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This study aimed to develop a simple measuring method to determine 
Young’s modulus of a wooden bar by measuring its flexural vibration 
without measuring its weight. Before and after bonding an iron piece to a 
wooden rectangular bar, a free-free flexural vibration test and fixed-fixed 
flexural vibration test were performed to obtain Young’s modulus. 
Young’s modulus was calculated by substituting the ratio of the 
resonance frequencies of a wooden bar with and without a bonded iron 
piece into the frequency equation. The calculated results resembled the 
experimental values determined without the iron piece. 

 
Keywords: Additional mass; Flexural vibration; Measuring weight; Wooden bar; Young’s modulus 

 
Contact information: a: Department of Wood Properties, Forestry and Forest Products Research Institute, 

1 Matsunosato, Tsukuba, Ibaraki, 305-8687 Japan; b: Department of Wood Engineering, Forestry and 

Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 Japan; c: Shikoku 

Research Center, Forestry and Forest Products Research Institute, 2-195 Asakura Nishimachi, Kochi, 

Kochi, 780-8077 Japan; d: Toyama Prefectural Agricultural, Forestry & Fisheries Research Center; 4940 

Kurokawa Shin, Imizu, Toyama; *Corresponding author: kubojima@ffpri.affrc.go.jp 

 

 
INTRODUCTION 
 

 On the basis of the theory of flexural and longitudinal vibrations, the authors 

previously investigated the influence of inhomogeneity of density that was realized by 

bonding an iron piece to a wooden bar on Young’s modulus of the wooden bar. It was 

shown that values for Young’s moduli with an iron piece resembled values without the iron 

piece when calculated using the developed frequency equation, incorporating the effects of 

additional mass and its position (Kubojima et al. 2003, 2005, 2014). In addition, the degree 

and position of the inhomogeneity of density could be estimated by the relationship 

between Young’s modulus and resonance mode number for the flexural vibration. The 

inhomogeneity of density that affected the Young’s modulus was thought to be caused by a 

high density part because of indented rings, knots, or resin (Kubojima et al. 2006b). 

 For the longitudinal vibration, the Young’s modulus could be obtained without 

measuring the weight of a bar using the developed equation (Kubojima and Sonoda 2015); 

hence it is possible that the Young’s modulus for piled lumber could be obtained very 

simply; this method is called “the vibration method with additional mass” in this study. 

 For the flexural vibration, if a measuring method to obtain the Young’s modulus 

without measuring the weight of a bar exists, it will be applicable to various cases. For 

example, the 100% inspection of the deterioration of beams for timber guardrails can be 

considered. Measuring strength properties, for example, the Young’s modulus of a beam 

fixed to a post of a guardrail is required to perform the inspection simply in a short time. 

Moreover, such a method will be also valuable for obtaining the Young’s modulus of a 

beam used for wooden houses and buildings. Measuring Young’s modulus of the timber 

built into structures without knowing the timber density is required and a method using 
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only the stress wave propagation velocity has been proposed. This method is based on a 

database of wood strength performance and density accumulated from a variety of research 

data (Yamasaki and Sasaki 2010; Yamasaki et al. 2010). 

 The objective of this paper was to develop the vibration method with additional 

mass for the flexural vibration using small and clear specimens. A wooden bar with free 

ends was used as the simplest end condition among various end conditions to perform the 

flexural vibration test. Based on the results of the bar with free ends, the vibration method 

with additional mass for the flexural vibration was applied to the fixed ends condition that 

can represent the timber used for actual structures rather than the free ends condition. 

 
 
PROCEDURE OF CALCULATING YOUNG’S MODULUS BY VIBRATION 
METHOD WITH ADDITIONAL MASS 
 

A thin beam is considered. In this case, the effect of shear deflection and rotary 

inertia involved in the flexural vibrational deflection are negligible and the Euler-

Bernoulli’s elementary theory of bending can be applied to the vibration. According to 

Euler-Bernoulli’s theory, the differential equation for the bending of a bar is Eq. 1, 
 

,                                                                             (1) 
 

where E, I, x, y, , A, t are Young’s modulus, the moment of inertia of cross section, 

distance along the bar, lateral displacement, density, cross-sectional area, and time, 

respectively. 

