Research Articles
Latest articles
- Researchpp 1552-1564Lee, K. M., Ngoh, G. C., Chua, A. S. M., Yoon, L. W., Ang, T. N., and Lee, M.-G. (2014). "Comparison study of different ionic liquid pretreatments in maximizing total reducing sugars recovery," BioRes. 9(1), 1552-1564.AbstractArticlePDF
A process scheme combining the most suitable ionic liquid pretreatment, followed by solid acid and enzymatic saccharification was used to maximize the reducing sugars recovery from sago waste. Three types of ionic liquids, i.e. 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM][(EtO)2PO2]) were evaluated based on their performance in terms of the total reducing sugars recovery, chemical cost, and pretreatment energy requirement. The results showed that all the ionic liquids assisted the saccharification processes by dissolving and depolymerizing the carbohydrates of the sago waste into shorter chain soluble oligosaccharides, as well as disrupting the biomass structure to produce an amorphous pretreated solid residue. The solid acid saccharifications of the prehydrolysates obtained from the [BMIM]Cl pretreatment gave the highest reducing sugars recovery (61-63%) irrespective of the solid acid catalyst employed. On the other hand, enzymatic saccharification of [EMIM][OAc] pretreated solid residues showed the highest reducing sugars recovery (29%). A maximum recovery of 90% reducing sugars was achieved via incorporation of the ionic liquid pretreatment, solid acid and enzymatic saccharifications using [BMIM]Cl, Amberlyst 15 (A15) and Trichoderma viride cellulase respectively. This study suggests that the combined sequential process can maximize the reducing sugars recovery from sago waste effectively.
- Researchpp 1565-1577Hyväkkö, U., King, A. W. T., and Kilpeläinen, I. (2014). "Extraction of wheat straw with aqueous tetra-n-butylphosphonium hydroxide," BioRes. 9(1), 1565-1577.AbstractArticlePDF
The stability of tetra-n-butylphosphonium hydroxide ([P4444][OH](aq)) solutions and their potential for wheat straw extraction are investigated. Under certain concentration ranges, aqueous [P4444][OH](aq) is known to rapidly dissolve up to 20 wt% of cellulose at 25 ºC. However, at elevated temperatures and at the high concentration ranges required for cellulose dissolution, [P4444][OH](aq) irreversibly decomposes. This was determined by following the kinetics of decomposition at different temperatures and concentrations, using 31P NMR analysis of the solutions. A lower concentration range of 40 wt% [P4444][OH](aq) was observed for fractionation of wheat straw, avoiding significant decomposition of the expensive phosphonium component. Herein, the possibilities for producing cellulose-rich fractions with reduced lignin contents and hemicellulose-rich extracts are discussed. A proposal is given for a full process cycle using [P4444][OH](aq), where the phosphonium salt is used in fractionation and recovered by anion metathesis as a chloride salt. Although not demonstrated in this article, the chloride salt may be converted back to the hydroxide by means of, e.g., ion exchange.
- Researchpp 1578-1587Yang, X., Zhang, R., Tang, L., Chen, M., Li, Y., and Zhou, X. (2014). "Dynamic wettability of different adhesives on wheat straw surface modified by cold oxygen plasma treatment," BioRes. 9(1), 1578-1587.AbstractArticlePDF
The effects of cold oxygen plasma treatment on the exterior and interior surfaces and wettability of wheat straw were investigated. The wheat straw was treated with oxygen plasma for 150 s, and the radio-frequency power was set at 100 W. The surface wettability was evaluated by measuring the contact angles and the K values of urea-formaldehyde, phenol-formaldehyde, and methylene diphenyl diisocyanate resins. Specimens with different gluing surfaces were bonded together with urea-formaldehyde and phenol-formaldehyde and then hot-pressed to assess bonding strength. Results indicate that the dynamic wettability and the shear strength of wheat straw were remarkably improved after it was exposed to the cold oxygen plasma. Additionally, the adhesive type and the wheat straw surface characteristics had significant effects on the dynamic wettability and bonding strength of both untreated and plasma-treated wheat straw.
