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Principles and methods to dynamically test the Poisson’s ratio of isotropic 
material and timber are proposed in this work. Five species of lumbers 
were processed into cantilever plates of tangential, radial, and cross 
sections with different length-width ratios of 6, 5, 4, and 3. The “Shell 63” 
element in ANSYS software was adopted to calculate strain and stress 
under the first-order bending mode. The paste position of the strain rosette 
for the Poisson’s ratio of timber was obtained through strain-stress 
relationship and regression analysis under states of stress, strain analysis, 
and plane stress. This method was also applied to steel, aluminum, and 
glass. For both isotropic and orthotropic materials such as timber, the 
paste positions of the strain rosette were determined by the position where 
transverse stress within the plate was zero during the first-order bending 
vibration. Meanwhile, the lateral and longitudinal strains of the spectrum 
were measured using the transient excitation method. In the spectrum, the 
ratio of linear amplitude between the lateral and longitudinal strain of the 
first-order bending frequency was taken as the measured value of the 
Poisson’s ratio of the material. The accuracy of the results was verified by 
axial tension and static four-point bending tests. 

 
Keywords: Cantilever plate; First-order bending mode; Stress; Strain; Poisson’s ratio 

 
Contact information: a: College of Materials Science and Engineering and b: College of Mechatronics 

Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037 China;  

* Corresponding author: wangzheng63258@163.com 

 

 
INTRODUCTION 
 

Timber is an orthotropic material. The elastic constants in the main direction are 

EL, ER, ET, GLR, GLT, GRT, µLR, µRT, µRL, µTL, and µTR. Among the six Poisson’s ratios, only 

three of them are independent, specifically µLR, µLT, and µRT (or µTR); the other three can 

be calculated based on the forward elastic modulus and the aforementioned Poisson’s ratios 

through the symmetry of the flexibility matrix. Therefore, there are nine independent 

elastic constants for timber—three each for elastic modulus, shear moduli, and Poisson’s 

ratio (Sun 1999; Tan and Zhou 2007). Poisson’s ratio is defined as the absolute value of 

the ratio between transverse strain and longitudinal strain in the linear segment of the axial 

tension (compression) curve (Liu 1983). 

From the perspective of definition, the specimen for testing Poisson’s ratio should 

be under unidirectional stress, and the corresponding strain should be in the linear segment 

of the tensile curve. Generally, axial compression is often applied to the static test of the 

Poisson’s ratio of timber, with specimen sizes of 20 mm × 20 mm × 30 mm, 20 mm × 20 

mm × 50 mm, or 30 mm × 30 mm × 60 mm. If the Poisson’s ratio of the cantilever plate is 

measured based on the first-order bending mode, there is a transverse normal stress (σy) in 

addition to the normal stress (σx) during its first-order bending vibration. In other words, 
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internal stress is not an uneven biaxial plane stress during the first-order bending vibration 

of the cantilever plate. Furthermore, there is a difference of constant factor between stress 

and strain at each point during the modal vibration of the plate. However, the given value 

of stress or strain itself has no engineering meaning. 

According to the stress and strain analysis of the cantilever plate in the first-order 

bending mode, the transverse stress (σy) in the plate is very small. It even monotonically 

decreases from a positive to a negative value along the centerline of the plate, which means 

there is a position (x0) where σy = 0. In other words, there is an area where the cantilever 

plate is under uniaxial stress during the first-order bending vibration of the cantilever plate, 

in accordance with the definition of Poisson’s ratio. Furthermore, during the modal 

vibration of the plate, there is a difference of constant factor among the stresses of various 

points, which does not hinder the measurement of the Poisson’s ratio because it is the ratio 

of transverse strain to longitudinal strain. Therefore, the constant factor is eliminated 

during the calculation of Poisson’s ratio. It is thus feasible to measure Poisson’s ratio by 

pasting the strain gauge at the appropriate position based on the first-order bending mode 

of the cantilever plate (Fu 2002). It should be noted that the transverse stress (σy) should 

not be ignored, even if it is very small, because there is a significant difference among the 

three elastic moduli of timber. The correct measured value of Poisson’s ratio can only be 

obtained when the strain rosette is at the position of σy = 0. 

In 2015, Wang (2015) dynamically measured the Poisson’s ratios along the grain 

of the radial section (µLR), across the grain on the radial section (µRL), and across the grain 

on the transverse section (µRT) of timber. In 1996, Ma (1996) studied the distribution of the 

0° uniaxial fiber-composite cantilever plate on the center line (–εy/εx) along the plate length 

(with length-to-width ratios of 3, 4, and 5) using the difference method (Ma 1996), thus 

determining Poisson’s ratio. However, the principle of testing µLR, µLT, and µRT was not 

provided with an overall explanation in the two literatures theoretically. 

