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Water hyacinth (Eichhornia crassipes) is an invasive floating plant that has 
caused many environmental problems in Asia. Efficiently removing and 
utilizing this biomass has become an urgent issue. In this work, the 
composition of water hyacinth biomass (WHB) was analyzed with the Van 
Soest method. The combined cellulose and hemicellulose content 
reached 58.6%, and the lignin content was very low compared with other 
biomass. An efficient alkali pretreatment technology for WHB was 
developed, and the enzymatic hydrolysis of WHB to reducing sugars was 
investigated. With favorable hydrolysis conditions for the alkali-pretreated 
WHB, the cellulose conversion rate reached almost 100%. Structural 
changes resulting from WHB pretreatment and hydrolysis were analyzed 
by Fourier-transform infrared spectrometry and scanning electron 
microscopy. This work demonstrates that WHB is an alternative cellulose 
source for bioenergy production. 
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INTRODUCTION 
 

 Water hyacinth (Eichhornia crassipes) is a fast growing, perennial aquatic weed. 

In favorable environmental conditions, an individual water hyacinth can produce 140 

million daughter plants annually; these plants cover 1.40 km2 water area with a fresh 

biomass of 28,000 tons (Lu et al. 2007). These aquatic plants deplete dissolved oxygen in 

the water and jeopardize the health of aquatic animals. They also block rivers, drainage 

system, and water transportation. As an invasive floating plant, it has caused an enormous 

ecological and economic disaster worldwide (Lu et al. 2007; Villamagna and Murphy 

2010). In southern China, these plants seriously threaten the aquatic systems of lakes and 

rivers (Chu et al. 2006), and they must be removed every year. Thus, efficiently utilizing 

water hyacinth biomass (WHB) is an urgent issue.  

 Economical and societal development has driven the demand for alternative energy 

sources. Fossil fuels are still the dominant sources of energy, but they cannot support the 

global energy demand due to inherent defects such as non-renewability and atmospheric 

carbon emissions. These issues have prompted efforts toward sustainable energy sources. 

Among various options, biofuel produced from biomass appears to be a feasible alternative 

energy source. Cheap and abundant lignocellulosic biomasses are alternative feedstock for 

biofuel production (Balat 2011; Wi et al. 2013; Lee and Kuan 2015). In addition to 

terrestrial lignocellulosic biomass such as sugarcane bagasse and crop straw, WHB is a 

potential feedstock for biofuels. 
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 WHB has been evaluated for bioethanol production (Cheng et al. 2014; Pothiraj et 

al. 2014; Yan et al. 2015). But the fundamental information about water hyacinth 

composition and WHB hydrolysis to fermentable sugars has not been determined. In this 

report, the chemical composition of water hyacinth was analyzed, and an efficient process 

to hydrolyze WHB to fermentable sugars with cellulase was developed. 

 
 
EXPERIMENTAL 
 

WHB and Materials 
 Fresh water hyacinth plants were collected from Yang-Shuwan Lake in Yichang 

City, China (30.70°N, 111.30°E). The roots of the plant were removed, the leaf and body 

were washed to remove dirt and dried in sunlight. They were further dried overnight at     

70 °C in an oven to remove residual moisture. The dried biomass was milled to powder 

and passed through a 0.425 mm mesh sieve. Trichoderma reesei cellulase was purchased 

from the Imperial Jade Bio-technology Co., LTD (Yinchuan, China). This multiple 

component enzyme contains three activity components: endoglucanase, exoglucanase, and 

beta-glucosidase, with 100,000 FPU/mL (as measured by the method in Adney and Baker 

(1996)). 

 

WHB Pretreatment 
 Lignin-hemicellulose bonds are barriers to the hydrolysis of lignocelluloses into 

fermentable sugars, and pretreatment is essential to breaking these bonds. In this study, the 

alkali or dilute acid pretreatment methods were compared. Briefly, 5 g of sample was 

pretreated with NaOH (1 to 10 g/L) or sulfuric acid (0.1 to 0.5%) with a 10:1 to 30:1 liquid-

solid ratio (mL acid to g WHB) at varied temperatures (60 to 135 °C) for 30 to 90 min. 

