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This paper describes a simple rapid staining microcolorimetric method for 
analytical fibre material identification using colour vectors of stained fibre 
material photography. The number of morphological characteristics (nM), 
number of stains (nS), colour information dimensionality (nDC), and picture 
elementary points number (npx) can play a key role in distinguishing fibre 
materials, correct identification, discriminatory power dP (%), and efficacy. 
Experiments were performed to achieve the most accurate results with a 
minimum volume of data; the dimensionality reduction was made 
experimentally by setting nM = 0, nS = 1, nDC <1, 3>, and the effect of 
number of pixels on the dP (%) was measured. The correct identification 
was achieved by less than 100 pixels when using 2 colour vectors, and by 
less than 50 pixels when using 3 colour vectors: R, G, and B. The real area 
of the pixels used for correct identification was less than 0.1 mm2 in the 
used model system of the cellulose fibre materials. 
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INTRODUCTION 
 

The cell and cell group type of natural plant fibres types can differ in terms of their 

morphological, chemical, and physical properties.  These differences in fibre types can be 

observed in many ways and could be used for their identification.  The most commonly 

used fibre identification methods are: 

 Scanning electron microscopy (SEM) (IWTO-58 2000; Bergfjord and Holst 2010; 

Khalil et al. 2010; Fiore et al. 2014), 

 A combination of SEM and optical microscopy often referred to as the "light 

microscopy" (Petraco and Kubic 2004; Khalil et al. 2010; Chen et al. 2015; Liu et al. 

2015), 

 Energy dispersive x-ray spectroscopy (EDS), SEM, and Fourier transform infrared 

spectroscopy (FTIR) (Chen et al. 1996; Rezič et al. 2010), 

 FTIR (Khalil et al. 2010; Kavkler et al. 2011; Centeno et al. 2014; Fiore et al. 2014), 

 Infrared spectroscopy (IR) microspectroscopy (Durán and Angelo 1998), 

 Raman spectroscopy (Chen et al. 1996; Fiore et al. 2014), 

 Raman spectroscopy combined with staining by stains such as Herzberg solution (Shi 

and Li 2013), 
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 X-ray fluorescence (XRF) spectroscopy (Chen et al. 1996), 

 Wavelet texture analysis (Zhang et al. 2010), 

 Fluorescence analysis (Serterl et al. 2011; Yang et al. 2013), 

 Fibre density (Indran and Raj 2015), 

 Gas chromatography (GC) and gas chromatography–mass spectrometry (GC/MS) 

(Lattuati-Derieux et al. 2010), 

 Liquid chromatography (LC) or  liquid chromatography coupled with electrospray 

mass spectrometry (LC/ESI-MS) analysis (Paolella et al. 2013), 

 Thermogravimetric analysis (TGA) (Mulinari et al. 2010; Fiore et al. 2014; Indran  and 

Raj 2015), 

 Thermomechanical analysis, burning test, thermal analysis (TA), differential thermal 

analysis, fibre melting point (Humphries 2008), twist test (Goodway 1987), 

 Solubility or chemical test mainly used for synthetic fibre identification (Liu et al. 

2011), 

 Microscopic examination of morphological or form information (features) (ASTM 

1993; Müller et al. 2004; Ainsworth  and Zhang 2005; Chaabouni et al. 2006; AATCC 

2008; Liu et al. 2011), 

 Polarized light microscopy (PLM) (Whittaker  and Przyklenk 2009; Rezič et al. 2010; 

Oldenbourg 2013), 

 Image analysis (Legland  and Beaugrand 2013), 

 and staining analytical methods with visual colour assessment (Jablonský et al. 2015). 