There are a lot of methods of measuring Poisson’s ratio of materials. For example, 

there are the mechanical static testing method using two pairs of extensometers, the 

acoustic method using stimulated Brillouin scattering (SBS), surface acoustic wave (SAW) 

and acoustic microscopy (AM), the electrometric method, and the optical method based on 

the theory of photoelastic wave and vibration theory of elastic resonance. However, at 

present, there have been rather few studies on the Poisson's ratio of wood. Especially, the 

dynamic measurement of Poisson's ratio for viscoelastic materials has not received enough 

attention. The axial tension or compression is the most commonly used method for 

statically testing the wood Poisson ratio. Because the method of the axial tension or 

compression test should be conducted using the material testing machine, there is the 

problem of loading through the centre. For the axial compression method, the contact 

condition between the machine clamp and the surface of specimen may also cause 

problems. Therefore, the measurement of wood Poisson's ratio by the axial tension or axial 

compression test has critical requirements that are hard to fulfill. Besides, it is difficult to 

get high accuracy, and the resulting Poisson’s ratio values are prone to showing a large 

dispersion. In this work, the method of dynamic testing of wood Poisson's ratio according 

to the first-order bending mode of the cantilever plate is proposed. This approach can 

quickly determine the position to paste the strain rosette and has advantages of swiftness, 

convenience, high accuracy, and good repeatability. In addition, the testing data has low 

dispersion. The position to paste strain rosette for dynamic measurement of Poisson's ratio 

in tangential section LT is related to wood density and width-to-length ratio of the 

cantilever plate; the position to paste strain rosette for dynamic measurement of Poisson's 



 

PEER-REVIEWED ARTICLE                  bioresources.com 

 

 

Gao et al. (2016). “Poisson’s ratio evaluation,” BioResources 11(3), 5703-5721.  5705 

ratio in radial section LR and in cross section RT are only related to width-to-length ratio 

of the cantilever plate. The frequency spectrums of lateral and longitudinal strain of the 

strain rosette were obtained by transient excitation method. The value of Poisson’s ratio by 

dynamic test is the ratio between linear spectral amplitudes of transverse and longitudinal 

strains under the first-order bending frequency. Poisson's ratios in the tangential and radial 

sections of Pinus tabulaeformis, in the radial and cross sections of Sitka spruce, Mongolian 

oak, and others were measured by dynamic tests. Then the correctness of it was verified by 

static tests. 

Particularly, Functional Gradient Material (FGM) and nanowire are both advanced 

materials with function of use, adaption to the environment, and controllability. They 

represent the development direction of material science in this century. Over the years, a 

lot of research work has been conducted on FGM from three aspects: material design, 

manufacture, and performance evaluation. Indeed, many innovative achievements have 

been obtained, but the mechanical properties still remains in the period of theoretical 

prediction. In addition, there are quite a few papers about experimentally measuring elastic 

constants of FGM and nanowire materials. Thereinto, the theory of hyperbolic sine shear 

deformation was applied to analyzing static bending and free vibration of FGM (Hebali et 

al. 2014). In another paper (Bouderba et al. 2013), the theory of trigonometric shear 

deformation was applied to describing the distribution of transverse shear stress and 

predicting the thermomechanical bending response of functionally graded plates for FGM. 

Currently, nanomaterials still remain in the step of computational analysis by finite element 

theory. In our work, finite element calculation and experimental tests are combined. This 

idea and method can be applied to the dynamic measurement and analysis of Poisson's ratio 

of novel materials, such as FGM and nanowires. 

In this work, the principle and method for dynamically testing the Poisson’s ratio 

of timber were explained based on the stress-strain physical relationship (Hooke’s Law) 

and the stress-strain analysis of the cantilever plate in the first-order bending mode. 

Furthermore, the accuracy of the testing results was verified using a static test. 

Furthermore, the principle and method of testing the Poisson’s ratio of timber were 

also applied to isotropic materials. The position of the strain rosette used to measure 

Poisson’s ratio was also obtained from the dynamic testing of the isotropic materials. The 

results showed that the Poisson’s ratios of the materials (e.g., steel, rolled aluminum, and 

copper) according to both the dynamic and static tests corresponded to the code values. 

This work applies to the measurement of Poisson’s ratio for both metals and nonmetals 

isotropic materials, and wood which is a heterogeneous and anisotropic natural polymer 

material.  

 

 
EXPERIMENTAL 

Dynamic and static tests were conducted to measure the Poisson’s ratios of timber 

and isotropic materials. The static test was aimed at verifying the correctness of dynamic 

test.  
 

Method of Pasting the Strain Rosette and Bridge Connection 
Specimens from the tangential section (LT), radial section (LR), and transverse 

section (RT) were made according to the L, R, and T directions of timber. Based on the 

length-to-width ratios (or width-to-length ratios) of the cantilever plate, the positions of the 

strain rosette were calculated according to Eqs. 3, 4, and 5. Both the upper and lower sides 
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of the plate were pasted with a cross strain rosette at the calculated position. The testing 

results showed that the ratios of lateral strain to longitudinal strain for the upper and lower 

sides of the plate using a quarter bridge connection were not always the same. Sometimes 

the difference was significant, which indicates the variation of performance along the 

thickness of the plate. To improve the accuracy of the measurement, the transverse and 

longitudinal strain gauges of the upper and lower sides were connected in the half-bridge 

for mutual compensation in measuring Poisson’s ratio. For isotropic materials, only one 

cross strain rosette should be pasted on both the upper or lower sides of the cantilever plate, 

namely the quarter-bridge connection. 

