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Evaluating the Effectiveness of Complex Fire-Retardants 
on the Fire Properties of Ultra-low Density Fiberboard 
(ULDF) 
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The preparation conditions of complex fire-retardant (FR) agents 
containing boron compounds (BF, X1), nitrogen-phosphorus compounds 
(NPF, X2), silicon compounds (SF, X3), and halogen compounds (HF, X4) 
for ultra-low density fiberboard (ULDF) were optimized using a response 
surface methodology. The effects and interactions of X1, X2, X3, and X4 on 
the fire properties of ULDF were investigated. An optimum char yield of 
61.4% was obtained when the complex fire-retardant agents contained 
33.9% boron, 27.2% nitrogen-phosphorus, 15.0% silicon, and 28.6% 
halogen. Compared with control fiberboard (CF), the heat release rate 
(HRR) profiles of all fiberboards with FRs were reduced. The peak HRR 
reduction in BF and NPF was more pronounced than for SF and HF at 
this stage. And the mixed fiberboard (MF) had the lowest pkHRR of 75.02 
kW m−2. In total heat release (THR) profiles, all fiberboards with FRs were 
lower than the CF. Unlike the HRR profiles, HF had the lowest THR 
profile of 15.33 MJ m−2. Additionally, Si compounds showed greater 
effectiveness in preventing ULDF mass loss than BF, NPF, and HF. MF 
showed the highest residual mass (40.94%). Furthermore, the synergistic 
effect between four FR agents showed more significant results in ULDFs. 
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INTRODUCTION 
 

Wood-based composites are combustible materials, and their applications are 

always limited by their inflammability. To mitigate this disadvantage, fire-retardant 

treatments that modify or impede burning in the condensed and/or gaseous phases are 

used. Depending on the specific fire retardant and environment, the fire retardancy of 

wood-based composites involves a complex series of simultaneous chemical and physical 

reactions (Hornsby 2001; Genovese and Shanks 2008). There are several ways in which 

the combustion process can be slowed by fire-retardant treatment. A protective layer with 

low thermal conductivity can be formed that reduces heat transfer from the heat source, 

or the substrate is cooled by the degradation reactions of the additive. Furthermore, the 

fuel in the solid and gaseous phases can be diluted in order to decrease the ignition limit 

of the gas mixture. Two chemical reactions interfere with the combustion process in the 

condensed and gas phases (Gao et al. 2005; Bourbigot and Duquesne 2007; Hagen et al. 

2009; Schartel 2010). Some fire retardants have one or more ways of improving the fire 

properties of composites. For example, silicon (Si) compounds dilute the combustible 

organic gases in the flame zone by initiating the vapor phase, and they also form a barrier 

to heat and mass transfer (Ebdon et al. 1996). The fire properties of wood-based 

composites have been improved by many types of fire retardant additives including 
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halogens (Lewin 2005), silicon (Genovese and Shanks 2008; Niu et al. 2014; Chen et al. 

2015a,c), boron (Baysal et al. 2007a, b), and phosphorous (Gao et al. 2003; Gao et al. 

2005; Branca and Blasi 2007; Schartel et al. 2010). Fire retardants generally are not used 

alone; they are usually used with other additives in polymeric materials to obtain a 

synergistic effect (Durin-France et al. 2000; Hagen et al. 2009). Wang and Li (2004) 

improved the fire properties of wood by using complex fire retardants containing 

guanylurea phosphate, boric acid, and other additives. These materials accelerate the 

formation of wood char, despite forming a protective layer and diluting the fuel in the 

combustion process. 

Ultra-low density fiberboards (ULDFs) are manufactured by liquid frothing (Xie 

et al. 2004). Although they have many excellent properties including ultra-low density 

(ranging from 10 to 90 kg m−3), low thermal conductivity, good sound absorption, etc. 

(Chen et al. 2015d; Xie et al. 2004, 2011; Niu et al. 2014), their application is restricted 

by their inflammability (Xie et al. 2011; Niu et al. 2014). To overcome this disadvantage, 

halogen-containing fire retardants (Liu et al. 2014) and Si or aluminum compounds (Niu 

et al. 2014; Chen et al. 2015c) have been added. Liu (2013) showed that the fire-resistant 

properties of ULDF were further improved when chlorinated paraffin and Si-Al 

compounds were combined, indicating synergy between these compounds. The goal of 

this paper was mainly to clarify the synergistic effect in complex fire-retardant agents 

containing boron, nitrogen-phosphorus compounds, Si, and halogens. Their preparation 

conditions were optimized by a standard response surface methodology (RSM) design 

called central composite design (CCD). The fire performance of the fiberboard was 

measured using cone calorimetry. The results of char yield, combustion behavior, and 

mass loss of ULDFs were all considered. 

