝑁

0∙0       𝑊𝑁
0∙1        ⋯ 𝑊𝑁

0∙(𝑁−1)        

𝑊𝑁
1∙0       𝑊𝑁

1∙1        ⋯ 𝑊𝑁
1∙(𝑁−1)

       
⋮ ⋮ ⋱ ⋮

𝑊𝑁
(𝑁−1)∙0

𝑊𝑁
(𝑁−1)∙0

⋯ 𝑊𝑁
(𝑁−1)∙(𝑁−1)

]
 
 
 
 

s (5) 

 

where 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁, and 𝑁 = 256. 
 Consider an 256 × 64 matrix Φ which contains random values drawn from the 

Gaussian distribution. According to Eq. 2, a measurement vector y can be obtained by 

multiplying the discrete signal x with the random matrix Φ (Eq. 6), 
 

𝑦𝑗 = ∑ 𝜑𝑗,𝑖 ∙ 𝑥𝑖
𝑁
𝑖=1 ,  (6) 
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where 1 ≤ 𝑖 ≤ 256, 1 ≤ 𝑗 ≤ 64. 

 Obviously, the elements of measurement vector y are not extracted directly from 

the discrete signal x. Rather, the elements are obtained from a projection of x onto the 

Gaussian matrix, Φ. Figure 1 (b) shows the result of the projection. 

 By solving the convex optimization problem described in Eq. 4, the reconstructed 

coefficient vector ŝ can be computed. Finally, the reconstructed signal x̂  can be obtained 

by a DFT transform according to Eq. 5. Figure 1(c) shows the reconstructed result. It is 

obvious that signal was reconstructed with high accuracy.  

 

 
(a) 

 
(b)  

 
(c) 

Fig. 1. Schematic illustration of undersampled measurement and signal reconstruction using the 
CS approach: (a) A simulation signal; (b) result of undersampled measuring; (c) Recovered signal 

 

ACU C-SCAN Imaging Based on CS 
Scanning Trajectory 

 Figure 2(a) illustrates the conventional scanning trajectory in the ACU C-scan 

imaging system (Sanabria et al. 2011). The transducer-pair is moved along the parallel, 

equally spaced lines. This scheme produces a two-dimensional matrix (y ), which is 
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frequently displayed with an image. The color or gray level of the image’s pixel is 

determined by the amplitude or time-of-flight of the through-transmitted sound. The 

number of scanning lines (𝑁) determines the scanning time and is limited by the Nyquist 

frequency. The scanning can be mathematically expressed as y = Φx, as shown in Fig. 

2(b). Obviously, it looks similar to Eq. 2, but Φ here is a unit matrix of size 𝑁 rather than 

the random matrix. 

  

(a) (b) 
Fig. 2. Conventional Nyquist scanning trajectory in the ACU C-scan imaging system: (a) Graphic 
depiction; (b) Mathematical depiction 

 

 As mentioned above, the purpose of this work is to reconstruct images with a 

fraction of the scanning and then reduce the overall scanning time. This is a typical 

application of CS because the size of measurement matrix (𝑀 × 𝑁) is smaller than that of 

the square matrix (𝑁 × 𝑁).  However, it is hard to implement the linear projection under 

standard CS framework in the C-scanning system. Lustig et al. (2008) proposed a simple 

but indeed practical method. Figure 3(a) illustrates the undersampled scanning trajectory. 

Entire scanning lines (dash lines) were dropped randomly from an existing complete grid. 

The transducer-pair only needed to walk along the solid lines. It is very convenient to 

implement a scan in this way since the implementation requires only minor modifications 

to the existing ACU C-scanning imaging system. 

  

(a) (b) 
 
Fig. 3. Undersampled scanning trajectory for high-speed ACU imaging; (a) Graphic depiction; (b) 
Mathematical depiction 

 

 Likewise, the undersampled scanning can be expressed mathematically as y = Φx. 

