NC State
Wang, C., Lyu, G., Yang, G., Chen, J., and Jiang, W. (2014). "Characterization and hydrothermal conversion of lignin produced from corncob acid hydrolysis residue," BioRes. 9(3), 4596-4607.


Lignin is one of the main components of corncob acid hydrolysis residue (CAHR). It can be used as a feedstock for biomaterial and biochemical production via biorefining. In this study, CAHR lignin was extracted, and enzymatic/mild acidolysis lignin (EMAL) was produced to ensure efficient lignin recovery. Next, hydrothermal conversion of the EMAL was carried out. The influences of process conditions including the temperature, time, and mass ratio of deionized water to EMAL on the hydrothermal conversion were thoroughly investigated to quantify analysis of the aromatics. EMAL produced from CAHR had a structure of the G-S-H type, in which the p-hydroxyphenyl unit was the primary structural unit, followed by the guaiacyl structural unit. The syringyl structural unit was less common. The yields (wt. %) of phenol, guaiacol, and 4-ethyl-phenol reached maxima of 1.26%, 0.75%, and 1.16%, respectively, at a reaction temperature of 310 °C and time of 30 min with a mass ratio of 80:1.
Download PDF