 

 
EXPERIMENTAL 
 

Materials 
Kraft pulp (KP, spruce-pine-fir; Tembec Inc., Québec, Canada) was utilized as a 

raw material to manufacture ULDF. The additives used are presented in Table 1. 

 
Table 1. Detailed Information and Parameters for Additives 
 

Additives Additive 

amount 
Manufacturer 

Category Main Composition 

Boron Compounds 
Boracic Acid and 

Borax 

See in 

Table 2 

Deer Boron Industry Chemical Co., 

Ltd. (Zhengzhou, China) 

Nitrogen-Phosphorus 

Compounds 

Diammonium 

Hydrogen Phosphate 

Suzhou High-energy Chemical 

Technology Co., Ltd. (Suzhou, China) 

Si Compounds Sodium Silicate 
Tianjin Fuchen Chemical Reagents 

Factory (Tianjin, China) 

Halogen Compounds Chlorinated Paraffin 
Changzhou Fengshuo Chemical Co., 

Ltd. (Changzhou, China) 

Sodium Dodecylbenzene Sulfonate 

(10% concentration, forming agent) 
80 mL 

Jiangsu Qingting Washing Products 

Co., Ltd. (Yancheng, China) 

Polyacrylamide resin 20 mL Prepared by the authors 

Alkyl Ketene Dimer 

(AKD, water-proofing agent) 
50 mL 

Suzhou Tianma Chemicals Co., Ltd. 

(Suzhou, China) 
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Methods 
Preparation of ultra-low density fiberboard 

Ultra-low density fiberboards (200 mm × 200 mm × 50 mm) consisted of 55 g 

dry pulp fiber, with a target bulk density of 50 to 90 kg·m−3. They were manufactured 

separately using various parameters in a demonstration line (Fig. 1). The parameters for 

manufacturing fiberboards are presented in Table 1. The composition of each complex 

fire-retardant is shown in Table 2. Their respective masses were based on fire-retardant 

content versus dry fiber mass. The nomenclature of the corresponding fiberboards were 

BF (fiberboard with boron compounds), NPF (fiberboard with nitrogen-phosphorus 

compounds), SF (fiberboard with Si compounds), and HF (fiberboard with halogen 

compounds). 
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Fig. 1. The ULDF preparation process  

 

Char yield of ultra-low density fiberboard 

The char yield of ULDF was obtained using a controlled electric resistance 

furnace at high temperatures (model KDF-S70G, Denken Co., Jingdu, Japan). When the 

temperature of the furnace reached 400 C, 1.000 g of fiberboard encased in aluminum 

foil was heated in a furnace under a nitrogen atmosphere. After 30 min of heating, the 

fiberboards were cooled at room temperature in a closed container. The char yield of 

ULDF was tested when the temperature of the residue fell below 40 C. 

 

Experimental design 

The boron compounds (X1), nitrogen-phosphorus compounds (X2), Si compounds 

(X3), and halogen compounds (X4) were chosen as the variables, and char yield (Y) was 

their function. A standard RSM design CCD was applied to study the effects of X1, X2, 

X3, and X4 on Y. Design-Expert software (Trial Version 8.0.6, Stat-Ease, Minneapolis, 

USA) was used to analyze data and build the models. The selection range of each 

variable is shown in Table 2. 

 

Table 2. Levels of Parameter Variables used in RSM Design  

 Levels 

Coded-Variables (Xi) −2 −1 0 1 2 

Boron Compounds (X1, %) 15 20 25 30 35 

Nitrogen-Phosphorus Compounds (X2, %) 15 20 25 30 35 

Silicium Compounds (X3, %) 15 20 25 30 35 

Halogen Compounds (X4, %) 15 20 25 30 35 
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Testing of fire properties by cone calorimeter method 

Fire properties of the ULDFs were evaluated using a cone calorimeter (model 

FTT2000, FTT Co., East Grinstead, UK), which has been adopted by the International 

Organization for Standardization (ISO 5660 2002) to evaluate the parameters of heat 

release rate (HRR), total heat released (THR), and mass loss rate (MLR). The size of the 

fiberboards was 100 × 100 × 30 mm (L × W × H). They were encased in aluminum foil, 

except for the heating surface, and mounted in a stainless steel holder with a grid placed 

on top of the fiberboard. The tests were performed at a heat flux level of 50 kW m−2. 

 

Table 3. Central Composite Design and Response to the Char Yield of ULDF 
 

Run 
No. 

