Research Articles
Latest articles
- Researchpp 5514-5526Huang, R., Xiong, W., Xu, X., and Wu, Q. (2012). "Thermal expansion behavior of co-extruded wood-plastic composites with glass-fiber reinforced shells," BioRes. 7(4), 5514-5526.AbstractArticlePDF
Coextruded wood-plastic composites (WPCs) with glass-fiber (GF) filled shells were manufactured, and their thermal expansion behavior was studied. A three-dimensional finite element model (FEM) considering differential properties of both shell and core layers was developed to predict the linear coefficient of thermal expansion (LCTE) of the material. It was shown that the LCTE values varied with composite structure and composition (i.e., core-shell thicknesses and materials). The use of GF-filled shells helped lower overall composite LCTE values. The imbalance of shell and core LCTE, and their moduli led to complex stress fields within a given composite system. The FEM predicted a trend of LCTE change with varying composite structures, which was in good agreement with the experimental data. This study provides for the first time a finite element modeling technique to optimize raw material composition and composite structure for optimizing thermal expansion behavior of co-extruded WPCs.
- Researchpp 5527-5541Wedin, H., Antonsson, S., Ragnar, M., and Lindström, M. E. (2012). "Influence of xylan content on the oxygen delignification performance of eucalypt kraft pulps as studied using prehydrolysis and xylanase treatments," BioRes. 7(4), 5527-5541.AbstractArticlePDF
Common metrics for evaluating the efficiency of oxygen delignification include the kappa number and Klason lignin content. As a change in xylan content often leads to a change in HexA content, the kappa number must be corrected for the HexA contribution before evaluating the degree of oxygen delignification when trying to understand the process in detail. Questions could also be raised about the accuracy of the Klason lignin method for oxygen-delignified hardwood kraft pulps, since the amount of residual lignin is small in such pulp. This study investigates the influence of xylan content on oxygen delignification efficiency in Eucalyptus urograndis kraft pulps. Xylan content was varied using two methods: treatment with xylanase and with acid prehydrolysis for various times before kraft cooking. The degree of oxygen delignification, expressed as the HexA-corrected kappa number, indicated no significant trend with xylan removal, and no significant trend was evident when expressed as Klason lignin content.
- Researchpp 5542-5551Shen, J., Zhou, X., Wu, W., and Ma, Y. (2012). "Improving paper strength by gelation of native starch and borax in the presence of fibers," BioRes. 7(4), 5542-5551.AbstractArticlePDF
This paper puts forward a novel non-ionic augmentation system, namely, gelation of native starch in the presence of borax and papermaking fibers. Native starch was blended with high concentration pulp and auxiliary agents. After pasting, the starch gel adhered onto fiber surfaces. However, an excess dosage of agents led to a rigid structure and poor gel strength. Starch became gelatinized and then cross-linked by borax and cured as an adhesive layer through the process of pressing and drying under a high temperature. This provided close and uniform contact between starch and fibers. As a result, the strength of the paper was increased after forming.
- Researchpp 5552-5567Liu, W., and Zhao, G. (2012). "Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood," BioRes. 7(4), 5552-5567.AbstractArticlePDF
Activated carbon fibers were prepared from liquefied wood through stream activation. The effects of activation temperature and time on the microstructure and surface functional groups of the liquefied wood activated carbon fibers (LWACFs) were studied using analysis of burning behavior, X-ray diffraction, nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and SEM. The results showed that the burn-off value of the LWACFs increased gradually with the increase in temperature or time. All the LWACFs were far from being structurally graphitized, and in general, as temperature or time increased, the degree of graphitization and thickness of crystal structure increased. In addition, the LWACFs possessed rich micropores, and their specific surface area, pore volume, micropore size, and mesopore quantity were directly related to the activation temperature or time. The maximum specific surface area was found to be 2641 m2/g. The fractal dimension values of all samples were close to 3, indicating that their surfaces were very rough. Furthermore, with an increase in temperature or time, the elemental content of carbon increased, while that of oxygen decreased. Meanwhile, as the temperature or time increased, the relative content of graphitic carbon decreased, whereas that of carbon bonded to oxygen-containing functions increased. The surface of samples prepared at higher temperature or with longer time formed a considerable amount of holes.
- Researchpp 5568-5580Zakaria, Z., Izzah, Z., Jawaid, M., and Hassan, A. (2012). "Effect of degree of deacetylation of chitosan on thermal stability and compatibility of chitosan-polyamide blend," BioRes. 7(4), 5568-5580.AbstractArticlePDF
The effect of the degree of deacetylation of chitosan on the chemical structure, thermal properties, and compatibility of chitosan/polyamide66 (CS/PA66) blends were investigated. Blends of CS with PA66 were prepared via the solution casting technique by using 85% formic acid. Structural interaction between PA66, CS, and CS/PA66 blends were analyzed by infrared spectroscopy. FT-IR spectra showed displacement of the carbonyl band of the amide group of chitosan toward smaller wave numbers, indicating possible existence of hydrogen bonding between the two macromolecules. Thermal and morphological behavior of films containing chitosan with degree of deacetylation (DD) ranging from 52.9% to 85% in the polymer blends were investigated by thermogravimetric analysis and scanning electron microscopy. Thermal analysis showed that the CS/PA66 blends became more thermally stable than pure chitosan. The morphological behavior observed by scanning electron microscopy indicated phase segregation in all types of blending. Acetyl content in chitosan was found to influence the degree of compatibility. Decreasing the acetyl group or increasing the DD of chitosan increases the compatibility of the CS/PA66 blends.