The matrix Φ here specifies a scanning scheduling policy shown in Fig. 3 (a). The element 

“1” in the 𝑖𝑡ℎ array indicates that the 𝑖𝑡ℎ line of the grid should be scanned. Generally, “1” 
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appears along a diagonal line because it is easier to implement if the movement is in a 

single direction during the scanning from top to bottom. Let 𝑀 denote the total number of 

rows of Φ. The sampling ratio can be defined as 𝑀 𝑁⁄ . It takes a shorter time to implement 

a scanning if the sampling ratio is smaller.  

 Although the leakage of information is inevitably caused by undersampled 

scanning, it is widely accepted that the entire image can be exactly reconstructed if “1” 

appears randomly and its index follows the Gaussian distribution (Eldar and Kutyniok 

2012). 

 

Sparse Representation and Reconstruction 
 A variety of linear transforms have been used as the representation basis. In this 

work, three well-known transformations were considered. This selection was determined 

by previous papers based on their prominence in other CS applications. The three bases 

were discrete Fourier transform (DFT) basis, discrete cosine transform (DCT) basis, and 

discrete wavelet transform (DWT) basis. 

 The DFT matrix has been introduced in Eq. 5. The form of DCT used here was 

type-II, which is the most commonly used. The DCT matrix is as follows Eq. 7: 

 

Ψ=√
2

𝑁

[
 
 
 
 

1 1 ⋯ 1

√2cos
𝜋

2𝑁
√2cos

3𝜋

2𝑁
⋯ √2cos

(2𝑁−1)𝜋

2𝑁

⋮ ⋮ ⋱ ⋮

√2cos
(𝑁−1)𝜋

2𝑁
√2cos

3(𝑁−1)𝜋

2𝑁
⋯ √2cos

(2𝑁−1)(𝑁−1)𝜋

2𝑁 ]
 
 
 
 

. (7) 

 

 As the representation in the DWT domain relies heavily on the selection of the 

wavelet basis and the decision of the wavelet decomposing scale, Schmale et al. (2013) 

examined 15 different mother wavelets. The results indicated that symlet 8 provided the 

lowest number of significant coefficients and yielded the best sparsity. Thus, symlet 8 was 

selected in the following discussion. 

 The last factor to determine for CS is the best optimization algorithm for solving 

the 𝑙1-norm minimization problem. Assume y𝑖 is the 𝑖𝑡ℎ column of the undersampled data 

y. The coefficient vector ŝ can be obtained by solving Eq. 4 with known matrix Φ and Ψ. 

Then the 𝑖𝑡ℎ  column x̂𝑖  of the ideal image can be reconstructed from ŝ  with a linear 

transform illustrated in Eq.1. 

 There are quite a few typical algorithms, such as basis pursuit (BP), matching 

pursuit (MP), and orthogonal matching pursuit (OMP). This paper considered the OMP 

algorithm, which has been widely used for this purpose. An 𝑁 × 𝑀 matrix  Θ = ΦΨ is 

firstly defined as sensing matrix for the convenience of description. The flow chart of OMP 

algorithm is schematically shown in Fig.4  (Tropp and Gilbert 2007). 

 In initialization, the iteration counter 𝑡 is set equal to 1, the initial residual r0 is 

assigned to the input vector y𝑖, and the index set  𝛬0  is assigned to an empty set. Then the 

matrix of chosen atoms A0 =Θ(𝛬0) is also an empty set.  

 The task of atom searching is to find the index 𝜆𝑡 that solves the easy optimization 

problem. In this step, the inner product between the column vectors of the sensing matrix 

Θ and 𝑟𝑡−1 are computed. Maximizing the product leads to the optimal choice, which is 

given here as Eq. 8, 
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Fig. 4. Flow chart of the OMP algorithm 

 

 

𝜆𝑡 = argmax
𝑗

|〈𝑟𝑡−1, 𝜃𝑗〉|, 𝑗 = 1,2,⋯ , 𝑁, (8) 

 

where 𝜃𝑗  is the 𝑗𝑡ℎ column of the matrix Θ.  

