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Logistic regression models were developed to identify significant factors 
that influence the location of existing wood-using bioenergy/biofuels 
plants and traditional wood-using facilities.  Logistic models provided 
quantitative insight for variables influencing the location of woody 
biomass-using facilities.  Availability of “thinnings to a basal area of 
31.7m2/ha,” “availability of unused mill residues,” and “high density of 
railroad availability” had positive significant influences on the location of 
all wood-using faciities.  “Median family income,” “population,” “low 
density of railroad availability,” and “harvesting costs for logging 
residues” had negative significant influences on the location of all wood-
using faciities.  For larger woody biomass-using mills (e.g., biopower) 
availability of “thinnings to a basal area of 79.2m2/ha,” “number of 
primary and secondary wood-using mills within an 128.8km haul 
distance,” and “amount of total mill residues,” had positive significant 
influences on the location of larger wood-using faciities.  “Population” 
and “harvesting costs for logging residues” have negative significant 
influences on the location of larger wood-using faciities.  Based on the 
logistic models, 25 locations were predicted for bioenergy or biofuels 
plants for a 13-state study region in the Southern United States.   
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INTRODUCTION 
 
 The 20th century was marked by rapid growth and increased prosperity in the 
world.  By 2020, the world’s energy consumption is predicted to be 40 percent higher 
than it is today (Energy Information Agency 2008).  Key sources of oil for western 
markets are located in complex geopolitical environments that increase economic and 
social risk.  About 59 percent of all oil consumed in the United States is imported, with 
approximately 20 percent coming from the Persian Gulf (Caputo 2009).  Since the 1970s, 
macroeconomists have viewed changes in the price of oil as an important source of 
economic fluctuations, as well as a paradigm for global economic shock, likely to affect 
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many economies simultaneously (Blanchard and Gali 2007). The amalgamation of 
economic, environmental, social, and national security concerns for petroleum-based 
economies have created a renewed emphasis on alternative sources of energy which 
include woody biomass (Hubbe and Buehlman 2010; Kumarappan et al. 2009; Cheng and 
Zhu 2009; Lucia 2008; Pawlak 2008).   
  Woody biomass is a renewable resource procured from multiple sources which 
include land clearings, landscaping, industrial byproducts, and abundant forest resources 
(Caputo 2009).  However, developing the new bioeconomy will involve understanding 
and establishing many relationships (Altman and Johnson 2008; Dasmohapatra 2009; 
Gronowska et al. 2009).  Assessing the significant factors that influence the site location 
of existing wood-using bioenergy and biofuels plants in the Southern United States, as 
well as predicting new locations for such plants was the focus of this study.  Given the 
limited number of existing wood-using bioenergy and biofuels plants in the Southern 
United States, traditional wood-using facilities were used as a group of surrogates (e.g., 
pulp and paper mills, wood composite mills, sawmills, etc.).  Support for the premise that 
wood-using mills are a surrogate for woody biomass-using bioenergy and biofuels plants 
comes from the similarities in feedstock requirements and processing/handling 
technologies, e.g., wood pellet and co-generation plants. Pätäri (2009) noted that 
complementary resources held by forest and energy companies make collaboration in the 
bioenergy business favorable.  Leveraging the synergistic business relationships that exist 
in the feedstock supply chain between the two industries will be essential for reducing 
risk and minimizing capital investment in the emerging bioenergy and biofuels industries 
(see Knight 2009; Stewart 2009; Cohen et al. 2010; Conrad et al. 2010). 
 This study builds upon previous research (Velázquez-Martí and Annevelink 2009; 
Velázquez-Martí  and Fernandez-Gonzalez 2010), but is the first study to use logistic 
regression models to quantify significant factors influencing site location of woody 
biomass-using bioenergy and biofuels plants and predict potential locations based on 
probability.  In prior studies, Sperling (1984) established a generalized, non-statistical, 
analytical framework to identify the critical factors for assessing the quality of biomass 
locations in specific regions. Young et al. (1991) used Geographic Information System 
(GIS) spatial analysis to assess the economic availability of woody biomass for potential 
sites for biorefineries in the Southern United States.  Lynd (1996) used a sensitivity 
analysis to determine the relative importance of various site characteristics to the overall 
financial performance of a biomass ethanol plant in the Northeastern United States.   
 The logistic regression model is the most widely used method to relate a binary 
outcome (i.e. success/failure) to a set of explanatory variables in a regression setting.  
Logistic regression is frequently used in fields as diverse as natural resources, ecology, 
epidemiology, plant biology, and public health because of its simple form and 
interpretability (Agresti 2007).  Existing data on favorable and unfavorable locations for 
woody biomass using facilities were used to train logistic regression models.  These 
models were then used to evaluate the suitability of new locations. Economic factors, 
transportation-related factors, and the availability of biomass feedstocks were included as 
predictor variables in the logistic regression models.   
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METHODS 
 
