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A CHEMICAL PROCESS FOR PREPARING CELLULOSIC FIBERS 
HIERARCHICALLY FROM KENAF BAST FIBERS 
 
Jinshu Shi,a  Sheldon Q. Shi,a,* H. Michael Barnes,b and Charles U. Pittman, Jr. c 
 

The objective of this research was to evaluate an all-chemical process to 
prepare nano-scale to macro-scale cellulosic fibers from kenaf bast 
fibers, for polymer composite reinforcement.  The procedure used in this 
all-chemical process included alkaline retting to obtain single cellulosic 
retted fiber, bleaching treatment to obtain delignified bleached fiber, and 
acidic hydrolysis to obtain both pure-cellulose microfiber and cellulose 
nanowhisker (CNW).  At each step of this chemical process, the resultant 
fibers were characterized for crystallinity using X-ray diffraction (XRD), 
for functional groups using the Fourier Transform Infrared spectroscopy 
(FTIR), and for surface morphology using both the scanning electron 
microscopy (SEM) and transmission electron microscopy (TEM). The 
chemical components of the different scale fibers were analyzed.   Based 
on the raw kenaf bast fibers, the yields of retted fibers and bleached 
fibers were 44.6% and 41.4%.  The yield of the pure cellulose microfibers 
was 26.3%. The yield of CNWs was 10.4%, where about 22.6% α-
cellulose had been converted into CNWs. The fiber crystallinity increased 
as the scale of the fiber decreased, from 49.9% (retted single fibers) to 
83.9% (CNWs).  The CNWs had fiber lengths of 100 nm to 1400 nm, 
diameters of 7 to 84 nm, and aspect ratios of 10 to 50.  The incorporation 
of 9% (wt%) CNWs in polyvinyl alcohol (PVA) composites increased the 
tensile strength by 46%.  
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INTRODUCTION 
 
 Natural fibers used to reinforce the polymer composites are in a form of a single 
cellulosic fiber or fiber bundles obtained from wood or agricultural plants through a 
retting process. These processes include chemical, mechanical, and bio-retting.  Kenaf 
bast fiber is a promising reinforcement element for polymer composites because of its 
high cellulose content and fast rate of growth.  The cellulosic fibers are cellulose chains 
composed of amorphous regions and crystalline regions, together with some lignin and 
hemicelluloses.  Removing the hemicelluloses and lignin, and reducing the amorphous 
regions can effectively increase the cellulose content and the percentage of crystalline 
regions of the cellulosic fibers, so that the fibers will have a much higher strength.  
Zadorecki and Michell (1989) reported that the elastic moduli of solid wood, single pulp 
fiber, microfibrils, and crystallites were 10 GPa, 40 GPa, 70 GPa, and 250 GPa, 
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respectively. Thus, breaking down the cellulosic fiber to the micro or nano scale 
improves the strength of the resulting fibers significantly.   

Cellulose nanofibers have been prepared from different resources, such as cotton 
linter (Roohani et al. 2008 ), flax bast fiber (Bhatnagar and Sain 2005; Qua 2009), hemp 
fiber (Bhatnagar and Sain 2005), kraft pulp (Bhatnagar and Sain 2005; Lu et al. 2008), 
rutabaga (Bhatnagar and Sain 2005), and microcrystalline cellulose (Lee et al. 2009). 
Technologies to prepare cellulose nanofibers have been reported, including an enzymic 
method (Henriksson et al. 2007), a bacterial method (Tsuchida and Yoshinaga 1997), 
cryocrushing (Chakraborty et al. 2005), a grinding treatment (Iwamoto et al. 2005), and 
an ultrasonic technique (Wang et al. 2006).  All these methods require using a 
combination of chemical, mechanical and other processes in order to prepare cellulose 
nanofibers from raw natural fibers. The resultant cellulose nanofibers had different 
morphologies, such as entangled network or rod-like nanoparticles. Different terminal-
ogies have been used to designate the rod-like “nanoparticles” or “nanofibers”, e.g. 
nanowhiskers, monocrystals, nanocrystals, etc. (Siqueira et al. 2009).  In this study, we 
use the term "cellulose nanowhiskers” (CNW). 
          The objective of this study was to evaluate an all-chemical process to extract 
cellulosic fibers ranging from macro scale to nano scale from kenaf bast fibers.  Nano- 
and microfibers could be reinforcement candidates for polymer composites.  The retted 
fibers, bleached fibers, microfibers, and CNWs were obtained and characterized.  CNW-
reinforced polyvinyl alcohol (PVA) composites were fabricated, and the tensile 
properties of these CNW/PVA composites were evaluated.  The reason for using PVA as 
the matrix is because that it is water soluble, allowing the film casting process to be 
applied.   
 