 

Staining 
Staining analytical methods are simple, rapid, low-cost, available, and are the most 

frequently used in fibre identification. However, they face problems including subjective 

error and low accuracy. Four fibre types were stained according to standards with zinc 

chloride-iodine stain (Herzberg stain) (Fig. 1 to Fig. 4). The colors of the fibres used for 

the Herzberg stain were as follows: groundwood, brilliant yellow; pulp (Whatman and 

sulphate), dark purplish gray to deep reddish purple; and rag, brilliant purplish pink to vivid 

red purple.  

 

 
 

Fig. 1. Groundwood (F1) stained by Herzberg stain 
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Fig. 2. Sulphite pulp (F2) stained by Herzberg stain 

 

 
 

Fig. 3. Whatman paper (F3) stained by Herzberg stain 

 

 
 

Fig. 4. Rag (F4) stained by Herzberg stain 

 

The subjective verbal color description has some drawbacks: it is fuzzy; it does not 

provide quantitative data, and the verbal information does not provide any information on 

colour. It is necessary to use at least 2 stains for subjective visual assessment without use 

of morphological information. 

For fibre identification, often two or more stains are recommended (AATCC 1990; 

STN ISO 1993; TAPPI 2008). If the identification is more complex, masked by different 

times, aging, decay, lignification, or differences between normal and abnormal fibres, such 
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as pressure wood fibres (Kutscha and Gray 1971), more stain use is highly recommended. 

These analytical methods can produce many dimensions of information, which can be 

either mutually non-correlating or have a positive or negative correlation. Correlation 

coefficients can also be used as characteristic parameters for fibre material identification 

(Katuscak and Hruz 1986). It is relatively simple to increase the number of methods, 

scientific apparati, variables, and dimensionality; however the volume (data) increases with 

dimensionality (Farooque et al. 2014; Gajamannage et al. 2015; Nazarpour and Adibi 

2015), resulting in increasing time, complexity of data and interpretation, and costs, as well 

as impairing availability, efficacy, and practical use of the respective method. 

Real-world data, such as signals from the methods of material analysis and 

identification, digital photographs, scans, smells, or sounds usually have a high 

dimensionality. This dimensionality needs to be reduced in order to handle such real-world 

data adequately. 

Both the increase and decrease of the dimensionality depends first of all on the 

number of methods and their variables used for the fibre identification. Therefore, the first 

step can be the empirical (experimental) one: minimizing the number of experimental 

methods and measured variables used for material identification. The second direction of 

the dimensionality reduction (DR) (Gracia et al. 2014; Sakthivel et al. 2014) is 

mathematical transformation of high-dimensional data into a meaningful representation of 

reduced dimensionality. This is done either by linear techniques such as Principal 

Components Analysis (PCA) (Shawe-Taylor and Cristianini 2004), factor analysis, 

classical scaling, or nonlinear techniques (Kim and Lee 2014; Yan and Roy 2015). As a 

result, dimensionality reduction facilitates identification, classification, and visualization. 

This work investigates the objectivization of subjective visual identification of 

stained fibre materials. RGB data of photographs of the stained fibres was used. The key 

challenge in this work was improving the correctness in identification of unknown fibre 

materials using a minimum volume of colour data, without any morphology information. 

The aim was to estimate the minimum (critical) dimensionality and minimum number of 

pixels. 

 

 

EXPERIMENTAL 
 

Materials 
Stained tissue preparation 

The model set of fibres studied were: F1 (groundwood), F2 (bleached sulphate 

pulp), F3 (Whatman paper), and F4 (rag fibres). Each kind of fibrous material, F1 to F4, 

was prepared according to standards by defibrating (AATCC 1990; STN 1993). The zinc 

chloro-iodide stain (Herzberg stain) was prepared and stored according to (AATCC 1990; 

STN 1993). The fibres (groundwood, sulphate pulp, Whatman paper, and rag) of the 

defibrated kind of fibre (soaked in water) were taken by a micropipette and plated on slide 

glasses; fibres were evenly distributed by preparation needle. The microscopic slide and 

fibres was heated and dried.  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Dubinyová et al. (2016). “Cellulose fibre identification,” BioResources 11(1), 71-86.  75 