 The strategy followed was to create a probability-based approach to identify 
suitable site locations.  Existing site data were used to fit a logistic model.  The resulting 
fitted models provided probabilities and a combination of predictor variables that were 
used to identify new locations for woody biomass-using facilities. Twenty-five locations 
with the highest probabilities are reported for a 13-state study area.

1   

Logistic Regression Models 
 Logistic regression models the relationship between a two-level categorical 
response variable (binary response) and explanatory variables which can be continuous or 
categorical. The outcomes of the response variable y are coded y=1 or y=0 with 
respective probabilities p and 1-p. For a particular subject, the logistic regression 
equation is, 
 
 log (p/[1-p]) =  + 1x1 + 2x2 + …. + nxn,             (1) 
 
where x1, x2, …. xn, are measurements on a group of predictor variables which relate  the 
probability of an outcome, y=1.   
 An automated procedure, stepwise logistic regression, was implemented for the 
data set of woody biomass-using facilities to determine which variables played a 
significant role in determining the quality of a potential site.  In addition, a variable 
transformation procedure was used to preprocess the data set to explore improved 
predictive ability of the logistic regression.2 Four methods were used to build the logistic 
regression models: 
 

 Method 1: Logistic regression without stepwise variable selection  
   and variable transformation; 
 Method 2: Logistic regression with stepwise variable selection  
   only; 
 Method 3: Logistic regression with variable transformation only; 
 Method 4: Logistic regression with both variable selection and  
   variable transformation. 

The full model included in the variable selection procedure contained the full set of 31 
explanatory variables along with all two-way interactions.   
 In each model, the data set was partitioned into two parts: 60 percent of the data 
were randomly selected to train (i.e. fit) the model while the remaining 40 percent of the 
data were used to evaluate the quality of the model predictions by constructing a 
classification table (i.e., validation data set). The classification table cross classifies the 
actual binary outcomes of y with the models prediction ŷ = 0 or ŷ = 1.     

                                                 
1Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South 
Carolina, Tennessee, Texas, and Virginia. 
2A logarithmic variable transformation was included to maximize the linear relationship between the 
independent variables and the response. 
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 The four methods (above) were compared by the Akaike’s Information Criteria 
(AIC) and Bayesian Information Criterion (BIC), which are defined as, 
 
 -2ln(Lm) + 2m,                             (2) 
 
 -2Lm + mln(n),                             (3) 
 
where n is the sample size, Lm is the maximized log-likelihood of the model, and m is the 
number of parameters in the model. The AIC and BIC take into account both the 
statistical goodness-of-fit and the number of parameters in order to avoid modeling the 
noise in the data also known as overfitting (McQuarrie and Tsai 1998). 