Solving Eq. 1, y is given by Eq. 2, 
 

,                            (2) 
 

where C1 – C4 are constants, n is the resonance mode number, and  is calculated 

according to Eq. 3, 
 

,                                                                                         (3) 
 

where n (= 2fn, f: resonance frequency) is the angular frequency. Then, Young’s 

modulus is Eq. 4, 
 

,                                                                                          (4) 
 

where mn = nl (l is length under free ends condition and span under fixed ends 

condition). 

 The concentrated mass M is placed at x1 = al and x2 = 0 (Fig. 1). 

Since neither bending moment nor shearing force exists at either end under the 

free ends condition, Eq. 5a can be obtained: 
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.                                                                (5a) 

 

 

 
 
Fig. 1. A beam with additional mass 

 

Since the deflection and slope of the deflection curve are equal to zero under the 

fixed ends condition, Eq. 5b can be obtained: 
 

.                                                                  (5b) 
 

Since both parts of the beam are connected and the difference of shearing force is 

equal to the inertia force at x1 = al and x2 = 0, 
 

.                                            (6) 

 

Using Eqs. 2 – 4, 5a, 5b and 6, Eqs. 7a and 7b can be obtained: 

(for free ends) (7a) 

 

(Kubojima et al. 2005) and                                                

(for fixed ends), (7b) 
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where  is the ratio of the concentrated mass to the mass of the bar and is written as Eq. 

8: 

.                                                                                                (8) 
 

If  = 0 is applied to Eqs. 7a and 7b, they result in Eq. 9, 
 

,                                                                      (9) 
 

where the suffix 0 represents the measurement without a concentrated mass. 

From Eq. 9, mn0 is written as Eq. 10, 

        (10) 
 

For a bar without a concentrated mass, Young’s modulus is expressed by Eq. 11, 
 

                                                                                 (11) 
 

Using Eqs. 4 and 11, mn can be expressed by Eq. 12, 
 

                                                                                      (12) 
 

Here, mn and fn in Eq. 12 are the values with a concentrated mass. 

Resonance frequencies fn and fn0 are obtained by the vibration test. The value of  

was calculated by substituting mn from Eq. 12 into Eqs. 7a and 7b. The density was 

obtained by substituting the calculated values for , the concentrated mass, and 

dimensions of a bar into Eq. 8. The Young’s modulus was then calculated using the 

calculated density, dimensions, and resonance frequency without a concentrated mass 

from Eq. 11. 

 
 
EXPERIMENTAL 
 

Materials 
 Sitka spruce (Picea sitchensis Carr.) and Sakhalin spruce (Picea glehnii Mast.) 

specimens, 300 mm long (longitudinal, L), 25 or 30 mm wide (radial, R), and 5 mm thick 

(tangential, T) were conditioned at 20 °C and 65% relative humidity until the weight was 

constant. They were small and clear specimens. All tests were conducted under the same 

conditions. 

 

Free-Free Flexural Vibration Test 
To obtain the Young’s modulus by bending, free-free flexural vibration tests were 

conducted according to the following procedure (Kubojima et al. 2005). The test bar was 

suspended by two threads at the nodal positions of free-free vibration corresponding to its 

resonance mode (0.2242l and 0.7758l for the 1st mode, 0.1321l and 0.8679l for the 2nd 

mode, 0.0944l and 0.9056l for the 3rd mode, 0.2768l and 0.7232l for the 4th mode, 
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0.2265l and 0.7735l for the 5th mode) and then excited in the direction of thickness at 

one end using a wooden hammer, while bar motion was detected by a microphone at the 

other end. The signal was processed through a fast Fourier transform (FFT) digital signal 

analyzer (Multi-Purpose FFT Analyzer CF-5220, Ono Sokki Co., Ltd, Yokohama, Japan) 

to yield high-resolution resonance frequencies (Fig. 2). 

The vibration test was conducted for the specimen with and without iron pieces 

(1: 0.64 g, 2: 1.29 g, 3: 1.90 g) and the resonance frequencies of the first to fifth modes 

were measured. The iron piece was bonded at x = 0, 0.1l, 0.2l, 0.3l, 0.4l, and 0.5l on the 

LR-plane with two-sided adhesive tape. So, the same specimen could be used by bonding 

an iron piece at six positions of the bar. 