Coded Levels of Compounds Char Yield (%) 

Boron  
(X1, %) 

Nitrogen- 
Phosphorus  

(X2, %) 

Silicium  
(X3, %) 

Halogen  
(X4, %) 

Experimental  Predicted 

1 −1(20) −1(20) −1(20) −1(20) 34.2 34.3 

2 1(30) −1 −1 −1 41.7 40.6 

3 −1 1(30) −1 −1 40.9 42.0 

4 1 1 −1 −1 44.3 46.0 

5 −1 −1 1(30) −1 37.1 36.5 

6 1 −1 1 −1 34.4 38.2 

7 −1 1 1 −1 38.8 38.9 

8 1 1 1 −1 39.7 38.4 

9 −1 −1 −1 1(30) 43.0 44.5 

10 1 −1 −1 1 49.5 49.9 

11 −1 1 −1 1 51.7 48.4 

12 1 1 −1 1 50.7 51.5 

13 −1 −1 1 1 43.4 42.2 

14 1 −1 1 1 43.8 42.9 

15 −1 1 1 1 39.4 40.7 

16 1 1 1 1 38.9 39.3 

17 −2(15) 0(25) 0(25) 0(25) 40.7 41.5 

18 2(35) 0 0 0 47.8 46.3 

19 0(25) −2(15) 0 0 37.1 36.4 

20 0 2(35) 0 0 40.5 40.5 

21 0 0 −2(15) 0 55.9 55.7 

22 0 0 2(35) 0 46.1 45.6 

23 0 0 0 −2(15) 31.5 30.0 

24 0 0 0 2(35) 40.3 41.1 

25 0 0 0 0 47.3 47.4 

26 0 0 0 0 47.4 47.4 

27 0 0 0 0 47.5 47.4 

28 0 0 0 0 47.2 47.4 

29 0 0 0 0 47.3 47.4 

30 0 0 0 0 47.4 47.4 
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RESULTS AND DISCUSSION 
 

Model Fitting 
The design matrix and the results of RSM experiments for determining the effects 

of the four independent variables are shown in Table 3. The mathematical model 

representing the char yield of ULDF against the function of the independent variables 

was expressed as follows (Eq. 1), 

 

Y= 47.35 + 1.20X1 + 1.00X2 – 2.50X3 + 2.79X4 – 0.56X1X2 – 1.14X1X3 – 0.23X1X4 – 

1.32X2X3 – 0. 96X2X4 – 1.14X3X4 – 0.86X1
2 – 2.22X2

2 + 0.83X3
2 – 2.95X4

2     (1) 

 

where Y is the char yield of ULDF and X1, X2, X3, and X4 are the coded variables for 

boron compounds, nitrogen-phosphorus compounds, silicium compounds, and halogen 

compounds, respectively. 

The p-value of the model and the lack of fit value were less than 0.0001, which 

indicated that the model’s fitness was high (Table 4; Brown and Brown 2012; Singh et al. 

2013). The value of R2 (0.9983) was in reasonable agreement with that of Radj
2 (0.9930), 

which indicated a high degree of correlation between the observed values and the 

predicted values (Chen et al. 2012). Thus, the regression model accurately explained the 

true behavior of the system. 

 

Table 4. Analysis of Variance for Regression Model for the Char Yield of ULDF 
 

Source 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F-Value p-Value 

Model 880.96 14 62.93 20.13 <0.0001 

X1 34.32 1 34.32 10.98 0.0047 

X2 24.20 1 24.20 7.74 0.0140 

X3 150.50 1 150.50 48.13 <0.0001 

X4 186.48 1 186.48 59.64 <0.0001 

X1X2 4.95 1 4.95 1.58 0.2275 

X1X3 20.93 1 20.93 6.69 0.0206 

X1X4 0.86 1 0.86 0.27 0.6085 

X2X3 27.83 1 27.83 8.90 0.0093 

X2X4 14.63 1 14.63 4.68 0.0471 

X3X4 20.93 1 20.93 6.69 0.0206 

X1
2 20.36 1 20.36 6.51 0.0221 

X2
2 135.66 1 135.66 43.39 <0.0001 

X3
2 18.72 1 18.72 5.99 0.0272 

X4
2 238.53 1 238.53 76.29 <0.0001 

Residual 46.90 15 3.13   

Lack of Fit 46.85 10 4.68 425.87 <0.0001 

Pure Error 0.06 5 0.01   

Correlation 
Total 

927.86 29    

p < 0.01 highly significant; 0.01 < p < 0.05 significant; p > 0.05 insignificant 

 