 
Response and Explanatory Variables 
 This study involved organizing large volumes of data collected from various 
sources, including the U.S Census Bureau, U.S. Forest Service, railroad companies, and 
trucking firms (U.S. Census Bureau 2000; University of Wisconsin-Milwaukee 
Employment and Training Institute 2000; Perlack et al. 2005; U.S. Army Corps of 
Engineers 2008; U.S. Department of Agriculture Forest Service 2008; IEA Bioenergy 
Task 39 2009; Renewable Fuels Association 2009; Galik et al. 2009).3   
 Another resource was the BioSAT model data from Young et al. (2008).  The 
BioSAT model estimated marginal cost, average cost, total cost of delivered mill and 
logging residues, and quantity of available mill and logging residues within 128.8 km 
haul distance.  The BioSAT model estimates the cost and availability of woody biomass 
for procurement zones which may not be concentric, i.e., the shape of such zones rely on 
the available transportation network and biomass supply.  National forests, parks, urban 
areas, and other restricted areas were not considered in BioSAT when estimating 
availability. Travel times and distances were estimated from the Microsoft© MapPoint® 
2006 (http://www.microsoft.com/MapPoint/en-us/default.aspx).  Road networks in 
MapPoint® were a combination of the Geographic Data Technology, Inc. (GDT) and 
Navteq data.  GDT data were used for rural areas and small to medium size cities.  
Navteq data were used for major metropolitan areas.  In the BioSAT model, estimates of 
all-live total biomass, as well as average annual growth, removals, and mortality were 
obtained from the Forest Inventory and Analysis Database (FIADB) version 3.0 
(http://srsfia2.fs.fed.us/). The Subregional Timber Supply (SRTS) model was used to 
estimate current logging residues and project future logging residues (Abt 2008).  The 
Fuel Reduction Cost Simulator (FRCS), as modified for the Billion Ton Study, was used 
to estimate the costs of harvesting logging residues (Fight et al. 2006; Dykstra 2008).   
  

                                                 
3Railroad location data were collected from: Burlington Northern Santa Fe Railway, CSX Corporation, 
Inc., CSX Corporation, Inc., Norfolk Southern System, and Union Pacific.  Trucking cost rate data were 
collected from Pemberton Truck Lines (TN), Skyline Transportation, Inc. (TN), Mason Dixon (TN), Mason 
Dixon (AL), Patterson Chip Company (KY), Tennessee Department of Agriculture (Nashville, TN). 
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All records were organized at the U.S. Census Bureau 5-digit ZIP Code 
Tabulation Area (ZCTA) level (U.S. Census Bureau 2000).  There were 9,221 ZCTAs in 
the 13-state study region which corresponded to 9,221 potential site locations for woody 
biomass-using facilities. The average area for 5-digit ZCTAs in the 13-state study region 
was 237.48 km2.  Plant locations were selected based on the outcomes of the logistic 
models; most variables were related to biomass supply and cost.  These supply and cost 
outcomes were also noted in a UK study by Adams et al. (2010). The studies by 
Velázquez-Martí and Annevelink (2009) and Velázquez-Martí and Fernandez-Gonzalez 
(2010) focused on point plant location siting based on the consumption areas.  However, 
the aforementioned studies could have also focused on biomass source areas which were 
the focus of this study. 
 
Group I and II Subsets 
 In this study, bioenergy and biofuel plants were defined as facilities that use all 
possible wood residues in an integrated biomass conversion process to produce wood 
pellets for energy, biofuels, biopower, or biochemicals (National Renewable Energy 
Laboratory 2009).  Only 29 such facilities existed in the study region.  Given the large 
amount of ZCTAs that did not contain bioenergy or biofuels mills, which is problematic 
for logistic regression, more traditional wood-using facilities were used as surrogates 
(e.g., primary wood mills, secondary wood mills, and pulp and paper mills).  The 
assumption was that similar factors may affect the attractiveness and suitability of a site 
given the commonality in feedstocks (recall Pätäri 2009; Knight 2009; Stewart 2009; 
Cohen et al. 2010; Conrad et al. 2010).  Definitions for locations were: 
 
 Group I: All wood-using mills and wood-using bioenergy or biofuels plants; 
  

Group II: Pulp and paper mills and wood-using bioenergy or 
biofuels plants.   
 