 
 
Fig. 2. A diagram of the experimental setup for free-free flexural vibration test 
 
Fixed-Fixed Flexural Vibration Test 
 To obtain the Young’s modulus by bending, flexural vibration tests were 

conducted by the following procedure (Kubojima et al. 2006a). An apparatus (End 

condition controller KS-200, Takachihoseiki Co., Ltd., Tokyo, Japan) shown in Fig. 3 was 

used to provide various end conditions. 
 

 
 

Fig. 3. Schematic diagram of the vibration test under various end conditions 
  

 The regions of 25 mm (L) × 25 mm (R) from both ends were clamped by the 

posts of the apparatus whose cross section was 25 mm × 25 mm. The test bar was 

compressed by screwing a bolt attached to a load cell. The compressing load was measured 

by the load cell and recorded by a data logger. The vibration was excited in the direction of 

the thickness at its center part by a hammer. The motion of the bar was detected by a 

microphone in the center part. The signal was processed through the FFT digital signal 

analyzer mentioned above to yield high-resolution resonance frequencies. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Kubojima et al. (2016). “Modulus with added mass,” BioResources 11(1), 800-810.  805 

The vibration test was conducted for the specimen with and without the above 

mentioned iron pieces 1 to 3, and the resonance frequency of the first mode was 

measured. One of the future possible use of the flexural vibration method with additional 

mass is the inspection of the deterioration of a beam for a timber guardrail, in other 

words, measuring the Young’s modulus of a beam fixed to a post of a guardrail. In this 

case, an iron piece will be bonded at x = 0.5l. Hence, the iron piece was bonded at x = 

0.5l on the LR-plane with two-sided adhesive tape. 

 

 

RESULTS AND DISCUSSION 
 

 To examine whether or not the developed method was applicable to an ideal 

experimental condition, representative examples were considered. The density AM and 

the Young’s modulus EAM by the vibration method with additional mass developed in this 

paper (suffix “AM”: additional mass) were compared with the density 0 and the 

Young’s modulus E0 of the specimen without the concentrated mass, respectively. The 

density 0 was obtained using the dimensions and weight of the specimen while the 

Young’s modulus E0 was obtained using 0 and the measured resonance frequency. 

 

Free-Free Flexural Vibration 
Table 1 shows a representative example of the ratio of the Young’s modulus of 

the bar with the concentrated mass to that without the concentrated mass EAM/E0.  

 

Table 1. The Ratio of the Young’s Modulus of the Bar with the Concentrated 
Mass to that without the Concentrated Mass 

Position  EAM/E0 (=AM/0) 

  
n = 1 n = 2 n = 3 n = 4 n = 5 

 
0.034 1.014 A 1.060 A 0.976 A 1.055 A 1.062 A 

0 0.068 0.998 A 0.958 A 0.942 A 1.011 A 1.538 A 

 
0.10 0.995 A 1.056 A 0.995 A 1.171 A 1.316 A 

 
0.034 0.986 0.492 N -0.027 N 0.758 N 0.886 AN 

0.1l 0.068 0.937 0.329 N -0.164 N 0.671 N 0.927 AN 

 
0.10 0.934 0.398 N -0.279 N 0.748 N 0.958 AN 

 
0.034 0.408 N 1.037 1.110 A 0.889 A 0.365 N 

0.2l 0.068 0.417 N 1.057 0.940 A 0.932 A 0.392 N 

 
0.10 0.405 N 1.042 1.001 A 0.874 A 0.526 N 

 
0.034 1.185 1.028 A 0.828 0.705 N 0.954 A 

0.3l 0.068 1.053 1.061 A 0.775 0.649 N 0.964 A 

 
0.10 1.088 1.055 A 0.781 0.490 N 0.992 A 

 
0.034 1.095 0.971 0.918 N 0.937 A 0.109 N 

0.4l 0.068 1.124 0.979 0.908 N 0.958 A -0.053 N 

 
0.10 1.051 0.962 0.860 N 0.959 A -0.230 N 

 
0.034 1.021 A -0.062 N 0.976 A -0.119 N 1.004 A 

0.5l 0.068 1.029 A -0.126 N 1.022 A -0.242 N 1.016 A 

 
0.10 1.026 A -0.187 N 0.991 A -0.362 N 0.975 A 

: Ratio of the concentrated mass to the mass of the specimen calculated using Eq. 7a, EAM and 