 Subsequently, the index 𝜆𝑡  is added to the index set  𝛬𝑡 = 𝛬𝑡−1 ∪ {𝜆𝑡} and the 

matrix of chosen atoms is updated as A𝑡 = Θ(𝛬𝑡). 
 The step of least square solving is aiming for computing the new estimation.  The 

new estimation 𝑠̂𝑡  can be obtained by minimizing of ‖y𝑖 − A𝑡𝑠‖2  , and the residual 

updating step is performed as represented by Eq. 9,  
 

𝑟𝑡 = y𝑖 − A𝑡𝑠̂𝑡 (9) 

 

where y𝑖  is the 𝑖𝑡ℎ column of the undersampled data. It is fed into the OMP algorithm when 

it is called at the  y𝑖 time. 

 Finally, 𝑡 is increased with the increment of 1. If 𝑡 is smaller than the given sparsity 

level of the input y𝑖 , the process returns to the step of atom searching. Otherwise, the 

iteration is stopped and the output estimation is 𝑠̂𝑡. According to Eq.1, the 𝑖𝑡ℎ column of 

the ideal image, x̂𝑖, can be computed. After the OMP algorithm is run for 𝑁 times, the ideal 

image is reconstructed. 
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EXPERIMENTAL 
 

 Three Metasequoia glyptostroboides boards were used. These boards had a 

thickness of 8 mm. One board had a sound condition. The grain can be seen clearly. 

Another board had a decay knot. A part of the knot was seriously deteriorated and had 

fallen off. In the last board, two holes with diameters of 4 mm and 5 mm were drilled to 

simulate the insect holes. Figure 5 displays photos of the wooden samples used in the 

experiment. 

 

  

 

(a) (b) (c) 
 

Fig. 5. Photos of the Metasequoia glyptostroboides boards 

 

 A non-contact ACU inspection system (Model: NAUT 21, Manufacturer: Japan 

Probe Co., Ltd., Japan), as shown in Fig. 6, was utilized in the experiment. The transducers 

had central frequency of 400 KHz. The diameter of focal spot was 2 mm. Burst waves 

including five rectangular pulses were generated, amplified to 300 Vpp amplitude, and fed 

into the transmitter transducer. Received signals were filtered and amplified 70 dB with a 

preamplifier.  Images were generated from the peak voltage measurement for each A-scan.  

 

 
 

Fig. 6. The ACU C-scan imaging system used in this work 

 

  The samples were fully scanned with an increment of 0.5 mm. The fully-scanned 

data were then trimmed to images with size of 256 × 256 pixels for the convenience of 

experiment. Figure 7 shows theses chosen images. The image in Fig. 7(a) illustrates the 

wood grain arrangement. Figure 7(b) shows the image of a decay knot. The circular dark 

region corresponded with the seriously deteriorated part of the knot. Figure 7(c) is an image 

of a sample with two drilled holes. The holes were depicted with a darker color. 
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(a) (b) (c) 

 
Fig. 7. Real ACU images of Metasequoia glyptostroboides boards utilized in this work. Their sizes 
are 256 × 256 pixels: (a) grain image; (b) knot image; (c) and drilled hole image 

 

   Apart from visual comparison, the Peak Signal-to-Noise Ratio (PSNR) was used 

to measure the quality of reconstruction. Generally, a higher PSNR indicates that the 

reconstruction is of higher quality. PSNR was calculated using Eq. 10, 
 

𝑃𝑆𝑁𝑅 = 20 ∗ lg (
𝐺𝑚𝑎𝑥

𝑅𝑀𝑆𝐸
) (10) 

 

where  𝐺𝑚𝑎𝑥 is the maximum gray level of pixels. As for the 8-bit image format which was 

used in this work, 𝐺𝑚𝑎𝑥 is equal to 255. RMSE denotes the root-mean-square error between 

the original image (x) and the reconstructed image (x̂) (Eq. 11): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁 × 𝑁
∑∑[x(𝑖, 𝑗) − x̂(𝑖, 𝑗)]2