Methods 
Taking a microphotographic image and scans 

To track the microscopic slides, an optical microscope MIC 456 with Olympus 

Camedia Digital Camera C-5050 ZOOM with 1/1.8" (7.18 x 5.32 mm) 5 megapixel CCD 

sensor was used. Microphotographic images were taken at 40x magnification. The stained 

cellulose fibres were scanned as follows: one fibre was selected from the microphotograph 

of the sample, and the area of one scan (As) was marked perpendicular to the fibre length 

measured using a cursor; the width of each scan was 7 picture elements (pixels, px), and 

the area As = 7 x wf (px), where wf is the fibre width. 

The area of the scans of the cellulose fibre microphotograph used in this work 

corresponded to the given 40-fold magnification to the area of real sample As, r  (mm2) 

<0.04, 0.15>. The scanned data (R, G, and B) from each picture element (pixel) were 

transferred to a reference database so that the tristimulus R, G, and B measured data and 

any derived data for each pixel corresponded to 1 line in the database. 

 

Identification of unknown fibre kind sample.  

An unknown sample delivered for identification could be either a physical sample 

or an image of stained fibres prepared from an analysed fibre material. Physical unknown 

sample should be defibrated, stained, and scanned as described above. Three microscopic 

images were prepared (selected) from each unknown sample; 1 scan (As = 7*wf) was taken 

from each image as described above. 

 

Estimation of discriminatory power (dp) of the 1-P, 2-P and 3-P colour vectors R, G, B 

The information value of RGB vectors for the fibre identification was measured 

experimentally and expressed as the percentage of the correctly identified unknown fibre 

samples as follows: the number of unknown samples for one measurement of the dP (%) 

was 20, and the number of unknown samples from one kind of fibres F1-F4 were 5; 3 

images and scans (1 scan of a selected fibre per each image) were made from each sample. 

Various numbers of pixels from 1 to 1000 px were taken from each 1 sample (3 images, 3 

scans) by statistical random selection. Six parallel measuring experiments were performed 

(Table 2). 

 

Empirical dimensionality and data volume reduction. 

The preliminary tests show that it was possible to reduce the number of stains by 

using RGB parameters of the stained fibres, so only one stain was used instead of 2 to 3. 

The goal of the present experiments was to analyse the effect of the number of colour vector 

dimensions and number of pixels of a scanned image of a stained fibre on the percent of 

correctly identified fibre samples, and critical number of pixels and area detected needed 

for just 100% recognisable unknown fibre samples, in a selected set of fibre types. The 

objective identification based on the dimensionality and data volume of a fibre is 

influenced first of all by number of stains (nS), methods, and the resulting number of 

morphological (nm), chemical (nc), spectral (ns), and physical (np) parameters used for the 

identification. The dimension reductions used in this paper were as follows: nS = 1, nm = 0, 

nc = 0, ns = 0, np = 0, and the effect of the number of color dimensions nDC <1, 3> and 

number of pixels npx. <1, 1000> on % of correctly identified unknown samples (dP (%)) 

were examined. The critical number of pixels (npx, crit) and minimal detection area (Ad, cr) 

needed (necessary) for just 100% correct detection was estimated. 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Dubinyová et al. (2016). “Cellulose fibre identification,” BioResources 11(1), 71-86.  76 

RESULTS AND DISCUSSION 
 

Figure 5 shows the 3-P and 2-P orthogonal visualization of the overlapping R, G, 

and B data clouds of all the four fibre types F1 to F4. The first graph on the left represents 

14,000 picture elements, or 4 x 3 500 px for each type of the cellulose fibre; the other 3-P 

and 2-P clouds represents 100 px per each type of the cellulose fibre. 
 

a) 

 
b) 
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c) 
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e) 