 
EXPERIMENTAL 
 
Materials 
            Kenaf bast fibers obtained from the Mississippi State University (MSU) North 
Farm were used as the raw material. Sodium hydroxide beads (laboratory grade) were 
used to prepare a 5% aqueous solution.  Glacial acetic acid was used to neutralize the pH 
of the alkaline retting system.  Technical grade aqueous hydrogen peroxide (37%) 
solution and sulfuric acid (98%) solutions were diluted to 10% and 30%, respectively.  
Polyvinyl alcohol (PVA) (MW=100,000) powder (Fisher Scientific) was used to fabricate 
the composites. 
 
Methods 
Preparation of CNWs 

The kenaf bast fibers with a moisture content of 11% were retted in a 5% NaOH 
solution at 160 °C for one hour.  A sealed reactor was used, in which the alkaline liquid 
reached its autogeneous vapor pressure. Then the pH value of the retting liquid and the 
retted fibers was adjusted to 7.0 using acetic acid, and the retted fibers were washed with 
water to remove the chemicals from the fibers. The retted fibers were then bleached with 
10% H2O2 at 70 °C for 1 hour in order to remove the remaining lignin. Acid hydrolysis of 
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the bleached fibers was then conducted with 30% H2SO4 at 80°C with mechanical stirring 
for four hours. An acidic suspension of microfibers and CNWs was obtained from the 
acid hydrolysis. The acid was removed by centrifugation using an Eppendorf Centrifuge 
(Model 5810) at a rotating speed of 6,500 rpm for five minutes. The microfibers and 
CNWs were both precipitated and could not be separated until the pH value of the 
suspension became around 6.0.  The supernatant acidic liquid was removed, and fresh 
distilled water was added to dilute the remnant acid.  The process was repeated until the 
suspension was neutralized.  The suspension was put into a centrifuge with a rotation 
speed of 7,600 rpm. CNWs were separated from the microfiber sediments.  The milk-like 
supernatant in the CNW suspension was removed.  The separation was repeated until the 
supernatant liquid was clear.  However, it is still unknown why CNWs and microfibers 
could not be separated in acidic aqueous suspension.  The CNW suspension was 
sonicated to disrupt the of nanowhisker aggregates for ten minutes using a Cole-Parmer 
ultrasonic processor with a CV33 converter and a 13mm probe (750 watts, 20 kHz, 40% 
amplitude of vibration).  The samples of retted fibers, bleached fibers, microfibers, and 
CNWs were freeze-dried before characterization. The yields were obtained as the ratio of 
the oven-dry weights of the resultant fibers to the original weight of raw kenaf bast fiber. 

 
CNW/PVA composites fabrication 
           PVA aqueous solutions were mixed with CNW aqueous suspensions followed by 
ultrasonic treatment for 5 min (750 watts, 20 kHz, 40% amplitude of vibration) in order 
to homogenize the distribution of CNWs in the mixtures.  The weight ratios of CNW to 
PVA were controlled at 3:97 and 9:91, respectively.  CNW/PVA composite films, with 
the CNWs loading of 3% and 9%, were fabricated after the evaporation of the water at 
ambient temperature and atmospheric pressure. CNW/PVA composites were dried at 
50°C for 12 hours and stored in vacuum bags before analysis and testing.  
 
Characterizations 
Chemical component determinations  

Chemical components, including holocellulose content, α-cellulose content, 
Klason lignin content, and ash content were determined for the raw kenaf bast fibers, 
retted fibers, bleached fibers, microfibers, and CNWs. The ash contents were determined 
following TAPPI standard T 211-om 93. Klason lignin contents were estimated according 
to the method of the Institute of Paper Chemistry (1951). Holocellulose is the total 
carbohydrate fraction (cellulose and hemicellulose) of the fibers, and its content was 
estimated by the method of Wise et al. (1946). The term α-cellulose describes that part of 
cellulose that does not dissolve in 17.5% sodium hydroxide solution; it was determined 
according to the method of German Association of Cellulose Chemists and Engineers 
(1951).   
 