𝑁

𝑗=1

𝑁

𝑖=1

 (11) 

 

 
RESULTS AND DISCUSSION 
 

Reconstructing Images from the Undersampled Data with DCT Basis 
   The proposed method was applied to images shown in Fig. 7 to evaluate the 

effectiveness in the Matlab environment. At first, the undersampled scanning was 

simulated mathematically. A random binary matrix Φ was generated with lines of 128 to 

achieve the sampling ratio of 50%. There was only one element of “1” appearing in each 

row of the matrix. The indexes of “1” in the whole matrix obeyed Gaussian distribute and 

were sorted to achieve high suitability for the mechanical system of the existing C-scanner. 

The matrix Φ was applied to the three fully-scanned images shown in Fig. 7 to simulate 

the undersampled scanning.  

Figure 8 shows the results of undersampled scanning. It can be seen that the width 

of the images remained unchanged whereas the height was changed to half of those of the 

fully-scanned image. 
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(a) (b) (c) 

Fig. 8. Results of undersampled scanning at 50% sampling ratio (128 × 256 pixels): (a) grain 
image; (b) knot image; (c) and hole image 

 

   Subsequently, each undersampled image was treated as 256 vectors. The vectors 

were fed into the OMP optimization process with DCT matrix as the representation basis.  

After the OMP algorithm was run for 256 times, an ideal images can be obtained. Figure 9 

shows the reconstructed results. As expected, the images can be effectively reconstructed 

and the reconstructions were very close to the original images. The grain, knot, and hole 

can still be clearly seen in the reconstructed images. It can be concluded that the same 

quality of ACU images can be obtained with scanning time cut in half. 

 

   
(a) grain (b) knot  (c) hole 

Fig. 9. Reconstructed images (256 × 256 pixels) at 50% sampling ratio with DCT basis: (a) grain 
image; (b) knot image; (c) and hole image 

 

Comparisons of the Representation Bases 
 The experiments were also conducted with DFT basis and DWT basis to study their 

performance. Figure 10 and Fig.11 show the reconstructed results.  

 

   
(a) (b) (c) 

Fig. 10. Reconstructed images (256 × 256 pixels) at 50% sampling ratio with DFT basis: (a) grain 
image; (b) knot image; (c) and hole image 
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(a) (b) (c) 

Fig. 11. Reconstructed images (256 × 256 pixels) at 50% sampling ratio with DWT basis: (a) 
grain image; (b) knot image; (c) and hole image 

 

The sampling ratio was also 50%. Compared with the images shown in Fig. 9, it 

can be seen that the DCT basis always obtained the best visual effects on all ACU images. 

The DWT basis was far worse than the others. 

 To evaluate the reconstruction performance of the three representation bases 

furtherly, a set of experiment were run by increasing the sampling ratio from 20% to 90%. 

The average PSNR (left) and standard deviation (right) are exhibited in Fig. 12. They were 

computed with the results of 100 realizations.  

 Overall, all the representation bases showed very similar performance. Along with 

the increase of the sampling ratio from 20% to 90%, the average PSNR increased 

considerably. These observation indicated that the sampling ratio plays a crucial role in 

determining the reconstruction quality. A larger sampling ratio also leads to higher 

measurement cost.  

 It also can be observed that the DCT basis is capable of producing the best 

performance. For all the three image reconstructions, it achieved a bigger PSNR in nearly 

every experiment compared to the DFT basis and DWT basis. This result agrees with that 

of the visual comparison.  

And what’s more, the standard deviations of the DCT basis were low and fluctuated 

gently compared with the DFT basis and the DWT basis. This meant the DCT basis is 

insensitive to the randomness of the sampling trajectory. It is a more robust representation 

method than other two bases.  