After cooling, the samples were collected by filtration. The filter residue was washed to 

neutral pH followed by a final rinse in deionized water. The samples were dried at room 

temperature, and the pretreated feedstock was either used immediately for hydrolysis or 

stored in a desiccator.  

To evaluate the pretreatment efficiency, the pretreated biomass was hydrolyzed 

with Trichoderma reesei cellulase in a general reaction at 50 °C for 20 h. The medium for 

hydrolysis contains 200 mg pretreated biomass, 100 FPU/g biomass, and 10 mL citrate 

buffer pH 4.8.  

The yield of reducing sugars was calculated as a percentage conversion of the 

pretreated biomass, assuming a theoretical yield of 1.12 g sugar/g pretreated biomass. 

 

Enzymatic Saccharification of WHB 
 A given amount of pretreated WHB was incubated with Trichoderma reesei 

cellulase (20 FPU) at 20 to 60 °C, in a stoppered 50-mL plastic tube with gentle agitation 

(150 rpm) in an air bath shaker (HZ200LB, Wuhan Ruihua Instrument & Equipment Co., 

LTD, Wuhan China).  

In general, the saccharification reaction was performed in a 10 mmol/L sodium-

citrate buffer (pH 4.8) containing 50 mg/L penicillin to inhibit microbial growth. Different 

biomass loading (varied from 200 to 1000 mg) and saccharification conditions, including 

temperature (varied from 20 to 60 °C), pH (varied from 4.0 to 6.4), and incubation time 

(varied from 1 to 48 h), were investigated.  
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Analytical Methods 
WHB composition  

 Cellulose, hemicellulose, and lignin contents in WHB were determined by the 

detergent extraction method (Van Soest et al. 1991). Neutral detergent fiber (NDF), acid 

detergent fiber (ADF), acid detergent lignin (ADL), and ash were also determined by this 

method. The hemicellulose content was calculated as the difference between NDF and 

ADF, and the cellulose content was calculated from the difference between ADF and ADL. 

 

Saccharification efficiency and sugar estimation 

 Saccharification efficiency was represented by the cellulose conversion rate, which 

was calculated as the percentage conversion of cellulose in the pretreated biomass to 

reducing sugars, assuming a theoretical yield of 1.12 g sugar/g pretreated biomass. Total 

sugar was estimated by the dinitrosalicylic acid (DNS) reagent method (Miller 1959). 

 

Fourier-transform infrared spectroscopy (FTIR) 

 FTIR was used to explore chemical changes due to WHB pretreatment and 

hydrolysis using a Bruker spectrometer (VERTEX 70, Bruker Corporation, Ettlingen, 

Germany).  First, 3.0 mg of the sample was dispersed in 300 mg of spectroscopic grade 

KBr and then pressed into disks at 10 MPa for 3 min. The spectra were obtained with an 

average of 80 scans and a resolution of 16 cm-1 within the range of 4,000 to 400 cm-1. 

 

Scanning electron microscopy (SEM) 

 To examine structure changes in WHB after pretreatment and hydrolysis, SEM 

analysis was performed using a Nova NanoSEM 400 (FEI, Oregon, USA) operating at 20 

kV accelerating voltage and 5000× magnification. 

 
 
RESULTS AND DISCUSSION 
 

WHB Composition   
 The composition of biomass from the water hyacinth is the essential information 

needed for effective utilization of this biomass.  

 

Table 1. Composition of Various Lignocelluloses Biomass 

Biomass 
Cellulose 

(%) 
Hemicellulose 

(%) 
Lignin 

(%) 
Ash 
(%) 

Reference 

WHB 

24.5 34.1 8.6 1.5 This work 

18.2 29.3 2.8 1.2 Ma et al. 2010 

17.3 24.7 1.1 - Lay et al. 2013 

Sugarcane Bagasse 
23.7 25.4 14.2 1.3 This work 

34 27 18 4 Binod et al. 2012 

Corn Stover 
35.5 33.4 19.2 2.6 This work 

37 31.3 17.8 7.3 Saha et al. 2013 

Wheat Straw 
28.6 20.5 15.4 2.3 This work 

38.36 19.71 16.86 5 Rajan et al. 2014 

Rice Straw 
26.5 32.6 13.5 2.4 This work 

41.7 18.3 16.6 - Zheng et al. 2013 

Alkali-Pretreated WHB 59.9 18.2 1.2 1.4 This work 

-: Not given 
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 The cellulose, hemicellulose, lignin, and ash contents of WHB were analyzed by 

the Van Soest method on a dry weight basis (Van Soest et al. 1991). The published 

composition data from other common biomass sources is compared to WHB in Table 1. 

