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The article examines deformation of wood veneer and internal forces 
resulting from bending. Wood is modelled as an orthotropic material. A 
thin circular wooden plate hemispherically supported at its free edge is 
bent by axial hubbing of the punch with a hemispherical end. The analysis 
of the models is carried out by the ANSYS software. Geometric boundary 
conditions are calculated and set by a macro formed by the APDL (ANSYS 
Parametric Design Language) scenario language. For the reason of 
comparison the models were solved for a given plate with simplified 
boundary conditions.  
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INTRODUCTION 
 

The basic equation in the bending theory of anisotropic plates is the equation of an 

anisotropic plate, 
 

  (1) 
 

which expresses dependence of the deflection w of the plate´s middle plane (x, y) on the 

plate´s bending resistance Dij and on the distribution of the transverse loading q in the 

Cartesian coordinate system  x, y, z. The deflection w is calculated by solving the partial 

differential equation (1) while satisfying concrete boundary conditions of the solved 

problem.  

 After a suitable function for the deflection is found, all required physical quantities 

such as displacement (u, v) in the plane x - y, bending moments (Mx, My, Mz), shearing 

forces (Qx, Qy), and stresses (x, y, xy) can be expressed by appropriate relations 

dependent on the  deflection w. 

 Though finding the deflection, i.e. the general solution of Eq. 1, does not seem to 

be complicated at first sight, in fact it is not simple to find a solution that would satisfy the 

given boundary conditions of the bent plate. Finding the function of deflection w is 

problematic mainly for more complicated boundary conditions.  

 In contrast with the analytic solution of anisotropic walls, the analytic solution of 

anisotropic plates is not so frequently dealt with in the literature. The mentioned solution 

procedure has been used in the research works of Lang and Langová (1998) and 

Ukadgaonker and Rao (2000).  
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 Concerning the circular orthotropic plate, the following analytic solutions are 

known from the literature. Lechnickij (1957) considered a peripherally fixed plate bent by 

the distributed load q acting on the whole circular surface of the plate, as well as a 

peripherally fixed plate, centrically as well as eccentrically loaded by the force 

perpendicular to the plate plane. Finding a solution for the circular plate with a peripheral 

hinged support has been problematic for a relatively long period. Analysis of this problem 

was carried out by Sobotka (1989). His solution is based on the solution of polygonal plates 

and it makes possible the solution of circular plates with the overhanging ends. 

 The advantage of the analytic solutions is that their results are functions of searched 

quantities that can be analysed. 

 Very frequent are cases in which it is necessary to use an approximate solution to 

solve the given problem. Nowadays the solution of elasticity problems is carried out by the 

finite element method (FEM). In the FEM, the solved domain is divided into a finite 

number of subdomains, i.e. elements, where each subdomain has its own substitute 

function for each approximate quantity. 

 Experimental research into 3-D forming of wood veneer is discussed in the 

following papers: Langová and Joščák (2014); Zemiar and Fekiač (2014); Zemiar et al. 

(2014); Fekiač et al. (2015). 

 
 
EXPERIMENTAL 
 

Solved problem 

 An orthotropic circular plate with the diameter D and thickness h is hinge supported 

symmetrically around the circumference of the inner circle of the annulus with the diameter 

d1. Perpendicular to the plate plane in its axis is a rigid punch with the oval point with the 

diameter d2 indented in the plate. The punch displacement that causes a plate deflection is 

p. It is necessary to find the distribution of tensions and deformation of the given plate.  

 

 
Fig. 1. A plate with the punch 
 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bodnár et al. (2016). “Wooden plate math models,” BioResources 11(1), 1061-1070.  1063 

 

Calculation model 

A calculation model needs to be chosen in all FEM calculations. The choice of the 

calculation model depends on many factors, such as: 

- required accuracy of the solution, 

- available software, 

- level of knowledge (regarding possibilities of solving the given problem), 

- the time within which it is necessary to carry out the solution, etc. 

If it is necessary, a new calculation with a more accurate calculation model can be 

carried out. In the given situation, the wood was modelled as a linear elastic material. The 

so-called second problem of elasticity with given kinematic boundary conditions without 

respect to the influence of contact of the plate with a punch is solved.  

 Solving the problem was carried out by the FEM, by means of the software 

ANSYS. The 8-node orthotropic shell element SHELL 93 was used. The axes of both the 

local and global coordinate systems x, y, z were identical with the axes of elastic symmetry 

of the orthotropic material. By acting the rigid punch with its spherical shape on a plate, 

the displacements, i.e. geometric boundary conditions, are determined by means of a point 

of the plate on the contact spot with the punch.  

 The FEM procedure is not difficult, but it is demanding. With such a large number 

of nodes and elements it is not thinkable to manually input all the data needed for 

calculation such as the coordinates of individual nodes or assigning individual nodes to 

relevant elements in the set order. The computer carries out these activities within the 

preparation of input data by means of the used software. However, when solving a given 

problem, the finite element software ANSYS is not able to assign new coordinates to the 

given nodes of a plate, within the contact area of the plate with the punch. It contains, 

however, APDL (“ANSYS Parametric Design Language“), the scenario language that was 

designed already in the era of inputting data in punch-cards to make for easier input. 

Nevertheless, it is applicable nowadays as it supports forming models with variable 

parameters; this then supports changing the model form very simply. 