 

Experimental Flow Chart  
Figure 2 shows the flow chart of measuring the dynamic Poisson’s ratio. Data were 

collected from two channels. Channel 1 was connected to the longitudinal strain gauge, 

and Channel 2 was connected to the transversal strain gauge. The specimen was excited at 

the position near the free end of the centerline to do free vibration. Based on the first-order 

bending frequency of the cantilever specimen, a low-pass filter was first applied for 

filtering out the second and higher orders of frequencies (Wang 2007). The collected data 

were processed using Nanjing Analyzer (Nanjing Analyzer Software Engineering Co., Ltd.; 

Nanjing, China) with SsCRAS software (vibration and dynamic signal acquisition analysis 

system) for spectrum analysis (Brancheriau and Bailleres 2002; Wang et al. 2008). The 

amplitudes of the linear spectrum of the lateral and longitudinal strain of the first-order 

bending frequency can be seen in Fig. 1. The ratio of amplitude between the transverse and 

longitudinal strains was the measured value of Poisson’s ratio. Each test was conducted 

three times. The average of the amplitude ratio between the transverse and longitudinal 

strain was taken to be the dynamically measured value of the specimen’s Poisson’s ratio. 

 

 
Fig. 1. Flow chart of measuring Poisson’s ratio using the transient excitation dynamic test 

 

 

RESULTS AND DISCUSSION 
 

Figure 2 shows the frequency spectrum of Mongolian Oak specimen No. 4 (Wang 

et al. 2008; Wang et al. 2012). Through the calculation of the amplitude ratios between the 

transverse and longitudinal strain at the first-order bending frequency, the Poisson’s ratio 

was calculated to be 0.577. 

Figure 3 shows the waveform of Mongolian Oak specimen No. 4. Channel 1 

represents the waveform of the longitudinal strain, and Channel 2 represents the waveform 

of the transverse strain. The waveforms of the longitudinal and transverse strains are in 

reverse, with a phase difference of 180°; they differed by a negative sign. 
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Fig. 2. Frequency spectrum of Mongolian Oak specimen No. 4 
 

 

 
 

Fig. 3. Waveforms of the longitudinal and transverse strains of Mongolian Oak specimen No. 4 
 

According to the waveform of Mongolian Oak specimen No. 4, the Poisson’s ratio 

was calculated to be 0.578 based on the average ratio of the peak values of transverse to 

longitudinal dynamic strains. This result indicates that the measured values of Poisson’s 

ratio are the same whether they were calculated from the time domain (peak-to-peak value 

of waveform) or from the frequency domain (amplitude of the linear spectrum at the first-

order bending frequency of the frequency spectrum). Therefore, the dynamically measured 

value of Poisson’s ratio was obtained from the frequency spectrum. 

 

Dynamic Measurement of Poisson’s Ratio for Timber 
Dynamic measurement of Poisson’s ratios µLT and µLR for Chinese pine 

The size of the Chinese pine specimen was 300 mm × 60 mm × 12.2 mm, with a 

clamping length of 60 mm; thus a cantilever plate of l/b = 4 was realized. There were five 

specimens each for both the radial and tangential sections. The position of the strain rosette 

on the radial section was x0 = 0.544l, determined by Eq. 4; the position of the strain rosette 
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on the tangential section was x0 = 0.567l, determined by Eq. 3. Air-dry density was 

calculated with an average of 0.472 g/cm3. 

 

 
 

Fig. 4. Frequency spectrums of the longitudinal and transverse strains of tangential-section 
Chinese Pine specimen No. 6 

 

Table 1. Dynamic Testing Values of µLR and µLT of Chinese Pine 

No. Orientation 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Density 
(kg/m3) 

First 
Order 

Bending 
Frequency 

(Hz) 

y   

  
x   

  
Measurement 

of μ 

Y1 LR 240 59.9 12.23 532 120.63 6.9 15.2 0.45 

Y2 LR 240 60.0 12.07 471 125.00 9.8 24.4 0.40 

Y3 LR 240 60.1 12.31 517 100.63 8.2 18.9 0.44 

Y4 LR 240 60.8 12.24 477 102.50 9.4 23.0 0.41 

Y5 LR 240 60.2 12.31 477 120.63 5.1 13.7 0.37 

Y6 LT 240 60.2 12.22 432 115.00 10.4 22.3 0.47 

Y7 LT 240 60.0 12.22 555 107.50 18.8 44.0 0.43 

Y8 LT 240 60.7 12.45 362 127.50 19.0 35.6 0.53 

Y9 LT 240 60.0 12.30 408 117.50 16.4 32.7 0.50 

Y10 LT 240 60.0 12.24 414 119.38 9.3 20.8 0.45 

 

The measured values of the dynamic Poisson’s ratio µLR on the radial section for 

Chinese pine were as follows: mean value of 0.41, standard deviation of 0.032, and 

variation coefficient of 7.8%. The measured values of the dynamic Poisson’s ratio µLT on 

the tangential section of Chinese Pine were as follows: mean of 0.48, standard deviation of 

0.040, and variation coefficient of 8.4%. 

 

Dynamic measurement of the Poisson’s ratio µLR of Sitka spruce 

The size of the radial-section specimen of Sitka spruce was 625 mm × 107 mm × 

12.2 mm, with a clamping length of 60 mm. Thus, a cantilever specimen of l/b = 4.5 was 

realized, and the number of specimens was 11. When l/b = 4.5, the position of the strain 

rosette on the radial section was x0 = 0.52l, according to Eq. 4. 
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Fig. 5. Frequency spectrums of the longitudinal and transverse strains of radial-section Sitka 
spruce specimen No. XJ7 

 

Table 2. Dynamic Testing Values of µLR of Sitka Spruce 

No. Orientation 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Density 
(kg/m3) 