Group I locations are illustrated in Fig. 1.4  Group II mills are illustrated in Fig. 2. 

Response and explanatory variables 

Two separate response variables were considered for modeling and ranking of 
potential sites.  For Group I the response variable, yi1=1, if the ith ZCTA has a woody 
biomass-using facility and yi2=1 was defined similarly for a Group II mill.  Thirty-one 
explanatory variables were examined in the logistic models (Table 1).   
 

                                                 
4As defined by Perlack et al. (2005), primary wood processing mills include sawmills, medium density 
fiberboard, oriented strand board, particleboard, plywood, veneer post, pole, piling, dealer, yard, energy, 
and wood chips. Secondary mills utilize the products of primary mills (e.g., millwork, containers and 
pallets, buildings, furniture, flooring, paper and paper products.  Secondary wood processing mills also 
include mills processing the above products but also produce planed wood products, remanufactured wood 
products, trusses, moldings, kiln dried products, treated wood products, plants, decking, and siding.  
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Fig. 1. Illustration of Group I woody biomass plants 

 
 

 

 
Fig. 2. Illustration of Group II woody biomass plants 
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Table 1. Explanatory Variables for Two Study Groups Organized by ZCTA 
Description Definition 
Employment Employed persons for all industries  
Population Total population 
Population_Density Population density (people/km2) 
Sqmiwater Water area (km2) 
Median_Family_Income Median of family incomes in 1999 $ 
Income_index Median family income per employed person ($/person) 
LOG_RES_HW Logging residues of hardwoods (dry tonnes) 
LOG_RES_SW Logging residues of softwoods (dry tonnes) 
LOG_RES_TOT Logging residues of both (dry tonnes) 
OTHR_REM_HW Other removal of hardwoods (dry tonnes)5 
OTHR_REM_SW Other removal of softwoods (dry tonnes) 
OTHR_REM_TOT Other removal of both (dry tonnes) 
THIN_40 Thinnings to a basal area 9.2 (m2/ha) 
THIN_80 Thinnings to a basal area 18.4 (m2/ha) 
THIN_120 Thinnings to a basal area 27.6 (m2/ha) 
THIN_200 Thinnings to a basal area 445.9 (m2/ha) 
TOTAL_MILL_RES Total mill residues supplied for each ZCTA (dry tonnes)6 
UNUSED_MILL_RES Total unused mill residues for each ZCTA (dry tonnes) 
MCost_p5M Marginal cost of trucking 0.5 million tons within 128-km ($/dry tonne) 
MCost_1M Marginal cost of trucking 1.0 million tons within 128-km ($/dry tonne) 
MCost_1p5M Marginal cost of trucking 1.5 million tons within 128-km ($/dry tonne) 
TCost_80 Total trucking cost within an 80- 128-km haul distance ($/dry tonne) 
ACost_80 Average trucking cost within an 128-km haul distance ($/dry tonne) 
TQty_80 Total quantity of mill residues within an 128-km haul distance 
URBAN_WASTE Municipal solid waste, construction and demolition debris (dry tonnes) 
Log_Res_Harvest_Cost Harvesting cost of logging residues ($/dry tonne) 
RailroadAvailability_# Railroad accessible index (ordinal ranking of 0, 1, 2, 3, 4)7 
Numberports Number of water ports in each ZCTA (categorical) 
Primary_mill_total Number of primary wood processing mills in each ZCTA (categorical) 
Secondary_mill_total Number of secondary wood processing mills in each ZCTA (categorical) 
Other_Mill_total Number of other wood processing mills in each ZCTA (categorical) 

 
 
Model Scoring and Interpretation 
 Given a specific response variable and set of predictor variables, the fitted logistic 
regression model provided an estimated probability that a ZCTA will contain a woody 
biomass-using facility.  The estimated probability was used in the validation data set to 