AM: Young’s modulus and density calculated by the vibration method with additional mass, 

respectively, E0: Young’s modulus of the specimen without the concentrated mass, 0: Density from 
volume and weight, A: Near anti-nodal position, N: Near nodal position, n: Resonance mode number 
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The density 0 and Young’s modulus E0 of the specimen without the concentrated 

mass were 418 kg/m3, 11.28 GPa (n = 1), 11.15 GPa (n = 2), 10.86 GPa (n = 3), 10.49 

GPa (n = 4), and 10.21 GPa (n = 5), respectively. The values of  for the iron pieces 1 

through 3 were 0.034, 0.068, and 0.10, respectively. 

Roughly speaking, when the positions of the concentrated mass were near anti-

nodal and nodal positions, EAM/E0 was close to and quite different from 1, respectively. 

The “near” nodal and anti-nodal positions were determined as follows: to express the 

“near” nodal and anti-nodal positions, distance between the position of the concentrated 

mass and the nodal position dN and that between the position of the concentrated mass 

and the anti-nodal position dA were considered. The values of dN and dA were expressed 

by Eqs. 13 and 14, 
 

                                                                                       (13) 
 

                                                                                        (14) 
 

where xCM, xN, and xA represent the position of the concentrated mass, nodal position,  

and anti-nodal position, respectively. The nodal and anti-nodal positions of the flexural 

vibration under free-free conditions are shown in Table 2. When the minimums of dN and 

dA shown in Table 3 were equal to or less than 0.05l, such positions of the concentrated 

mass were “near” nodal and anti-nodal positions, respectively, in this paper. For example, 

when the concentrated mass was bonded at x = 0.2l and the resonance mode number was 

5, dN is expressed by Eq. 15, 
 

  (15) 
 

Table 2. Nodal and Anti-Nodal Positions of Free-Free Flexural Vibration 

n Node Anti-node 

1 0.2242l, 0.7758l 0, 0.5000l, l 

2 0.1321l, 0.5000l, 0.8679l 0, 0.3084l, 0.6916l, l 

3 0.0944l, 0.3558l, 0.6442l, 0.9056l 0, 0.2200l, 0.5000l, 0.7800, l 

4 0.0735l, 0.2768l, 0.5000l, 0.7232l, 0.9265l 0, 0.1711l, 0.3887l, 0.6113l, 0.8289l, l 

5 0.0601l, 0.2265l, 0.4091l, 0.5909l, 0.7735l, 
0.9399l 

0, 0.1400l, 0.3180l, 0.5000l, 0.6820l, 0.8600l, 
l 

n: Resonance mode number 

 
 

 
 
Fig. 4. An example of “near” nodal position (5th mode) 
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Table 3. Minimum of the Distance between the Position of Concentrated Mass 
and Nodal Position and Minimum of the Distance between the Position of 
Concentrated Mass and Anti-Nodal Position 
 

Minimum of dN 

xCM n = 1 n = 2 n = 3 n = 4 n = 5 

0 0.2242l 0.1321l 0.0944l 0.0735l 0.0601l 

0.1l 0.1242l 0.0321l 0.0056l 0.0265l 0.0399l 

0.2l 0.0242l 0.0679l 0.1056l 0.0768l 0.0265l 

0.3l 0.0758l 0.1679l 0.0558l 0.0232l 0.0735l 

0.4l 0.1758l 0.1000l 0.0442l 0.1000l 0.0091l 

0.5l 0.2758l 0 0.1442l 0 0.0909l 

Minimum of dA 

xCM n = 1 n = 2 n = 3 n = 4 n = 5 

0 0 0 0 0 0 

0.1l 0.1000l 0.1000l 0.1000l 0.0711l 0.0400l 

0.2l 0.2000l 0.1084l 0.0200l 0.0289l 0.0600l 

0.3l 0.2000l 0.0084l 0.0800l 0.0887l 0.0180l 

0.4l 0.1000l 0.0916l 0.1000l 0.0113l 0.0820l 

0.5l 0 0.1916l 0 0.1113l 0 

dN: Distance between the position of the concentrated mass and the nodal position, dA: Distance 
between the position of the concentrated mass and the anti-nodal position, xCM: Position of the 
concentrated mass, n: Resonance mode number 

 

Since the minimum dN was 0.0265l, the position of x = 0.2l was near nodal 

position for n = 5 in this paper (Fig. 4). When the concentrated mass was at x = 0.1l and 

the resonance mode number was 5, the minimums of dN and dA were 0.0399l and 0.04l, 

respectively. Hence, the position of x = 0.1l was near nodal and anti-nodal positions for n 

= 5 in this paper. 