First Order 
Bending 

Frequency 
(Hz) 

y  

  
x  

  
Measurement 

of μ 

XJ1 LR 482 107.0 12.20 361 43.44 1.26 3.27 0.39 

XJ2 LR 482 106.8 12.19 354 43.13 2.01 5.17 0.39 

XJ3 LR 482 108.5 12.26 359 43.75 2.49 6.07 0.41 

XJ4 LR 482 108.5 12.26 360 42.81 2.41 6.08 0.41 

XJ5 LR 482 107.0 12.46 358 43.13 4.67 9.94 0.47 

XJ6 LR 482 107.0 12.32 345 43.44 3.30 7.33 0.45 

XJ7 LR 482 107.0 12.05 361 40.94 3.22 7.97 0.40 

XJ8 LR 482 106.8 12.27 347 43.44 2.63 6.96 0.38 

XJ9 LR 482 107.0 12.34 347 43.44 3.13 7.56 0.41 

XJ10 LR 482 106.8 12.37 359 43.44 2.70 6.94 0.39 

XJ11 LR 482 107.2 12.29 376 44.44 2.34 6.65 0.35 

 

The measured values of the dynamic Poisson’s ratio µLR of the radial section of 

Sitka spruce were as follows: mean value of 0.40, standard deviation of 0.033, and variation 

coefficient of 8.1%. 

 

Dynamic measurement of the Poisson’s ratio (µRT) of Sitka spruce 

The cross-section specimen of Sitka spruce measured 220 mm × 60 mm × 12.2 mm, 

with a clamping length of 40 mm. Thus, a cantilever specimen of l/b = 3 was realized, and 

the number of specimens was four. As l/b = 3, the position of the strain rosette on the radial 

section should be x0 = 0.5 l, according to Eq. 5. 
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Fig. 6. Frequency spectrums of the longitudinal and transverse strains of the cross-section of 
Sitka Spruce specimen No. 2 
 

Table 3. Dynamic Testing Values of the µRT of Sitka Spruce 

No. Orientation 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Density 
(kg/m3) 

First Order 
Bending 

Frequency 
Hz 

y  

  
x  

  
Measurement 

of μ 

XH1 RT 180 59.7 12.14 361 90.0 6.5 11.6 0.56 

XH2 RT 180 59.5 12.08 354 90.0 4.2 7.4 0.57 

XH3 RT 180 59.9 12.48 359 77.5 12.0 19.2 0.63 

XH4 RT 180 59.4 12.37 360 92.5 5.8 11.1 0.52 

 

The measured values of the dynamic Poisson’s ratio µLR of Sitka spruce on the cross 

section were as follows: mean value of 0.57, standard deviation of 0.042, and variation 

coefficient of 7.4%. 

 

Dynamic measurement of the Poisson’s ratio of Mongolian oak 

 

Table 4. Dynamic Testing Values of the Poisson’s Ratio of Mongolian Oak 

No. 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Density 
(kg/m3) 

First Order Bending 
Frequency 

(Hz) 

Measurement 
of μ 

O1 646 129.5 12.86 807 22.00 0.52 

O2 650 129.0 18.32 892 26.88 0.42 

O3 650 129.5 18.51 715 29.88 0.61 

O4 650 130.0 18.56 778 29.36 0.56 

O5 650 129.5 18.31 796 31.25 0.44 

O6 516 126.5 18.55 825 50.13 0.47 

O7 650 129.5 18.47 869 29.38 0.54 

O8 650 129.5 18.43 664 28.13 0.43 

O9 650 129.5 18.31 814 27.88 0.48 

O10 650 130.0 18.53 885 29.69 0.37 
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The size of the specimen was 710 mm × 130 mm × 18 mm, with a clamping depth 

of 60 mm, and 10 specimens were prepared. The cantilever plate had dimensions of 650 

mm × 130 mm × 18 mm and l/b = 5, with an average air-dry density of 800 kg/m3. 

The along-the-grain specimen of Mongolian oak, obtained from the floor blank 

without notches, was not a single radial-section or tangential-section specimen. For the 

specimen of Mongolian oak with ρ = 800 kg/m3 of l/b = 5, the positions of the strain rosette 

were all x0 = 0.5l according to Eqs. 3 and 4. 

The measured values of the dynamic Poisson’s ratio of Mongolian oak were as 

follows: mean value of 0.48, standard deviation of 0.073, and variation coefficient of 

15.2%. 

 

Static Measurement of Poisson’s Ratio for Timber 
Measurement of the Poisson’s ratio by the axial tension test 

First, three pieces of lumber with nominal sizes of 300 mm × 40 mm × 12.2 mm 

that were sawn from a large board of Sitka Spruce with a width of 107 mm were taken as 

specimens in the dynamic test (the same specimen numbers were selected).  

The measurement set-up consisted of the following:  

● YD-28A type dynamic strain gauges (East China Electronic Instrument; Shanghai, 

China); 

● BX120-5AA type Strain Gauge with resistance of 120 ohms, sensitivity factor of 2.08 ± 

1% and length and width of 5 mm and 3 mm (Beijing Yiyang Strain and Vibration Testing 

Technology Co., Ltd.; Beijing, China) 

● One Nanjing Analyzer AZ308R-type Signal Collection Box (Nanjing Analyzer Software 

Engineering Co., Ltd.; Nanjing, China); 

● One SANS100KN-300KN Universal Mechanical Testing Machine. (Shenzhen Sans 

Material Test Instrument Co., Ltd.; Shenzhen, China). 

Before testing, each side of the specimen was pasted with a strain rosette. 