 
Fig. 5. 3-P visualization and 2-P projections of the data clouds of the fibre types F1, F2, F3, and 
F4 stained by the zinc chloro-iodide stain. a) – 3500 px per 1 kind of fibre; b) – 100 px per 1 fibre 
type; c), d), e) – 2-P; G-R, B-R and B-G projections of the 100 px data clouds 

 

The model system comprising the 4 types of cellulose fibre materials, F1 to F4, is 

complex in terms of both objective and subjective identification (Fig. 5). Both the 

overlapping volume of the data clouds and overlapping area of the probability density 

functions of all individual colour dimensions was high, resulting in a low index of 

distinguishability. This indicates that the individual colour pixel data were hard to 

distinguish and identify. In other words, identification of the fibre type with the model 

studied is a complex task both visually and objectively, especially if using 1 stain only. 

Using 2 or more stains would cause a rapid increase of data volume, time, and cost of fibre 

identification. 

The key question here was whether it is possible to increase the discriminatory 

power and achieve a high enough percentage of correctly identified unknown samples to 

be satisfactory for praxis (e.g., between 90 to 100%) by sampling, using only one chemical 

stain, the zinc chloro-iodide (Herzberg) stain. 

To better understand the relationships in the model of the 4 cellulose fibres, and to 

solve the problem of low distinguishability of the RGB colour data of individual pixels and 

the low index of distinguishability, the following factors, hypothetically allowing for 

increasing the discriminatory power (dP) and efficacy and parameters, were studied: 

sampling, dimensionality (nDC), number of picture elementary points per the average input 

used in the discriminatory analysis (npx), colorimetric data volume, specific information 

power of 1 px and 1 px sample area (Apx in mm2), and the change of dP (%) added value of 

1 px data with increasing number of pixels used for the identification. 
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Table 1. Effect of the Colour Vector Dimensionality and Number of Pixels on the 
Average Discriminatory Power Estimated Empirically by the Percentage of 
Correctly Identified Unknown Samples 

npx No. 

nDC 

1-P 2-P 3-P 

dP(R) dP(G) dP(B) dP(RG) dP(RB) dP(GB) dP(RGB) 