As can be seen in Table 4, the F-value (20.13) and p-values (less than 0.0001) 

implied that this model was significant, and only a 0.01% chance could occur due to 

noise (Amini et al. 2008). X1, X3, X4, X2X3, and two quadratic terms (X2
2 and X4

2) 

significantly affected the ULDF char yield. The variables X2, X1X3, X2X3, X2X4, X3X4, 

X1
2, and X3

2 also significantly affected the ULDF char yield, whereas X1X2 and X1X4 had 

no significant effect. In order of decreasing effect on char yield, the independent variables 

were ranked as follows: halogen compounds (X4) > silicium compounds (X3) > boron 

compounds (X1) > nitrogen-phosphorus compounds (X2). 
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Analysis of Response Surface and Optimization 
The relationship between the parameters and the response variable was plotted in 

a 3D representation of the response surface (Fig. 2). 

 

 

   

   

   
 
Fig. 2. Response surface plots for the maximum ULDF char yield of and various combinations of 
parameters. (a) X1 and X2; (b) X1 and X3; (c) X1 and X4; (d) X2 and X3; (e) X2 and X4; and (f) X3 and 
X4  

 

As can be seen in Fig. 2a-c, the results were elliptical, indicating significant 

interactions between the independent variables and the char yield of ULDFs (Tang et al. 

2011). Boron compounds thermally decompose, producing boron oxide and driving 

decomposition of the polymer toward carbonaceous residues. Nitrogen-phosphorus 

compounds act similarly; they increase dehydration reactions during thermal degradation 

to produce more char and less total volatiles (Hagen et al. 2009). Therefore, ULDF fire 
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properties were improved more significantly when these compounds were combined. 

Their fire-retardant mechanisms are described in Eqs. 2 and 3: 
 

         (2) 

       (3) 
 

Additionally, Si compounds generate polysilicic acid, which reacts with wood to 

form an inorganic film on its surface (Eq. 4). The inorganic film insulates wood against 

air during combustion (Unger et al. 2012; Chen et al. 2015c).  

 

    (4) 

 

Halogen-based fire retardants act in the vapor phase by a radical mechanism that 

interrupts the exothermic processes and suppresses combustion. Halogen hydrides dilute 

combustible gas or prevent its exposure to the air, which delays pyrolysis. Boron 

compounds reduce or eliminate afterglow in halogen compounds (Lu and Hamerton 

2002). Therefore, the fire properties of ULDF were improved when all of the fire 

retardants were added. 

When the fixed content of Si was added, the char yield of ULDF was increased 

with the increasing content of nitrogen-phosphorus (Fig. 2d). Similar trends were 

observed for the nitrogen-phosphorus compounds, silicon compounds, and halogen 

compounds in (Figs. 2e, f). These results showed that nitrogen-phosphorus-, Si-, and 

halogen-based fire retardants improved ULDF fire properties alone but had different roles 

in achieving flame retardation. When added together, they produced a synergistic effect. 

Based on Eq. 1, the optimal fire-retardant for ULDFs contained 33.9% boracic acid and 

borax, 27.2% diammonium hydrogen phosphate, 15.0% sodium silicate, and 28.6% 

chlorinated paraffin. These conditions produced the optimal ULDF char yield (61.4%). 

 

Fire Resistance of ULDFs 
Combustion behavior 

 

   
 
Fig. 3. HRR profiles (a) and THR profiles (b) of the control fiberboard (CF), boron-based 
fiberboard (BF), nitrogen-phosphorus-based fiberboard (NPF), silicium-based fiberboard (SF), 
halogen-based fiberboard (HF), and mixed fiberboard (MF) 

 

a b 
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The fire properties of ULDFs were evaluated using cone calorimetry with a heat 

flux of 50 kW m−2 (Fig. 3). The HRR curves demonstrated a two-peak profile, especially 

the SF curve, due to the thermo-oxidative decomposition of the char. Furthermore, Si 

compounds formed a barrier to heat and mass transfer that caused the further 

decomposition and cracking of the char towards the burned ends where the second peak 

occurred (Hagen et al. 2009; Shabir Mahr et al. 2012; Chen et al. 2015b). Compared with 

CF, the HRR profiles of BF, NPF, SF, HF, and MF were reduced. Also, the peak of HRR 

(pkHRR) of BF (94.91 kW m−2), NPF (89.01 kW m−2), SF (137.04 kW m−2), HF (125.01 

kW m−2), and MF (75.02 kW m−2) were lower than that of CF (192.01 kW m−2) (Table 5). 