Longitudinal and transverse gauges on both sides were connected in the series to eliminate 

the bending strain caused by improper loading during the stretching process. The outputs 

of the longitudinal and transverse gauges of the strain rosette were connected to Channels 

1 and 2, respectively, of the signal collection box by the quarter-bridge method. SsCRAS 

software was used to record the longitudinal and transverse strains. During testing, the test 

machine provided continuous loading, with a tensile loading rate of 1 mm/min. The 

recorded values of the longitudinal and transverse strains were within a loading range 

between the lower limit of 2 kN and the upper limit of 3.5 kN. In data processing, the text 

file of the signal collection box recorded the values of the longitudinal and transverse 

strains under loads from the lower to upper limits. Then, several groups of values were 

selected to verify their linearity for the determination of Poisson’s ratio based on the slope. 

Poisson’s ratio was simply calculated according to Eq. 1: 

 

strain allongitudin oflimit lower strain allongitudin oflimit upper 

strain e transversoflimit lower strain e transversoflimit upper 

-

-
=

εε

εε
μ

  (1) 
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Static measurement of Poisson’s ratio with a four-point bending test 

The specimens were selected from those used in the measurement of the dynamic 

Poisson’s ratio, with the same specimen numbers. The nominal size of the radial section of 

Chinese pine and Sitka spruce was 300 mm × 12.2 mm × 12.2 mm, with a span of 240 mm 

and a loading type l/3-l/3-l/3. The nominal size of the transverse section of Sitka spruce 

was 220 mm × 12.2 mm × 12.2 mm, with a span of 200 mm and a loading type l/4-l/2-l/4. 

 

Table 5. Four-Point Bending and Axial Tension Measurement of the Static 
Poisson’s Ratio for the Tangential Section of Chinese Pine and the Transverse 
and Radial Sections of Sitka Spruce 

No. Species Orientation 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Measurement 
by axial tension 

(μ) 

Measurement 
by four-point 

bending 
 (μ) 

Dynamic 
 (μ) 

Y6 
Chinese 

pine 
LT 300 60.2 12.22 ND 0.42 0.47 

Y7 
Chinese 

pine 
LT 300 60.0 12.22 ND 0.57 0.52 

Y8 
Chinese 

pine 
LT 300 60.7 12.45 ND 0.51 0.51 

Y9 
Chinese 

pine 
LT 300 60.0 12.30 ND 0.45 0.50 

Y10 
Chinese 

pine 
LT 300 60.0 12.24 ND 0.42 0.42 

 

Mean 

 

0.474 0.484 

Variation 
coefficient 

13.7% 8.3% 

XJ2 
Sitka 

spruce 
LR 300 106.8 12.19 ND 0.37 0.39 

XJ4 
Sitka 

spruce 
LR 300 108.5 12.26 0.40 0.40 0.41 

XJ6 
Sitka 

spruce 
LR 300 107.0 12.32 0.44 0.44 0.45 

XJ8 
Sitka 

spruce 
LR 300 106.8 12.27 0.36 0.39 0.38 

XJ10 
Sitka 

spruce 
LR 300 106.8 12.37 ND 0.34 0.39 

 

Mean 0.4 0.388 0.404 

Variation 
coefficient 

10% 9.5% 6.9% 

XH1 
Sitka 

spruce 
RT 220 59.7 12.14 ND 0.56 0.57 

XH2 
Sitka 

spruce 
RT 220 59.5 12.08 ND 0.58 0.55 

XH3 
Sitka 

spruce 
RT 220 59.9 12.48 ND 0.62 0.63 

XH4 
Sitka 

spruce 
RT 180 59.4 12.37 ND 0.53 0.53 

 

Mean 

 

0.573 0.570 

Variation 
coefficient 

6.6% 7.6% 
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For specimens taken from the radial and tangential sections, the lower limit loading 

was 4.165 N, and the upper limit loading was 16.66 N (△P = 12.496 N). In terms of the 

transverse-section specimen, the lower limit loading was 1.0192 N, and the upper limit 

loading was 2.744 N (△P = 1.7248 N). Furthermore, µ = –Δεtransverse strain / Δεlongitudinal strain. 
Each specimen was tested three times, and the average of the second and third test 

values was taken as the measured value of the Poisson’s ratio. 

 
Measurement of Poisson’s Ratio for Isotropic Materials 

The dynamic and static testing methods of measuring the Poisson’s ratio for 

timber can be applied to isotropic materials. The only difference was the position to paste 

strain rosette.  

Figure 7 shows the dynamic and static loading methods for measuring the Poisson’s 

ratio of the cantilever plate made of isotropic materials. The Poisson’s ratio was measured 

by exciting the cantilever plate to the first-order bending vibration (Wang et al. 2015), 

while the static Poisson’s ratio was measured by applying a concentrated load at the 

midpoint of the free end of the cantilever plate to generate static strain. 

 
Fig. 7. Static and dynamic loading methods for measuring the Poisson’s ratio of the cantilever 
plate 

 

For specimens of steel, rolled aluminum, and rolled pure copper with sizes as 

indicated in Table 6, positions to paste strain rosette were determined by Eqs. 7 and 8. 

Testing results are also shown in Table 6. 