0 - 0 0 0 0 0 0 0 

1 1 40 50 55 75 50 65 90 

1 2 55 45 45 50 60 75 70 

1 3 50 55 45 55 55 70 85 

1 4 65 70 35 75 75 70 80 

1 5 30 45 60 65 60 60 65 

1 6 40 40 30 40 45 75 55 

10 1 80 70 95 95 100 95 100 

10 2 65 60 80 90 95 100 90 

10 3 75 55 90 90 95 85 95 

10 4 90 85 80 100 100 100 100 

10 5 90 70 90 100 100 100 100 

10 6 85 65 90 100 95 100 100 

25 1 85 65 90 100 95 100 100 

25 2 65 65 90 100 90 100 100 

25 3 75 75 90 95 90 100 100 

25 4 90 75 85 100 100 100 100 

25 5 90 75 95 90 95 95 95 

25 6 95 75 80 100 100 100 100 

50 1 85 65 90 100 95 100 100 

50 2 70 65 90 100 90 100 100 

50 3 75 90 100 95 90 100 100 

50 4 90 80 90 100 100 100 100 

50 5 95 75 100 100 100 100 100 

50 6 95 75 100 100 100 100 100 

100 1 85 60 100 100 100 100 100 

100 2 100 60 95 100 100 100 100 

100 3 100 60 100 100 100 100 100 

100 4 95 75 85 100 100 100 100 

100 5 95 75 90 100 100 100 100 

100 6 95 80 90 100 100 100 100 

1000 1 100 50 100 100 100 100 100 

1000 2 100 60 100 100 100 100 100 

1000 3 100 65 100 100 100 100 100 

1000 4 100 75 100 100 100 100 100 

1000 5 100 75 100 100 100 100 100 

1000 6 100 75 100 100 100 100 100 

Symbols: No.: unknown sample number; 1-P, 2-P, and 3-P: number of parameters at identification; nDC – 
dimensionality; npx - number of pixel; dP (%): discriminatory power expressed as the percentage of correctly 
identified fibre samples; µdp: average discriminatory power; Ϭdp: standard deviation 
The types of fibres in the model experiment nfk = 4; The 4 types of fibres in the model set F1 (groundwood), 
F2 (sulphate pulp), F3 (Whatman paper), and F4 (rag fibres). The fibres were stained by zinc chloro-iodide 
solution (Herzberg stain). The number of unknown fibre kind samples nufk was 220 (nufk = 120 (6x20) at npx = 
1; nufk = 100 (5x20) at npx > 1). The total number of analyses/fibre identifications was 1540 (220x7). 
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After preliminary testing of various ways of sampling, the following sampling was 

used: the average values of the R, G, and B vectors of 1 scan, each containing 103 px, was 

taken of each unknown fibre sample, and the effect of dimensionality (nDC) and number of 

pixels (npx) were used as the input for the identification using the Quadratic discriminant 

analysis (McLachlan 1992). Each line in the Table 1 represents identification of 20 

unknown samples, with 5 samples of each fibre types (F1 to F4). Each dP value in the line 

represents the % of correctly identified samples of the 20 unknown samples using various 

colour dimensions and pixel number in 6 parallel experiments (with the exception for the 

npx=1, where 12 parallel measurements were made, because of the naturally higher 

variability). 

Averages of parallel experimental measurements, their standard deviations, and 

coefficients of variation are shown in Table 2 for the range from 1 to 1000 px and 

equivalent pixels area Apx <0.0018 to 1.75> mm2. Apx is the calculated theoretical detected 

area on the real sample corresponding to the pixels taken into discriminatory analysis for 

the particular fibre identification provided that 1 px = 2.646*10-4 m, and the square area of 

1 px = 1.8*10-3 mm2. The Apx could be used in communication on sampling for the various 

objective methods according to this study using higher than critical, or recommended nDC, 

npx, and (or) detected area Apx (see also Table 2). 

 

Table 2. Effect of Dimensionality, Number of Pixels, and Detected area of the 
Pixels Used for the Particular Identification of each Sample on the Average 
Discriminatory Power 
 

npx 

Apx 

(mm2) 
 

nDC 

1-P 2-P 3-P 

d’p (R) 
(%) 

d’p (G) 
(%) 

d’p (B) 
(%) 

d’p (RG) 
(%) 

d’p (RB) 
(%) 

d’p (GB) 
(%) 

d’p (RGB) 
(%) 

0 0 0 0 0 0 0 0 0 

1 
ϬdP 

vdP 

0.0018 
47 
13 
26.8 

51 
11 
21.0 

45 
11 
25.3 

60 
14 
23.6 

58 
10 
18.0 

69 
6 
8.5 

74 
13 
17.8 

10 
ϬdP 

vdP  

0.0175 
81 
10 
12.0 

68 
10 
15.4 

88 
6 
7.0 

96 
5 
5.1 

98 
3 
2.8 

96 
6 
6.3 

98 
4 
4.3 

25 
ϬdP 

vdP 

0.0438 
83 
11 
13.5 

72 
5 
7.2 

88 
5 
5.8 

98 
4 
4.3 

95 
4 
4.7 

99 
2 
2.1 

99 
2 
2.1 

50 
ϬdP 

vdP 

0.0875 
85 
10 
12.3 

75 
9 
12.6 

95 
5 
5.8 

99 
2 
2.1 

96 
5 
5.1 

100 
0 
0 

100 
0 
0 

100 
ϬdP 

vdP 

0.1750 
95 
5 
5.8 

68 
9 
13.6 

93 
5 
6.5 

100 
0 
0 

100 
0 
0 

100 
0 
0 

100 
0 
0 

1000 
ϬdP 

vdP 

1.7503 
100 
0 
0 

67 
10 
15.5 

100 
0 
0 

100 
0 
0 

100 
0 
0 

100 
0 
0 

100 
0 
0 

Symbols: nDC – dimensionality; dP (%) – discriminatory power measured as the percentage of correctly 
identified unknown fibre samples in an experiment; d’P (%) – average discriminatory power of a colour vector 