                                                 
5 Other removal is the unutilized wood volume from cut or otherwise dead growing stock, from cultural 
operations, e.g., precommercial thinning, or timberland clearing. This doesn’t  include volume removed 
from inventory through reclassification of timberland to productive reserved forest land (Perlack et al. 
2005) 
6 Residues generated from primary mills, secondary mills and pulp and paper mills, which include bark, 
coarse residues (chunks and slabs), fine residues (shavings and sawdust), sawdust, sander dust, wood chips 
and shavings, board and cut-offs, miscellaneous scrap wood and black liquor (“solution of lignin-residue 
and the pulping chemicals used to extract lignin during the manufacture of paper” (Perlack et al. 2005) 
7 Railroad accessible index ranked by four railroad companies as 0, 1, 2, 3, and 4.  “0” means ZCTA has no 
railroad; “1” means one out of four railroad companies in this ZCTA has railroad access.  
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compare ZCTAs with actual mill locations.  This probability was used to rank potential 
ZCTAs for new woody biomass mill location.   
 
 
RESULTS AND DISCUSSION 
 
Logistic Regression Models - Group I 
 The AIC, BIC values and misclassification rates of the four models are given in 
Table 2. The logistic model using Method 3 had the lowest AIC score of 1923.35, lowest 
BIC score of 1977.13, and the lowest misclassification rate of 12.5 percent. 
 
Table 2. Group I Model Results by AIC, BIC Criteria and Misclassification Rate 

Model Method AIC  Value BIC Value 
Misclassification 

Rate8 
Model 1: Logistic regression without variable 
selection and variable transformation 

2001.71 2055.50 0.1305 

Model 2: Logistic regression with stepwise 
variable selection only 

1992.96 2034.80 0.1374 

Model 3: Logistic regression with variable 
transformation only 

1923.35 1977.13 0.1250 

Model 4: Logistic regression with both 
variable selection and variable transformation 

1927.71 1975.52 0.1288 

 

The classification table confirms that logistic model using Method 3 had good 
predictive power for the siting locations of the Group I woody biomass-using facilities 
(Table 3).  The sensitivity of this model in the validation data set was )1  1ˆ(  y|yP = 
86.7% (e.g., the model predicted a mill location correctly 86.7% of the time in 
validation), and specificity (e.g., predicting no mill location where there is currently no 
mill) was )0  0ˆ(  y|yP  = 87.0% (Table 4).  The sensitivity rates of the model in the 
training and validation data sets were acceptable, if based on the stringent criteria of 
medical radiology screening (Carney et al. 2010).9  The specificity rates of the model in 
the training data set were acceptable and very close to acceptable in the validation data 
set. 

Table 3. Classification Table for Training Data Set for Group I 
 Predictive Value 

Actual value 0 1 Total 

0 
1251 

(89.4%) 
148 1399 

1 216 
1296 

(85.7%) 
1512 

Total 1467 1444 2911 
 

                                                 
8 The misclassification is an error rate, e.g., for Table 3(148+216)/2911=0.1250 
9 In medical research (see  Carney et al. 2010) final cut points to identify low performance for screening 
mammography were: sensitivity less than 75%, specificity less than 88% or greater than 95%, 
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Table 4. Classification Table for Validation Data Set for Group I 
 Predictive Value