 

Table 6. Results of the Dynamic and Static Poisson’s Ratios of Steel, Aluminum, 
and Copper 

No. Material 
Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Dynamic 
patch x/l 

Dynamic 
(μ) 

Static 
patch 

x/l 
Static (μ) 

St1 Steel 200 39.9 2.87 0.4217 0.316 0.5769 
0.315 

(tension) 

St1 Steel 200 39.9 2.87 0.4217 0.316 0.5769 
0.312 

(bending) 

St2 Steel 200 39.9 2.85 0.4217 0.309 0.5769 
0.318 

(tension) 

Al1 
Rolled 

aluminum 
200 49.5 2.73 0.4663 0.341 0.5850 

0.337 
(bending) 

Al2 
Rolled 

aluminum 
200 49.5 2.81 0.4663 0.345 0.5850 

0.339 
(bending) 

Cu1 
Rolled 
pure 

copper 
200 40.0 4.00 0.4217 0.339 0.5769 

0.327 
(bending) 
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According to the data in Table 6, the measured Poisson’s ratios of rolled aluminum 

and pure copper were within the range of their code values. Furthermore, the Poisson’s 

ratios obtained from the dynamic and static tests were extremely consistent, with a 

maximum difference of only 3.5%; the dynamically tested Poisson’s ratio of steel was also 

in accordance with that of the static test in axial tension, with a difference of only 1.3%. 

Therefore, the accuracy of the dynamic measurement of Poisson’s ratio for isotropic 

materials was verified by the axial tension and bending tests. 

When the cantilever plate is in bending vibration or static bending, points in the 

plate are in the condition of biaxial plane stress. According to the stress-strain relationship 

of isotropic and orthotropic materials under the condition of biaxial stress, in other words, 

the Hooke’s Law, absolute value of the ratio between transverse and longitudinal strains 

equals to the Poisson’s ratio only on the points where transverse stress σy = 0. To determine 

the position where σy = 0 when the cantilever plate is in first-order bending vibration or 

static bending, by ANSYS software, the output stress and strain results showed that there 

is truly a point where σy = 0. At this position the absolute value of the ratio between 

transverse and longitudinal strains equals the input value of Poisson’s ratio in ANSYS. 

Therefore, the position where σy = 0 is where strain rosette should be pasted. At this 

position, measured absolute value of the ratio between transverse and longitudinal strains 

can be accepted as measured value of Poisson’s ratio. It is recommended for dynamic 

measurement of Poisson’s ratio that the ratio between amplitudes of transverse and 

longitudinal strain in the linear part of first-order bending frequency in the spectrum of 

cantilever plate should be taken as the measured value of Poisson’s ratio.  
The calculation results showed that the positions where σy = 0 for dynamic and 

static tests are different. Its correctness has been verified by dynamic and static tests of 

steel, rolled aluminum and pure copper (Table 6).  

Dynamic tests of Poisson’s ratio for Chinese pine (tangential and radial sections), 

Sitka spruce (radial and cross sections) and Mongolian oak were conducted according to 

correct positions to paste strain rosette proposed in this work. To verify the correctness of 

positions to paste strain rosette, static axial tension tests of Poisson’s ratio for Sitka spruce 

(radial section) and static four-points bending tests for Chinese Pine (tangential section) 

and Sitka spruce (cross section) were then conducted. Data in Table 5 indicates that the 

results from static and dynamic tests were fairly identical according to the mean values. As 

for data scattering, results from dynamic testing were better than that from static tests. This 

demonstrates the correctness of dynamic measurement of Poisson’s ratios µLT, µLR, and µRT  

is verified by static axial tension test and static four-points bending test. 

For timber and isotropic materials, principles of dynamic and static measurements 

of Poisson’s ratio are as follows:  
 

Stress-Strain Relationship of Timber 
During the first-order bending vibration, there was biaxial plane stress within the 

cantilever plate. In terms of the tangential section of the cantilever plate, the relationship 

between strains (𝜀𝐿 in the L direction and 𝜀𝑇 in the T direction) and stresses (σL and σT) can 

be expressed as follows: 
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According to the symmetry of the flexibility matrix, it was determined that ETµLT = 

ELµTL. The first subscript letter of µ notes the direction of stretching, and the second letter 

denotes the direction of shrinkage. Meanwhile, µTL denotes the shrinkage along direction 

L caused by stretching along direction T, specifically  
 

T

L
TL




   

 

The expressions for σL and σT were derived from to Eq. 1, such that 
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Similarly, through analysis of the relationship between strain (εL, εR) and stress (σL, 

σR) in the directions of L and R, it was found that  
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  when σR = 0, namely 
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Based on the above analysis, for tangential-section timber cut along the L and T 

directions, µLT can be measured by pasting a cross strain rosette at the position of σT = 0. 

For radial sections of timber intercepted along the L and R directions, µLR can be measured 

by pasting the cross strain rosette at the position of σR = 0. 

For the Poisson’s ratios of the transverse section (µRT or µTR), the relevant stress-

strain relation can be described in Eq. 3, 
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which is solved as, 
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  and when σT = 0, 
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According to the symmetry of the flexibility matrix, it was found that ETµLT = ELµTL 

(on the tangential section); ERµLR = ELµTL (on the radial section); and ETµRT = ERµTR (on 

the transverse section). Therefore, there are only three independent Poisson’s ratios: µLT, 

µLR, and µRT (or µTR). 
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Stress and Strain Analysis of the First-order Bending Mode of the 
Cantilever Plate 
Material constants input in ANSYS calculation 

The “Shell 63” element was used for ANSYS calculation, with mesh generations 

of 60 × 10, 50 × 10, 40 × 10, and 30 × 10 applied to specimens with l/b = 6, 5, 4, and 3, 

respectively. In the ANSYS calculation, the main-direction elastic constants of the 

tangential section (Table 1) were input to obtain the positions of the strain rosette pasted 

for measuring µLT. 