or a combination their; nE (nE = 6) – number of parallel experiments each containing a set of 20 unknown 
samples, 5 unknown samples from each type F1 – F4; npx – number of pixels; Apx – detected area (1.8*10-3 
mm2 for 1 px); nDC – colour vector dimensionality (1-P, 2-P, 3-P); Ϭdp – standard deviation; vdP – coefficient of 
variations 
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a) 

 
b) 

 
Fig. 6. The effect of number of pixels (npx) and dimensionality (nDC) on the average discriminatory 
power (d’p); its variability (vdP) and information added value 
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As can be seen from Table 2, the average as the percentage of the correctly 

identified unknown fibre samples (d’p) increases both with the dimensionality of the colour 

information used (nDC) and the number of pixels. It can be seen that 100% correct fibre 

sample identification was achieved in the model system when using 50 px or more. The 

variance and coefficient of variation decreased to zero ϬdP
2 = ϬdP = vdP = 0. 

The effect of the dimensionality (nDC), number of pixels (npx), and detected area on 

the discriminatory power (dP) measured by the % of correctly identified fibre samples can 

be seen in Fig. 6. The dP expresses the correctness of fibre material identification as well. 

Figure 6a shows the 3-P visualization of relationships between the discriminatory 

power dP of the R, G, and B vectors and their 2-P and 3-P combinations and colour 

dimensionality and the number of pixels. Figure 6b shows the effect of detected pixels area 

(Apx) recalculated to the size of real pulp or paper samples of the 4 fibre materials 

groundwood (F1), sulphate pulp (F2), Whatman paper (F3), and rag fibres (F4). The zero 

point Apx = npx = nCD = 0 in equations in Table 1 and Table 2 is physically valid; this 

expresses the fact that if the area detected and the number of pixels used is 0, the number 

of colour dimensions used of each pixel is zero, and the % of identified samples dP = 0%. 

The percentage of correctly identified fibres depends on the number of pixels (npx) 

by following general equation, 
 

 𝑑𝑝 = 𝑎 +
𝑏

𝑛𝑝𝑥
𝑐           (1) 

 

where a, b, and c are constants. The least (critical) number of pixels (npx, cr) as well as the 

critical sample area detected (Apx, cr) necessary to correctly identify unknown samples were 

estimated, and can be seen in Fig. 6 for all 3 colour dimensions. 

 

 

CONCLUSIONS 
 

1. Problems of subjective visual evaluation, such as low accuracy, missing quantitative 

data for storage, databases creation, and mathematical and graphical evaluation, were 

solved here. The 1-P, 2-P, and 3-P colour vector information from photography of fibre 

material stained by zinc chloro-iodide stain was used for objectivisation of the fibre 

material identification in a model system of 4 types of fibrous lignocellulosic materials. 

The main advantages of this method of lignocellulose materials identification are as 

follows (1) no morphology information on form of fibres is necessary, (2) the number 

of stains could be minimised to one stain in comparison with more stains used 

according to standard procedures for visual determination up till now, and (3) objective 

data could be measured, stored and statistically evaluated, compared and continually 

improved, e.g., in knowledge databases. 

2. The objective micro-colorimetric method of unknown fibre identification using the 

RGB vectors of stained fibre was successfully tested. 

3. The percentage of correctly identified fibre materials (dP) increases with increasing the 

number of pixels and with the sample area detected, while the variability of correctness 

of identification (vdP) as well as the average information added value of 1 px decreases 

simultaneously. 
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