The degree of pkHRR reduction in BF and NPF was more pronounced than for SF and 

HF at this stage. The results indicated that the boron and nitrogen-phosphorus fire 

retardant-treated ULDFs were the most successful in reducing HRR, which could be 

attributed to changes in the condensing phase of char production (Hagen et al. 2009). 

Notably, the pkHRR of MF (75.02 kW m−2) was the lowest of the six fiberboards studied; 

thus, the four agents in the complex fire retardant had a synergistic effect. 

 

Table 5. Parameters and Peak HRR of the Fiberboards  

Fiberboards Fire Retardant 
Additives 

(g) 
AKD 
(mL) 

pkHRR 
(kW·m−2) 

THR 
(MJ·m−2) 

CF - - 

50 

192.03 22.18 

BF Boron Compounds 50.0 94.91 16.98 

NPF 
Nitrogen-Phosphorus 

Compounds 50.0 89.01 17.71 

SF Silicium Compounds 50.0 137.04 19.81 

HF Halogen Compounds 50.0 125.01 15.33 

MF 
Complex Fire 

Retardant 
57.6 75.02 17.81 

 

As shown in Fig. 3b and Table 5, the THR profiles of the fiberboards with fire 

retardant treatment (16.98 MJ m−2, 17.71 MJ m−2, 19.81 MJ m−2, 15.33 MJ m−2, and 

17.81 MJ m−2) were lower than that of the CF (22.18 MJ m−2).  

 

 
 
Fig. 4. Mass residual ratios of the control fiberboard (CF), boron-based fiberboard (BF), 
nitrogen-phosphorus-based fiberboard (NPF), silicium-based fiberboard (SF), halogen-based 
fiberboard (HF), and mixed fiberboard (MF) 

 

All of the fire retardants played an important role, but there were different results 

in the THR profiles of the fiberboards. Unlike the HRR profiles, HF had the lowest THR 

profile (15.33 MJ m−2), indicating that HF combusted least effectively and that the 
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chlorinated paraffins were sufficient in counteracting the decrease in total heat release. 

This occurred because halogen-based fire retardants act in the vapor and condensed 

phases. They generate halogen hydride gas, which accelerates hemicellulose and 

cellulose dehydration into charcoal in low temperatures. The described processes can also 

generate a large amount of hydroxyl radicals, which interrupt the exothermic processes 

and suppress combustion (Lu et al. 2002; Liu 2013). These reactions are described in Eq. 

5: 
 

HO·+CO →CO2↑+ H·          

2H·+O2→2HO·          

Cl·+HR→HCl+ R·          

HCl+ HO·→H2O+ Cl·                             (5) 

 

Mass loss vs. time 

Percentage mass loss curves were calculated as a function of time (Fig. 4). Mass 

loss differences between the fiberboards were due to their HRR differences. CF showed 

the lowest residual mass of 10.69%. Among BF, NPF, SF, and HF, the residual mass of 

SF (35.49%) was higher by 9.78%, 3.68%, and 14.01% than BF, NPF, and HF, 

respectively. This result could be ascribed to the inorganic film, which acts as a barrier to 

fuel transport (Sacristán et al. 2010; Chen et al. 2015b). In contrast, chlorinated paraffins 

cannot form a barrier to slow or prevent the release of fuel to the flame front, which 

corresponded to its high value of HHR and low percentage mass loss (21.48%). MF 

showed the largest residual mass (40.94%), which was higher than that of CF by 30.25%. 

These results indicated that the boron compounds, nitrogen-phosphorus compounds, 

silicium compounds, and halogen compounds in complex fire retardants had a significant 

synergistic effect on improving the fire resistance of ULDFs. 

 

 

CONCLUSIONS 
 

1. The fire properties of ULDFs were effectively improved by treatment with complex 

fire retardants. The optimal complex fire retardant was predicted by response surface 

methodology, and an optimal char yield of 61.4% was obtained. The optimal complex 

fire retardant contained 33.9% boracic acid and borax, 27.2% diammonium hydrogen 

phosphate, 15.0% sodium silicate, and 28.6% chlorinated paraffin. 

2. Compared with CF, the HRRs of BF, NPF, SF, HF, and MF were reduced. This result 

indicated that ULDF fire properties were effectively improved by all of four fire 

retardants. Additionally, the THR profiles of BF, NPF, SF, HF, and MF were lower 

than those of CF. Fiberboards with chlorinated paraffins showed a significant 

reduction in the amount of total heat released. 

3. The overall mass loss was remarkably decreased in all fiberboards. Si compounds were 

the most effective in preventing ULDF mass loss. MF showed the highest residual 

mass (40.94%), which was 30.25% higher than CF. The four fire retardant agents 

showed synergistic effects in ULDFs. 
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