 

Table 7. Elastic Constants of Balsa, Spruce, Scots pine, Ash, and Beech 
(Tangential Section) 

Material 
Parameters 

Spruce Beech Scots pine Balsa Ash 

xE GPa  11.60 13.70 16.3 6.30 15.80 

yE GPa  0.50 1.14 0.57 0.11 0.83 

zE GPa  0.90 2.24 1.1 0.30 1.52 

xy  0.47 0.51 0.57 0.49 0.51 

yz  0.25 0.36 0.31 0.24 0.39 

xz  0.37 0.45 0.42 0.23 0.46 

xyG GPa  0.72 1.06 0.68 0.20 0.90 

yzG GPa  0.04 0.46 0.07 0.31 0.27 

xzG GPa  0.75 1.61 1.16 0.033 1.31 

 3/ mkg  390 750 550 200 670 

 

In the ANSYS calculation, the relationships between the coordinate axes (x, y, and 

z) and the timber directions (L, T, and R) were as follows. 

On the radial section: TzRyLx  ,, ; 

On the tangential section: RzTyLx  ,,  (corresponding to data in Table 1); 

On the transverse section: LzTyRx  ,, . 

The nine elastic constants were input to the radial and transverse sections of timber 

according to the corresponding relationships between the coordinate axes and timber 

directions. 

 

Output information of ANSYS calculation 

Based on the stress data of the first-order bending mode, σy/σx was calculated by 

selecting the σx and σy of each node on the center line of the plate. Based on the strain data 

of the first-order bending mode, –εy/εx and –εz/εx were calculated by selecting the εx, εy, and 

εz of each node along the center line of the plate. The results show that –εy/εx increased with 

x/l, while –εz/εx declined with x/l. 

After calculation, it was found that –εy/εx = µLT and –εz/εx = µLR were in the same 

position of x0 ( RzTyLx  ,, ). Furthermore, σy/σx changed sign at the position of x0, 

satisfying σy/σx = 0. Therefore, according to Testing Principle 1, the absolute value of the 

ratio between the measured transverse and longitudinal strain is the Poisson’s ratio when 

the cross strain rosette is pasted at x0. 
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For the tangential-section specimens of Scots pine (l/b = 5), the σy/σx vs.–εy/εx curve 

was plotted based on the stress and strain data of the first-order bending mode calculated 

using the ANSYS modal program (Fig. 8). At the position of x0 determined by σy/σx = 0, 

the value of –εy/εx was exactly equal to the value of µLT for Scots Pine. Figure 1 shows that 

x0 = 0.5286l ~ 0.53l. 

 

 
Fig. 8. Position of the strain rosette pasted for measuring the Poisson’s ratio of Scots pine (l/b = 
5) 

 

Position of the strain rosette pasted for measuring the µLT, µLR, and µRT of timber 

Table 1 shows the cantilever plates of the five tree species. From the analysis of 

stress and strain of the first-order bending mode (20 calculation schemes), the paste 

positions of the strain rosette for measuring µLT were obtained (see Table 2). According to 

the calculation, the width of the plate was 123 mm, with thicknesses of 8 mm, 12.2 mm, 

and 18 mm, respectively. Thus, –εy/εx was independent of plate thickness. 

 

Table 8. Position of Strain Rosette x/l Pasted for Measuring the µLT of Cantilever 
Plates from Five Tree Species 

bl /  Balsa Spruce Scots Pine Ash Beech 

6 0.5333 0.5119 0.4937 0.4883 0.4700 

5 0.5650 0.5443 0.5286 0.5182 0.5050 

4 0.6012 0.5804 0.5696 0.5591 0.5471 

3 0.6429 0.6222 0.6154 0.6058 0.5938 

 

Based on the data in Table 2, the binary linear regression of x/l (calculated position) 

for ρ and b/l were obtained as follows. The paste position of the strain rosette for measuring 

the µLT of the tangential section was obtained according to Eq. (4): 
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lblx /6939.00982.04400.0/                              (4) 

)20,9897.0(  nr ； )63/;/75.02.0:( 3  blcmg . 

 

Equation 3 was used to calculate the paste positions of the strain rosette for 

measuring µLR and µRT, although they are not so correlated as µLT and air-dry density ρ. 

However, they have a close relationship with the length-to-width ratio of the cantilever 

plate, and the results are shown as follows: 

The paste position of the strain rosette for measuring µLR on the radial section is: 

 

bllx /04171.07107.0/                                    (5) 

( 9977.0r , n=4, 3/ bl ～6). 

 

The paste position of the strain rosette for measuring µRT on the transverse section 

is: 

 

bllx /05.065.0/                                         (6) 

( 1r , n=4, 3/ bl ～6). 

 

Positions to Paste Strain Rosette for Measurement of Poisson’s Ratio of 
Isotropic Materials 

The principle and method of dynamically measuring the Poisson’s ratio of timber 

are also applicable for isotropic materials, which was analyzed and verified as follows. For 

the cantilever plate made of isotropic materials in the first-order bending vibration, 

relationships between the normal stresses (σx and σy) and between the line strains (εx and εy) 

in the plate were: 
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From Eq. 6, σx and σy can be solved as: 
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When σy = 0, it was determined that –εy/εx = µ. In other words, the absolute value 

of the ratio between the linear strains εy and εx at the position of σy = 0 is the Poisson’s ratio 

of the material. 