Actual value 0 1 Total 

0 
808 

(87.0%) 
122 929 

1 134 
876 

(86.7%) 
1011 

Total 942 998 1940 
 
 “Railroad availability” (RailroadAvailability_2), “thinnings to a basal area of 
31.7m2/ha,” (Thin_80), and “logging residue harvest costs” (Log_Res_Harvest_Cost) 
were highly significant in influencing mill location, p-values < 0.0001 (Table 5).  Other 
statistically significant variables were “thinnings to a basal area of 47.5m2/ha” 
(Thin_120), “median family income” (Median_Family_Income), “unused mill residues” 
(UNUSED_MILL_RES), “population” (Total population), and “railroad availability” 
(RailroadAvailability_1).  A higher density of railroad availability 
(RailroadAvailability_2) had a positive coefficient relative to a lower density of railroad 
availability (RailroadAvailability_1) which had a negative coefficient.  This may suggest 
that a higher density of railroads has an economic advantage over one railroad provider 
and its oligopoly market influence, see Ivaldi and McCullough (2001) on railroad 
integration and oligopoly advantage.  “Thinnings to a basal area of 31.7m2/ha” (Thin_80) 
had a positive coefficient, while “thinnings to a basal area of 47.5m2/ha” (Thin_120) had 
a negative coefficient.  This may indicate that availability of higher volumes of woody 
biomass from thinning is preferred over lower volumes of thinning.  This result is in 
agreement with other studies as related to the importance of biomass supply (Adams et al. 
2010; Stewart 2009; Conrad et al. 2010).    
 
Table 5. Analysis of Maximum Likelihood Estimates of Parameters for Group I 
 

Parameter Estimate 
Wald 

Chi_Square Pr>ChiSq 

Intercept -0.146 0.84 0.3607 

RailroadAvailability_2 0.579 47.0 <0.0001 

Thin_80 11.287 39.25 <0.0001 

Log_Res_Harvest_Cost -0.218 132.49 <0.0001 

Thin_120 -6.092 12.64 0.0004 

Median_Family_Income -0.163 8.61 0.0033 

UNUSED_MILL_RES 7.746 7.27 0.0070 

Population -0.325 6.21 0.0127 

RailroadAvailability_1 -0.218 4.09 0.0430 
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Unused mill residues had a positive influence on mill location, while costs of 
logging residue harvesting (recall Adams et al. 2010), median family income, and 
population have negative influences mill locations, i.e., it is not surprising that population 
(and higher incomes associated with urban areas) had a negative influence on mill 
locations which would be nearer the rural biomass supply.              

The 25 mill locations (ZCTAs) with the highest probability from the logistic 
model (Method 3) are given in Fig. 3. There were ten possible locations in Mississippi, 
eight in Tennessee, three in Virginia, three in Louisiana, and one in Georgia.  
 

 
Fig. 3. Highest probability locations for Group I 

 
Logistic Regression Models - Group II 
 The AIC values, BIC values, and misclassification rates for the logistic models 
are given in Table 6. The logistic model using Method 3 had the lowest AIC score of 
322.19, lowest BIC score of 360.55, and the lowest misclassification rate of 2.5 percent.  
 
Table 6. Group II Model Results by AIC, BIC Criteria and Misclassification Rate 
 

Model Method AIC  Value BIC Value 
Misclassification 

Rate 
Model 1: Logistic regression without variable 
selection and variable transformation 

324.32 362.68 0.0248 

Model 2: Logistic regression with stepwise 
variable selection only 

355.89 383.29 0.0299 

Model 3: Logistic regression with variable 
transformation only 

322.19 360.55 0.0254 

Model 4: Logistic regression with both 
variable selection and variable transformation 

358.69 386.10 0.0299 
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 The classification table for Group II training data had a sensitivity of 
)1  1ˆ(  y|yP = 66.4%, specificity )0  0ˆ(  y|yP  = 99.5% (Table 7). The sensitivity of 

this model in the validation data set was )1  1ˆ(  y|yP = 60.5%, and specificity was 
)0  0ˆ(  y|yP  = 99.1% (Table 8).  The specificity rates of the model in the training and 

validation data sets were close to acceptable (recall footnote 10).  The sensitivity rates of 
the model in the training and validation data sets were outside the cut points used by the 
medical industry (recall Carney et al. 2010).  The logistic model for Group II appears 
better at predicting locations where not to locate a plant then at predicting preferred site 
locations.  