- Researchpp 5581-5592Ulker, O., Imirzi, O., and Burdurlu, E. (2012). "The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris L.)," BioRes. 7(4), 5581-5592.AbstractArticlePDF
As wood’s density increases, strength properties tend to increase due to a decrease in cavity volume. This study aimed to determine the effect of temperature levels in the densification process with an open-system thermomechanical method on the density, bending, modulus of elasticity in bending, compression, shear strength, and Brinell hardness in radial/tangential directions of Scots pine. The densification process significantly increased the strength properties of Scots pine. This increase stemmed from the decrease in the rate of cavities with the densification process, which also resulted in an increase in cell wall elements that have load-bearing properties per unit volume. An increase in densification temperature decreased strength properties. The decrease in the strength values can be explained by increasing chemical degradation with a rise in the temperature level. The most suitable temperature level was 120 ºC for a higher bending, shear, and compression strength, and it was 140 ºC for a higher radial and tangential hardness in the densification of Scots pine. Increases of 42% in the bending strength, 20% in the shear strength, 47% in the compression strength, 242% in the radial hardness, and 268% in the tangential hardness were obtained after densification.
- Researchpp 5611-5621Palanti, S., Feci, E., Predieri, G., and Francesca, V. (2012). "Copper complexes grafted to amino-functionalized silica gel as wood preservatives against fungal decay: Mini-blocks and standard test," BioRes. 7(4), 5611-5621.AbstractArticlePDF
Previous preliminary studies showed good efficacy of treatments based on a mixture of siloxane materials, functionalized with amino groups and coupled with copper, against the brown rot fungus Coniophora puteana (Palanti et al. 2011). In the present work, a one-step impregnation was performed on two sets of samples differing in size, in order to verify and compare the homogeneity of treatments. Leaching and resistance against brown rot and white rot fungi were also tested according to European standards EN 84 and EN 113, respectively. Furthermore, an accelerated test of efficacy against fungal decay was also used for determining the treatment efficacy. The obtained results made it possible to validate the findings of the preliminary study concerning resistance of the treated wood against C. puteana, while extending them to the white rot fungus Trametes versicolor. In contrast, no protection was conferred by the treatment against the copper-tolerant fungus Poria placenta.
- Researchpp 5593-5610Song, S. S., and Zhao, G. J. (2012). "Expression of physiological sensation of anatomical patterns in wood: An event-related brain potential study," BioRes. 7(4), 5593-5610.AbstractArticlePDF
The emotional and psychological activities associated with the visual perception of macroscopic and microscopic structure patterns of wood were investigated. The macroscopic and microscopic structure patterns of 18 different timber tree species of northeast China were selected as the research objects, and these were divided into eight categories for event-related potential analysis. The 30 effective subjects’ tasks were to watch the wood structure stimuli patterns and evaluate them on a 7-point bipolar scale. The results showed that the emotional valence of the wood structure stimuli patterns of the eight categories evoked P2 and late positive potential (LPP) composition in a specific area of the brain. P2 refers to an early perception analysis processing for visual perception of the wood stimuli patterns, while LPP refers to late processing and reflects evaluations when people face different wood stimuli patterns. The results also indicated that people prefer to connect the understanding of macroscopic and microscopic patterns of wood with their own mood. Evaluation processing for macroscopic and microscopic structure patterns of wood were based on visual perception analyses, which were judged by personal feelings and decisions. People made active emotional assessments of the macroscopic and microscopic structure patterns of wood.
- Researchpp 5622-5633Gao, Q., Li, J., Shi, S. Q., Liang, K., and Zhang, X. (2012). "Soybean meal-based adhesive reinforced with cellulose nano-whiskers," BioRes. 7(4), 5622-5633.AbstractArticlePDF
Cellulose nano-whiskers were used to enhance the performance of soybean meal-based adhesive. Soybean meal flour, cellulose nano-whiskers (CNW), sodium hydroxide (NaOH), and polyethylene glycol (PEG) were used to develop different adhesive formulations. The effect of adhesive components on water resistance of the adhesive was measured on the three-ply plywood (three cycle soak test). The viscosity and solid content of the adhesive were measured. The cross section of the cured adhesives was evaluated using scanning electron microscopy (SEM). The effect of the hot press parameters on the water resistance of the plywood bonded by soybean meal/CNW/NaOH/PEG adhesive was investigated. The results showed that using the CNW in the adhesive formulation improved the water resistance of the plywood by 20%. The plywood bonded by the soybean meal/CNW/NaOH/PEG adhesive met the interior plywood requirement (2000 (ANSI/HPVA HP-1)). Fewer holes and cracks, as well as a smooth surface were observed on the cross section of the cured adhesive after the incorporation of CNW. In the hot press process, the water resistance of the plywood bonded by the soybean meal/CNW/NaOH/PEG adhesive increased as the hot press temperature and time increased.
- Researchpp 5634-5646Lin, J., Kubo, S., Yamada, T., Koda, K., and Uraki, Y. (2012). "Chemical thermostabilization for the preparation of carbon fibers from softwood lignin," BioRes. 7(4), 5634-5646.AbstractArticlePDF
A thermally fusible softwood lignin was directly isolated by a solvolysis of cedar wood chips with a mixture of polyethylene glycol 400 (PEG 400) and sulfuric acid. Its fusibility was found to be due to a PEG moiety introduced into the lignin by the solvolysis. The lignin was easily formed into fibers by melt-spinning at temperatures ranging from 145 to 172 ºC without any modification. The lignin fibers could be converted into infusible fibers as a precursor for carbon fibers (CFs) by conventional oxidative thermal stabilization processing in air or a stream of oxygen for 2 days. We found that the infusible fibers resulted from the partial cleavage of the PEG moiety from the lignin fibers after treatment with 6 M hydrochloric acid at 100 ºC for 2 h. The infusible fibers were converted into CFs with a tensile strength of 450 MPa by carbonization at 1000 ºC under a N2 stream.