 For calculation and setting kinematic boundary conditions, the language APDL 

creating a macro, i.e. the corresponding sequence of ANSYS commands saved in a certain 

file for repeated use, was used. The input variables of the macro are the displacement p of 

the punch and the number of the plate node for which components of displacement caused 

by the punch are calculated. On the basis of geometric dependences resulting from the 

punch displacement, first it is determined whether the given point is in the contact area 

with the punch. If it is not from the interval of the contact area, the node displacement is 

not calculated. The coordinates of the examined node are taken over by the macro from the 

input file ANSYS on the basis of its number. If the given node is from the contact area, the 

coordinates of the displaced point A1 1, z1 in the median plane are calculated in the 

median plane  - z (Fig. 2) on the basis of the equality of the coordinate 0, in the middle 

plane of the plate, with a length of twisting a point guide round the punch. By transforming 

the coordinates of the point from median plane to the global coordinate system, the 

coordinates of the respective point A1 x1, y1, z1 are calculated. The components of the 

displacement of all nodes that are found in the contact area with the punch are calculated 

from the differences of coordinates of the displaced and the original nodes. The calculated 
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components of node displacement are entered in a file and serve as kinematic boundary 

conditions of the solved problem. 

 
 

Fig. 2. Position of the point before and after deformation in the median plane 

 

 
RESULTS AND DISCUSSION 
 

Results 

 For the reason of a symmetric task, only half of the circular plate was solved. The 

plane of symmetry is the plane x – z. Numerical results of the solved problem are 

presented in Figs. 3 through 6. Input numerical values in the calculation were: 

- D = 60 mm, h = 0.55 mm, d1 = 50 mm, d2 = 40 mm, p = 3 mm 

- Ex = 16, 670 MPa, Ey = 1, 130 MPa, Ez = 630 MPa 

- Gxy = 1, 200 MPa, Gxz = 930 MPa, Gyz = 190 MPa 

- yx = 0.37, zx = 0.50, xy = 0.044, zy = 0.67, xz = 0.027, yz = 0.33 

 

 Figure 3 illustrates the deflection w of the plate´s middle plane x – y, and Fig. 4 

shows the plate deflection in the plane y – z. Figure 5a presents the normal stress x in the 

lower plate´s plane and Fig. 5b in the upper one. Figure 6 illustrates the normal stress y 

in the plate cutting portion in the plane y – z. 
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Fig. 3. Deflection w of the middle plane of a plate  

 
Fig. 4. Deflection w of a plate in the cutting plane y – z 

 

 
Fig. 5a. Normal stress x in the lower surface area of the plate 
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Fig. 5b. Normal stress x in the upper surface area of the plate  

 
Fig. 6. Normal stress y in the lower surface of the plate 

 

Discussion 

 The used numerical solution of the circular orthotropic plate provides the results 

corresponding to given geometric boundary conditions determined by means of engaging 

the punch with the oval point onto the plate at a given setting. For the given displacement 

p of the punch by means of using the “language“ ANSYS Parametric Design Language, 

the corresponding kinematic boundary conditions prepared to be solved by the software 

ANSYS were calculated. Manual inputting these kinematic boundary conditions is not 

feasible as it is considerably demanding.  

 With simplified boundary conditions, when engaging the punch is simulated only 

by the displacement of the middle point of the circular plane of the plate, the results are 

distorted. Comparing Fig. 3 and 4 with Fig. 8 and 10, there is a visible difference in the 

deflection w of the plate. Figures 5a and 9 point out the differences of the calculated stress 

x. Different distribution of normal stress y is evident of comparison between Fig. 6 and 

Fig. 11. 

With regard to a one-sided relation between the plate and the punch, reactions 

between the plate and the punch cannot be tensile ones. Therefore, when checking the 

results, reactions in nodes of the plate and punch contact area were examined first. The 
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nodes with calculated tensile reactions were loosened (without a possibility of the 

displacement) and repeated calculations were carried out with such corrected boundary 

conditions. The given graphs are a result of the corrected calculation. 

There is also a one-sided connection between the plate and a support. The repeated 

calculations with loosened connections exhibited tensile reactions with movement of the 

plate away from the support appearing in these places. Figure 7 shows deflections w in the 

plate in the places of its support. It is seen that near the x coordinate axis, the bent plate is 

uplifted over the circular support. Higher values of the punch displacement is shown when 

wrinkling the plate, which is also confirmed by past studies (Wagenführ and Buchelt 2005; 

Wagenführ et al. 2006). Higher values of displacement p, however, should be solved as 

a non-linear problem with large displacements and rotations. 

 

 
 

Fig. 7. Deflection w [mm] of the plate in the part of shoring  

 

 The mentioned results show that simplification in giving boundary conditions can 

lead to distorted results of the simulated task that a plate with given numerical values 

cannot be solved with sufficient accuracy with the used simplified boundary conditions. 
  

   
Fig. 8. Deflection w of a plate with simplified boundary conditions   
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Fig. 9. Normal stress x in the lower plane with simplified boundary conditions                             

 
Fig. 10. Deflection w of a plate in the cutting plane y – z  with simplified boundary conditions 
 

 
Fig. 11. Normal stress y in the lower surface area of the plate with simplified boundary 
conditions    
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CONCLUSIONS 
 

1. The reported results show that simplification in giving boundary conditions can lead to 

distorted results. Thus, the simulated model for a plate with given numerical values 

cannot be solved accurately with the used simplified boundary conditions. 

2. When solving problems of mechanics in ANSYS without using APDL, the setting of 

more complicated geometric boundary conditions is difficult to accomplish. Therefore 

the solution in ANSYS requires APDL application.  

3. With the formed macro it is possible to repeatedly solve plate tensity and deformation 

caused by a spherical shape of the punch for different numerical values of material as 

well as geometric input data.  
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