Table 7. Classification Table for Training Data Set for Group II 
 Predictive Value 

Actual value 0 1 Total 

0 
1655 

(99.5%) 
8 

1663 
(93.8%) 

1 37 
73 

(66.4%) 
110 

(6.2%) 

Total 1692 81 1773 
 
Table 8. Classification Table for Validation Data Set for Group II 

 Predictive Value 

Actual value 0 1 Total 

0 
1091 

(99.1%) 
10 

1101 
(93.8%) 

1 32 
49 

(60.5%) 
81 

(6.2%) 

Total 1123 59 1182 
  

“Logging residue harvest costs” (Log_Res_Harvest_Cost), population, and 
“thinnings to a basal area of 79.2m2/ha” (Thin_200) were highly significant in 
influencing mill location, p-values < 0.0001 (Table 9).  Other statistically significant 
variables were “number of secondary mills” (Secondary_Mill_Total), “number of 
primary mills” (Primary_Mill_Total), and “amount of total mill residues” 
(TOTAL_MILL_RES).  “Logging residue harvest costs” and population had negative 
influences on mill location for Group II.  “Thinnings to a basal area of 79.2m2/ha” had a 
positive influence on mill location.  This may reflect that this group may accept smaller-
sized woody biomass feedstocks relative to Group I.  “Number of secondary mills,” 
“number of primary mills,” and “amount of total mill residues” all had positive influences 
on Group II facilities.  This may reflect the synergistic relationship that exists between 
primary and secondary wood-using mills and larger Group II facilities that may depend 
on their residue feedstocks. The feasibility of residues for wood-based materials and 
bioenergy has been documented (Garay et al. 2009).   
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Table 9. Analysis of Maximum Likelihood Estimates of Parameters for Group II 

Parameter Estimate 
Wald 

Chi_Square Pr>ChiSq 

Intercept -2.0490 22.64 <0.0001 

Log_Res_Harvest_Cost -0.3060 20.67 <0.0001 

Population -2.0097 23.62 <0.0001 

Thin_200 4.4776 66.03 <0.0001 

Secondary_Mill_Total 0.9600 12.13 0.0005 

Primary_Mill_Total 1.2937 10.19 0.0014 

TOTAL_MILL_RES 1.3233 7.54 0.0060 

 
The importance of biomass supply (mill residues) also supports previous studies 

(Adams et al. 2010; Stewart 2009; Conrad et al. 2010).  These results are also in 
agreement with the study by Pätäri (2009) where the complementary resources held by 
forest and energy companies make collaboration in the bioenergy business favorable. The 
significance of harvesting costs in the logistic model is also noted by Pätäri (2009), where 
a synergistic relationship with pulp and paper mill locations has been considered by 
Cohen et al. (2010). 
 The 25 potential locations for Group II with the highest probabilities are plotted in 
Fig. 4. The logistic model identified seven possible locations in Georgia, six in North 
Carolina, four in Arkansas, three in Mississippi, two in Kentucky, two in Texas, and one 
in Louisiana.   

 

Fig. 4. Highest probability locations for Group II 
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CONCLUSIONS 
 
1. Logistic regression models developed in this study provided quantitative insight and a 

probability-based approach to understanding variables that influence the location of 
woody biomass-using facilities.  “Thinnings to a basal area of 31.7m2/ha,” 
“availability of unused mill residues,” and “a high density of railroad availability” 
have a positive significant influences on all woody biomass-using facilities.  For 
larger woody biomass-using mills (e.g., pulp and paper or biopower) “availability of 
thinnings to a basal area of 79.2m2/ha,” “number of primary and secondary wood-
using mills within a 128.7 km haul distance,” and “amount of total mill residues” 
have  positive significant influences on site location.         

2. The logistic model quantified the synergistic relationship between primary and 
secondary wood-using mills, and larger, wood-using facilities (e.g., pulp and paper, 
or biopower) by predicting correctly mill locations 86.7% of the time in validation. 
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