The combined cellulose and hemicellulose content of WHB was, respectively, 24.5% and 

34.1%, which is similar to values from other biomasses, but WHB lignin content was the 

lowest of the compared sources. There were some small differences in the biomass 

contents, which may be due to different biomass origins and growth conditions. It was 

concluded that WHB is a favorable raw material for use in the bioenergy industry. 
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Fig. 1. Yield of reducing sugar from alkali-pretreated WHB where the pretreatment conditions 
were varied; a: NaOH concentration, b: liquid-solid ratio, c: time, d: temperature 

  

Chemical Pretreatment of Water Hyacinth 
Pretreatment of WHB with alkali and dilute acid 

 To break bonds linking hemicelluloses and lignin, WHB was pretreated with an 

alkaline solution containing sodium hydroxide. The general conditions for the pretreatment 

were 7 g/L of NaOH, a liquid-solid ratio of 20:1, and 90 °C for 60 min. The effects of 

pretreatment conditions, i.e. NaOH concentration, liquid-solid ratio, time, and temperature, 

on the efficiency of the pretreatment process was investigated (Fig. 1). Results indicated 

that they all conditions influenced the efficiency of WHB pretreatment. When the NaOH 

concentration was increased, the yield of reduced sugar rose, and it became stable at greater 

than 7 g/L NaOH. The high NaOH concentration increased the removal of hemicellulose 

and lignin, and the surface of WHB became rougher. Thus, more cellulose surfaces were 

exposed to cellulase and degraded (Liu et al. 2014). The liquid-solid ratio similarly affected 

pretreatment efficiency, as the yield of reduced sugar increased up to the liquid-solid ratio 

of 20. For pretreatment time, 60 min was sufficient. When the temperature was raised from 

60 °C to 120 °C, the yield of reduced sugar increased from 26.4% to 50.1%. There was a 

sharp increase in reducing sugar above 90 °C. The reason is that the higher temperature 

can improve the breakage of the bond between lignin and reduce the degree of 

a b 

c d 
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polymerization in the biomass. In summary, the optimal conditions for alkali pretreatment 

were 7 g/L of NaOH, 20% liquid-solid ratio, 60 min, and 120 °C. The reducing sugar yield 

from these conditions was 50.1 %. 

WHB was also pretreated with dilute H2SO4. The highest yield of reduced sugar 

was about 32.2%, and when the H2SO4 concentration and pretreatment time were increased, 

the yield of reducing sugar was lower. Hence, dilute acid pretreatment was not as efficient 

as alkali pretreatment, probably because H2SO4 produces some byproducts, such as 

formaldehyde, which will influence the further hydrolysis (Liu et al. 2014). 

 

Composition of WHB after pretreatment 

 The composition of WHB was analyzed after the alkali pretreatment (Table 1). 

After pretreatment, cellulose content increased from 24.5% to 59.9%, and the 

hemicellulose and lignin contents were correspondingly decreased from 34.1% and 8.6% 

to 18.2% and 1.2%, respectively. A total of 46.7% and 85.9% of hemicellulose and lignin, 

respectively, were removed. Thus, pretreatment enhanced cellulose content percentage and 

removed hemicellulose and lignin, which greatly improved the contact between cellulose 

and cellulase and consequently improved the efficiency of the cellulose hydrolysis. 

 
Enzymatic Saccharification of WHB 
 Pretreated WHB was broken down to fermentable sugars by cellulase hydrolysis. 