- Researchpp 1588-1595Ahsan, L., Jahan, M. S., Khan, M. I. H., and Calhoun, L. (2014). "Recovery of acetic acid from prehydrolysis liquor of kraft hardwood dissolving pulp using ion-exchange resin," BioRes. 9(1), 1588-1595.AbstractArticlePDF
The growing demand for rayon and cellulosic products has resulted in the conversion of a number of kraft pulp mills into dissolving pulp mills in recent years. In fact, kraft-based dissolving pulp production fits well into the concept of an integrated forest biorefinery, in particular, the utilization of dissolved organics in the pre-hydrolysis liquor (PHL) for bio-materials and bio-energy purposes. In this study, the recovery of acetic acid, the second major component in the PHL of the kraft-based hardwood dissolving pulp production process, was investigated using amine-based resin adsorption. Activated carbon (AC) adsorption was adopted as the first step to remove the lignin, and six AC samples were evaluated for this purpose. Among them, CR325 W-Ultra Powder AC showed the best result and removed about 90% of lignin with a minimal loss of hemicellulosic sugars and acetic acid from PHL at a ratio of 1:20 (AC:PHL). Subsequently, the adsorption of acetic acid from AC-treated PHL (TPHL) was studied on tertiary and quaternary amine-based resins. The tertiary amine resin demonstrated better adsorption efficiency. Desorption of the adsorbed acetic acid from the amine resin using sodium hydroxide solution was also studied, and the results showed that 66 to 84% acetic acid desorption occurred using a 4% NaOH solution.
- Researchpp 1596-1605Li, X., Du, G., Wang, S., and Yu, G. (2014). "Physical and mechanical characterization of fiber cell wall in castor (Ricinus communis L.) stalk," BioRes. 9(1), 1596-1605.AbstractArticlePDF
Castor (Ricinus communis L.) stalk is a byproduct of the production of castor oil. As a natural material, castor stalk has great potential in the production of bio-composites as reinforcement materials. To provide more information about the castor stalk for using it better, the structure, microfibril angle (MFA), relative degree of crystallinity (%), and mechanical properties of castor fiber cell walls were investigated using X-ray diffraction (XRD) and nanoindentation. The influence of chemical composition and MFA on the mechanical properties of fiber cell wall was studied as well. The cortex of castor stalks primarily contains long fibers, while the xylem of castor stalk, an excellent wood-type material, comprises most of the castor stalk (83.95% by weight); the pith of the stalk is composed of parenchyma cells. The average elastic modulus of fiber cell wall in lower, upper, and branch parts are 16.0 GPa, 18.6 GPa, and 13.2 GPa, respectively. The average hardness of fiber cell wall in lower, upper, and branch parts are 0.50 GPa, 0.54 GPa, and 0.43 GPa, respectively. As lignin content increases from 15.57% to 17.41% and MFA decreases from 21.3˚ to 15.4˚, the elastic modulus increases from 13.2 GPa to 18.6 GPa and the hardness increases from 0.43 GPa to 0.54 GPa. The mechanical properties, including the elastic modulus and the hardness of the fiber cell wall in the upper region of the castor stalk, are higher than those in the lower region, while the mechanical properties of the fiber cell wall in the branches are lower than those in either the upper or lower regions.
- Researchpp 1830-1844Belle, J., Kleemann, S., and Odermatt, J. (2014). "Weighing of different impact factors on wet web strength by full-factorial design of experiments," BioRes. 9(2), 1830-1844.AbstractArticlePDF
The wet web strength is one of the most important parameters for effective paper machine performance. A huge variety of parameters is known from many studies to have an impact on the wet web strength (WWS). In this study, a full factorial design of experiments (DOE) was used to determine the effect of different factors on the WWS. The goal was to use a DOE method within the field of paper strength research to acquire advanced information on the mechanisms of strength development at different dryness levels. The study was carried out with laboratory handsheets made of commercial unbleached softwood pulp, which was refined in a laboratory Hollander beater. The WWS was measured according to the German standard DIN 54514. The analysis of the data showed that weighing of the influencing factors on WWS is possible, which may lead to a better understanding of paper strength development mechanisms at low dryness levels. The applied method was proven to be reliable for the determination of the impact of various factors and will therefore be used in future work.
- Researchpp 1845-1857Yang, X., Gong, M., and Chui, Y. H. (2014). "Short-term creep behavior of CFRP-reinforced wood composites subjected to cyclic loading at different climate conditions," BioRes. 9(2), 1845-1857.AbstractArticlePDF
Carbon fiber reinforced plastic (CFRP) was used to adhesively reinforce Chinese fir (Cunninghamialanceolata) wood specimens. This study examined the flexural static and creep performances of CFPR-reinforced wood composites that had been subjected to changes in moisture and stress levels. The major findings were as follows: 1) the cyclic creep was slightly lower for those specimens subjected to the cyclic stress condition than for those subjected to a constant stress level due to the deflection recovery under cyclic loading; 2) the environmental conditions of high temperature and high humidity assisted in accelerating the creep by increasing the moisture content of the composite and reducing the compressive strength of wood, causing the composite specimen to fail viadamage in the wood layer from compressive crushing; 3) the stress level governed the creep of the CFRP-reinforced wood composite; and 4) the Burger model was able to accurately simulate the short-term creep performance of the CFPR-reinforced wood composite. It was suggested the maximum bending stress level should be limited to 40% for the CFRP-reinforced wood composites fabricated in this study.