This tendency can be explained by the relationship between mn and  calculated 

using Eq. 7a. Figure 5 shows the relationship between m1 and  as an example. The larger 

absolute value of the differential coefficient of the m1- relationship is suitable because 

the effect of any errors in mn caused by measuring the resonance frequency on  can be 

ignored.  
 

 
Fig. 5. The relationship between m1 and  calculated using Eq. 7a (free ends condition)  
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Although it is possible to obtain the accurate Young’s modulus in a case of the 

smaller absolute value of the differential coefficient of the m1- relationship, for 

example, in a case of the larger concentrated mass, it will be difficult to obtain the 

accurate Young’s modulus. From Fig. 5, the absolute values of the differential coefficient 

of the m1- relationship of the bar with the concentrated mass bonded near the anti-nodal 

positions (0 and 0.5l) were larger than those of the bar with the concentrated mass bonded 

near the nodal positions (0.2l).  

It is thought that EAM was reasonable in the case of 0.95  EAM/E0  1.05. When 

the position of the concentrated mass was near anti-nodal position, more than half of EAM 

were reasonable. Therefore, the developed measuring method in this study was effective 

to obtain the accurate Young’s modulus without measuring the weight of the bar. 

 
Fixed-Fixed Flexural Vibration 

The results of the free-free flexural vibration suggested that the vibration method 

with additional mass was effective when the concentrated mass was bonded around anti-

nodal positions. Hence, the first resonance mode of the bar with the concentrated mass 

bonded at x = 0.5l was investigated. The resonance frequencies of the bar with the 

concentrated mass were measured when the resonance frequency was stable, as shown in 

Fig. 6. Compression stresses at ends of the specimens were about 2600 kPa. Figure 7 

shows the relationship between m1 and calculated using Eq. 7b. This was similar 

tendency to that under free ends conditions (Fig. 5): the absolute value of the differential 

coefficient of the m1- relationship decreased with the increase in . 

The following is a representative example of the results. The density 0 and 

Young’s modulus E0 without the iron piece were 432 kg/m3 and 9.04 GPa, respectively. 

The values of  for the iron pieces 1 through 3 were 0.046, 0.093, and 0.137, 

respectively. The ratios of the bar with the concentrated mass to that without the 

concentrated mass EAM/E0 (= AM/0) were 1.062 (= 0.046), 1.071 (= 0.093), and 

1.069 (= 0.137). These results were not within the range of 0.95  EAM/E0  1.05 

mentioned above. We think that this is attributed to the fact that realizing the perfect 

fixed-fixed condition is very difficult (Kubojima et al. 2006a). Therefore, it was 

concluded that the appropriate Young’s modulus was obtained by the vibration method 

with additional mass under fixed ends condition. 
 

 
 

Fig. 6. Change in resonance frequency with compression 
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Fig. 7. The relationship between m1 and  calculated using Eq. 7b (Fixed ends condition) 
 
 
CONCLUSIONS 
 

1. A frequency equation of flexural vibration incorporating the effects of additional 

mass and its position under fixed-fixed condition was developed. 

2. The Young’s moduli by the developed flexural vibration method with additional mass 

under free-free and fixed-fixed conditions were close to the experimental value 

without a concentrated mass. These results mean that the appropriate Young’s 

modulus can be obtained by the vibration method with additional mass for the 

flexural vibration. 

3. The larger absolute values of the differential coefficient of the m1- relationship, for 

example, bonding the smaller concentrated at the anti-nodal positions, is suitable to 

obtain the accurate Young’s modulus because the effect of any errors in m1 caused by 

measuring the resonance frequency on  can be ignored. 
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