These sugars are the feedstock for biofuels or other fermentation products. The hydrolysis 

reaction conditions including time, substrate load, pH, and temperature were investigated 

for their effects on hydrolysis. Saccharification efficiency was represented by the cellulose 

conversion rate (Fig. 2).  
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Fig. 2. Cellulose conversion with different hydrolysis conditions. a: time, b: substrate 
concentration, c: pH, d: temperature 

a b 

c d 
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The cellulose conversion rate steadily increased with reaction time, up to almost 

100% at 48 h (Fig. 2a). For untreated WHB, the maximum cellulose conversion rate was 

only 40% with 48-h hydrolysis. There are two reasons for the difference in hydrolysis 

between pretreated and untreated WHB. In untreated WHB, the cellulose is mainly 

crystalline, which is difficult to hydrolyze. Secondly, lignin in untreated WHB inhibits the 

cellulase enzyme (Rahikainen et al. 2013). For substrate loading at less than 60 g/L, a high 

conversion rate was obtained (almost 90%), but cellulose conversion decreased with 

further increases in WHB loading (Fig. 2b). Experiments using varied pH and temperature 

showed that the maximum conversion rate occurred in pH 4.8 and 50 °C. The pH and 

reaction temperature are two key reaction conditions to an enzymatic hydrolysis reaction. 

These conditions depend on the cellulase which type was used. To this cellulose in this 

experiment, the pH 4.8 and 50 °C are its optimal conditions. If further increase the pH and 

temperature, the enzyme will inactivate, then the cellulose conversion decrease very sharp. 

These results are consistent with the temperature-dependent adsorption behavior of 

cellulase in lignocellulosic biomass (Zheng et al. 2013). Taken together, the most favorable 

hydrolysis conditions for alkali-pretreated WHB were 60 g/L of WHB, pH 4.8, 50 °C and 

48 h. 
 

Structural Changes in WHB 
 FTIR and SEM were used to explore the structural changes in WHB during 

pretreatment and hydrolysis. FTIR spectra for untreated WHB before and after hydrolysis 

were very similar, which indicated that hydrolysis alone caused few structural changes in 

untreated WHB (Fig. 3a, b).  
 

 

  

  
 

Fig. 3. FTIR spectra for a: untreated WHB, b: hydrolyzed untreated WHB, c: alkali-pretreated 
WHB, d: hydrolyzed alkali-pretreated WHB 
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This result confirms that hydrolysis was inefficient in untreated WHB. In contrast, 

pretreated WHB spectra showed different characteristics, demonstrating that pretreatment 

and hydrolysis changed WHB structure (Fig. 3c, d). These changes occurred from 2000 to 

1500 cm-1 and from 1500 to 1000 cm-1; these regions correspond to the phenyl ring bond 

in lignin and the C-H bond in cellulose and hemicellulose, respectively (Li et al. 2012; 

Sundari and Ramesh 2012). The wavenumber around 3340 cm-1 was assigned to hydrogen 

bonded (O–H) stretching absorption. Reduction in the peak of 3340 cm-1 indicates a 

reduction in the hydrogen bond of cellulose of the pretreated WHB. 

Scanning electron microscopy (SEM) was used to observe micro-structural changes 

during the pretreatment and hydrolysis of WHB (Fig. 4). The structures in untreated WHB 

before and after hydrolysis were very similar; this results further confirms the poor 

hydrolysis of untreated WHB. Pretreatment and hydrolysis in many changes to the WHB 

surface, including holes (Fig. 4 c, d).  

  
a 

 

b 

 

c 

 

d 

 

Fig. 4. SEM of a: untreated WHB, b: hydrolyzed untreated WHB, c: alkali-pretreated WHB,  
d: hydrolyzed alkali-pretreated WHB 

 
CONCLUSIONS 
 

1. Water hyacinth biomass is an alternative cellulose source for bioenergy production. Its 

combined cellulose and hemicellulose content is 58.6%, and it has a low lignin content. 

2. Alkali pretreatment is essential for WHB hydrolysis via cellulase. The optimal 

conditions for alkali pretreatment were 7 g/L NaOH, a liquid-solid ratio of 20, 120 °C, 

and 60 min. 
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3. Favorable hydrolysis conditions for alkali-pretreated WHB were 60 g/L of substrate, 

pH 4.8, 50 °C, and 48 h. The cellulose conversion rate almost reached 100%. 
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