 

Comparison with the Standard CS 
 For comparison, the standard CS was run with the fully-scanned images, although 

it is not practical for this problem.  

The major difference lies in the measurement matrix Φ. Instead of the random 

binary matrix, the measurement matrix Φ used in this experiment was the Gaussian matrix 

generated by the MATLAB code randn.m.  

Under the Gaussian matrix, each measurement corresponds with a linear projection 

of multiple pixels. Figure 13 illustrates the performance of standard CS. The sampling ratio 

ranged from 20% to 90% and the results were calculated with 100 repetitions. 
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(a) 

   
(b) 

   
(c) 

Fig. 12. Performance of three representation bases at different sampling ratios: (a) grain image; 
(b) knot image; (c) and hole image 

 

Compared with Fig. 12, it can be seen that the DCT basis behaved similarly as the 

preceding experiments. In the same setting, the ranges of average PSNR for three images 

were 17.56 ~ 30, 12.57 ~ 29.38 and 13.93 ~ 28.52, respectively. The standard deviations 

fluctuated near 1. This means that the DCT basis can achieve the same successes under the 

proposed method as the standard CS in spite of the considerable difference between the 

two measurement matrixes. But the average PSNR and the standard deviation 

corresponding to the DWT basis changed considerably. When sampling ratio ranged from 

40% to 90%, the DWT basis can achieve the best performance. The average PSNR was the 

largest one than those of the other two bases, whereas the standard deviation was the 

smallest. However, at the sampling ratios of 20% and 30%, the DWT basis was still the 

worst one. The average PSNR dropped rapidly while the standard deviation increased 

5

10

15

20

25

30

35

20% 30% 40% 50% 60% 70% 80% 90%

A
v
er

ag
e 

P
S

N
R

Sampling Ratio

DFT

DCT

DWT

0.5

1

1.5

2

2.5

3

3.5

4

20% 30% 40% 50% 60% 70% 80% 90%

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Sampling Ratio

DFT

DCT

DWT

5

10

15

20

25

30

20% 30% 40% 50% 60% 70% 80% 90%

A
v
er

ag
e

P
S

N
R

Sampling Ratio

DFT

DCT

DWT

0

0.5

1

1.5

2

2.5

3

3.5

20% 30% 40% 50% 60% 70% 80% 90%

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Sampling Ratio

DFT

DCT

DWT

5

10

15

20

25

30

20% 30% 40% 50% 60% 70% 80% 90%

A
v
er

ag
e

P
S

N
R

Sampling Ratio

DFT

DCT

DWT

0

0.5

1

1.5

2

2.5

3

3.5

20% 30% 40% 50% 60% 70% 80% 90%

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

Sampling Ratio

DFT

DCT

DWT



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Fang et al. (2016). “Compressed ultrasound imaging,” BioResources 11(1), 1015-1030.  1027 

sharply. It is worth noting that the cases at low sampling ratios tend to receive more 

attention in high-speed ACU imaging systems because the scanning times can be reduced 

to a greater degree. It can be concluded that the DCT basis is a better choice in this problem 

considering the imaging speed.  

 

   
(a) 

   
(b) 

   
(c) 

Fig. 13. Reconstruction performance of the standard CS: (a) grain image; (b) knot image; (c) and 
hole image 
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CONCLUSIONS 
 

1. By using the CS-based approach, ACU imaging of wood can be accelerated 

significantly. Compared with the conventional C-scanning, the proposed method can 

achieve approximately the same performance while taking only half of the time. 

2. The proposed scanning trajectory is particularly appealing because the undersampled 

scanning is extremely easy to implement with only minor modification to the existing 

ACU imaging system. 

3. Accuracy of reconstruction is sensitive to the sparse basis that is used to represent the 

wood images in the transform domain. Compared with the DFT basis and the DWT 

basis, the DCT basis achieved the highest PSNR. A better representation method might 

produce a better reconstruction performance. Further study is needed to confirm this. 
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