Dynamic and static stress and strain of cantilever plates made of steel, aluminum 

and glass was calculated by ANSYS. Input material constants are as followed: 

Steel: E=200 GPa, µ=0.30, ρ=7800 kg/m3; 

Aluminum: E=69 GPa, µ=0.34, ρ=2700 kg/m3; 

Glass: E=55 GPa, µ=0.25, ρ=2500 kg/m3. 

In ANSYS calculation, “Shell 63” element was used in meshing with 50 × 10 to 

compute for dynamic and static stress and strain of cantilever plate specimen with l/b of 6, 

5, 4 and 3. 
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Positions to paste strain rosette for measurement of Poisson’s ratio of steel, 

aluminum and glass are shown in Table 9 and 10. 

 

Table 9. Position of the Strain Rosette Pasted for Measuring the Dynamic 
Poisson’s Ratio of a Cantilever Plate x/l 

Width-length ratio l/b 6 5 4 3 

Aluminum plate 0.3851 0.4206 0.4650 0.5194 

Steel plate 0.3866 0.4217 0.4663 0.5205 

Glass plate 0.3892 0.4245 0.4686 0.5223 

 

Table 10. Position of the Strain Rosette Pasted for Measuring the Static 
Poisson’s Ratio of a Cantilever Plate x/l 

Width-length ratio l/b 6 5 4 3 

Aluminum plate 0.5713 0.5784 0.5869 0.5970 

Steel plate 0.5701 0.5769 0.5850 0.5942 

Glass plate 0.5675 0.5738 0.5809 0.5884 

 

Based on the data for the steel cantilever plates in Tables 8 and 9, the positions of 

the strain rosette pasted for measuring the dynamic and static Poisson’s ratios were 

expressed in Eqs. 8 and 9, respectively: 
 

x/l = 0.7387 - 0.0869l/b + 0.0047l2/b2
                (8) 

 

(r = 0.99999, n = 4, l/b = 3, 4, 5 and 6)   
 

x/l = 0.6291 - 0.0134l/b + 6 × 10-4l2/b2                 (9) 
 

(r = 1, n = 4, l/b = 3─6) 

 

Equations 8 and 9 were obtained based on the data for steel. However, considering 

the data in Tables 8 and 9 and the Poisson’s ratios of rolled aluminum and pure copper, 

this test can also be applied to isotropic materials. 

 

Future Directions 
In this work, the Poisson's ratio of the material was dynamically measured based 

on  the stress-strain analysis of the first-order bending mode of the cantilever plate. In fact, 

in this work, the elastic modulus of tested materials can be also calculated by the testing 

result of the first-order bending frequency. Based on the results from this paper, we plan to 

carry out the research work of simultaneously measuring the elastic modulus, shear 

modulus, and Poisson's ratio of materials in our future work. Besides, in the future, ideas 

in this study are also expected to be used in dynamic measurement and analysis of the 

elastic constants of novel materials such as FGM and nanowires, in order to improve the 

assessment level of mechanical properties of these materials and establish the evaluation 

standard. We expect to make more contributions to the application of novel materials in 

various fields such as civil engineering, aerospace engineering, biomedical engineering, 

mechanical engineering, optics, electromagnetism, chemistry, nuclear energy, and 

information.  
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CONCLUSIONS 
 

1. In the first-order bending vibration of the timber cantilever plate, the absolute value of 

the ratio between the transverse (εy) and longitudinal strains (εx) increased with the 

increase in distance to the cantilever end (x); however, when x increased, the absolute 

value of the ratio between the transverse stress (σy) and longitudinal stress (σx) 

decreased from a positive to a negative value. Thus, there was a position where the 

transverse stress (σy) was equal to zero. At this position, the absolute value of the ratio 

between the transverse (εy) and longitudinal strains (εx) is the Poisson’s ratio of the 

material. 

2. For timber, the ratio of transverse stress to longitudinal stress was very low within the 

entire cantilever plate. For example, the maximum ratio was 0.043 for beech and 

approximately 0.02 for balsa, spruce, Scots pine, and ash. The characteristics of stress 

distribution in the timber cantilever plate are different from those in isotropic materials, 

such as low-carbon steel and aluminum. Although the ratio of transverse stress to 

longitudinal stress in timber was very low within the entire cantilever plate, there was 

a significant difference in elastic modulus between the main directions of timber. 

Therefore, such a ratio should not be ignored when measuring Poisson’s ratio. 

3. In the dynamic measurement of the Poisson’s ratio of timber, the cross strain rosette 

should be pasted at the position where the transverse stress (σy) is equal to zero. For the 

tangential-section cantilever plate, the pasting position of the cross strain rosette had a 

relationship with the width-to-length ratio and density of the plate, while for the radial-

section and transverse-section cantilever plate, the pasting position of the cross strain 

rosette was only affected by the length-to-width ratio. 

4. The accuracy of the measurements of the dynamic Poisson’s ratio of timber was 

verified by axial tension and four-point bending tests. 

5. In the first-order bending vibration of the cantilever plate made of isotropic materials, 

there also existed a position where the transverse stress (σy) was equal to zero. Thus, 

the position of the cross strain rosette was only affected by the length-to-width ratio. 

The accuracy of the measurements of the dynamic Poisson’s ratio of steel, rolled 

aluminum, and pure copper was verified by axial tension and static tests. 
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