- Researchpp 1858-1872Zahan, K. A., Pa'e, N.,and Muhamad, I. I. (2014). "Process parameters for fermentation in a rotary disc reactor for optimum microbial cellulose production using response surface methodology," BioRes. 9(2), 1858-1872.AbstractArticlePDF
In this study, microbial cellulose production by Acetobacter xylinum 0416 using standardized liquid pineapple waste was carried out in a 4-L rotary disc reactor (RDR). The objective of this study was to optimize the process parameters for production of microbial cellulose in the RDR. The effects of the disc rotation speed (5 to 12 rpm), pH (3.5 to 7.5), fermentation period (3 to 6 days), and inoculum concentration (3 to 20% v/v) on the microbial cellulose production were investigated. The optimum microbial cellulose yield was obtained using 10% (v/v) of inoculum concentration, whereby four days’ duration gave the most productive yield. In addition, the highest production of microbial cellulose was obtained at a low disc rotation speed of 7 rpm and a pH of 5.0. Analysis of data performed a high coefficient of determination value (R2=0.875) represented by a mathematical model of optimized microbial cellulose production, Y = -200.437 + 7.180X1 + 69.869X2 + 4.369X3 + 1.867X4 – 0.512X12 – 6.766X22 – 0.585X32 – 0.079X42. From the results, it can be concluded that the foremost factors that affect the production of microbial cellulose in RDR were pH followed by inoculum concentration, disc rotation speed (rpm), and fermentation period.
- Researchpp 1873-1885Sánchez Orozco, R., Balderas Hernández, P., Roa Morales, G., Ureña Núñez, F., Orozco Villafuerte, J., Lugo Lugo, V., Flores Ramírez, N., Barrera Díaz, C. E., and Cajero Vázquez, P. (2014). "Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production," BioRes. 9(2), 1873-1885.AbstractArticlePDF
To use a new potential lignocellulosic bioresource that has several attractive agroenergy features for ethanol production, the chemical characterization and compositional analysis of several fruit wastes were carried out. Orange bagasse and orange, banana, and mango peels were studied to determine their general biomass characteristics and to provide detailed analysis of their chemical structures. Semiquantitative analysis showed that the components for each fruit waste differed with respect to chemical composition. Fourier transform infrared spectrometry (FTIR) of the residual biomass showed the presence of various functional groups – aldehydes or ketones (C=O), alkanes (C-C), and ethers (C-O-C). Even water molecules were detected, indicating the complex nature of the feedstocks. The concentrations of total sugars ranged between 0.487 g∙g-1 and 0.591 g-1 of dry weight biomass. The thermal profiles (TG-DSC) of the residual fruits occurred in at least three steps, which are associated with the main components (hemicellulose, cellulose, and lignin). The decomposition by thermal analysis was completed at around 600 °C and was influenced by the nature of the component ratio.
- Researchpp 1886-1897Saravanan, C., He, Z., and Ni, Y. (2014). "Application of polyaniline/clay combination to cellulosic paper as an approach to conductivity development," BioRes. 9(2), 1886-1897.AbstractArticlePDF
A polyaniline/clay combination was prepared via: 1) mixing polyaniline dispersion with clay; or 2) in situ polymerization of aniline in the presence of clay. To deliver electrical conductivity to cellulosic paper, the polyaniline/clay composition was applied to the paper surface by Meyer rod coating. The conductive paper was analyzed by Scanning Electron microscopy (SEM) and Fourier Transmission Infrared spectroscopy (FT-IR). For comparison purposes, conductive paper was also prepared by in situ polymerization of aniline in the presence of cellulosic fibers. The in-situ formed polyaniline was deposited on the fiber surface, and the polyaniline-deposited cellulosic fibers were made into paper sheets. It was found that at the same aniline content, paper surface coating with polyaniline/clay composition gave a much higher conductivity in comparison with the use of polyaniline-deposited cellulosic fibers for paper sheet formation.