Morphological analysis 

The samples of retted fibers, bleached fibers, and microfibers were coated with 
gold to provide electrical conductivity.  Scanning electron microscopy (SEM, Zeiss Supra 
TM 40) was used to analyze fiber morphology using an accelerating voltage of 15 kV.  
Seventy fibers were randomly chosen. Their dimensions were measured using software 
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(Smart SEM User Interface). The CNW samples for morphology analysis were obtained 
by placing a drop of the CNW suspension onto a grid without any staining, and drying it 
in air at ambient temperature.  The dried samples were examined with a transmission 
electron microscope (TEM, JEOL JEM-2000 EX-II) at an accelerating voltage of 100 kV.  
The dimensions of seventy randomly chosen CNWs were measured from the TEM 
images.  

 
Functional group analysis 

Fourier Transform Infrared (FTIR) spectra were recorded to analyze the 
functional groups of the fibers on a Thermo Scientific Nicolet 6700 spectrophotometer.  
 
Crystallinity determination 

The crystallinities of all fiber samples were measured using a Rigaku SmartLab 
X-ray Diffraction System with an operating voltage of 40 kV and a current of 44 mA.  
The fiber crystallinities (χCR) were calculated by the Segal method (Segal 1959) as shown 
in Equation (1).    
 

χCR = (I200 - IAM)/I200                                                                                    (1) 
 

Here, I200 is the height of the peak between 20˚ and 25˚, representing both the crystalline 
and amorphous regions; IAM is the lowest height between 15˚ to 22.7˚, representing the 
amorphous regions only. 
 
Tensile properties of CNW/PVA composites 

The CNW/PVA composites with 3% and 9% (wt%) CNW contents and net PVA 
film were tested using an Instron 5869 (load cell 50kN) universal testing machine in 
accordance with ASTM D638-08. Composites samples were kept in desiccators for one 
week before the mechanical testing.  Three replicates of each CNW/PVA composites 
were run. Multiple comparison of the results was conducted with Fisher's Least Square 
method at α=0.05 using SAS 9.2 software (SAS Institute Inc. NC, USA).  The fracture 
surfaces of the samples were observed using scanning electron microscopy (SEM, Zeiss 
Supra TM 40). 
 
 
RESULTS AND DISCUSSION 
 
Yields  

The fiber yields are shown in Table 1. 
 

      Table 1. Yields of the Fibers based on the Weight of Raw Kenaf Bast Fiber 

Types of fibers Retted fiber Bleached fiber Microfiber CNW 

Yields 44.6% 41.4% 26.3% 10.4% 
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Alkaline retting removed most of the lignin and hemicelluloses from the kenaf 
bast fibers. A fiber yield of 44.6% (by mass) was obtained after the alkaline retting.  The 
α-cellulose content of the raw kenaf bast fibers was determined as 45.95%, which was 
close to the yield of the retted fibers. This suggested that the components remaining in the 
fiber after retting were mainly α-cellulose, as was verified by the chemical component 
determination.  Bleaching treatment removed the remaining lignin in the retted fibers.  
Cellulose molecular chains were also cleaved during bleaching.  A 41.4% fiber yield was 
obtained after bleaching.  The bleached fibers were hydrolyzed by the sulfuric acid within 
the amorphous regions of cellulose molecular chains.  The percentage of the crystalline 
region increased, while the fiber size was reduced by the acid hydrolysis.  Some fibers 
were converted to be individual nanowhiskers, while others were microfibers. The yield 
of CNWs was 10.4%, while the yield of microfiber was 26.3%.  Considering that the 10.4% 
CNWs were yielded from  α-cellulose component, which was 45.95% from the non-
treated fiber (Table 2), it could be estimated that about 22.6% of α-cellulose had been 
converted into CNWs by the process used here.  
 
Chemical Components of the Fibers 

The holocellulose, α-cellulose, Klason lignin, and ash contents of the fibers were 
shown in Table 2.  
 
          Table 2. Chemical Components of the Fibers 

 α-cellulose Holocellulose Klason Lignin Ash 

Non-treated fiber 45.95% 75.83% 19.10% 5.07% 
Retted fiber 92.27% 94.22% 0.24% 2.72% 

Bleached fiber 95.19% 95.41% 0% 2.27% 
Microfiber 100% 100% 0% 0% 

CNW 100% 100% 0% 0% 

Alkaline retting treatment of the kenaf bast fibers at 160 °C at the alkaline liquid 
autogeneous vapor pressure for one hour effectively degraded and dissolved lignin and 
hemicellulose. The two percentage point difference between the holocellulose content 
and α-cellulose content of retted fiber indicated that a small fraction of hemicellulose 
remained in retted fibers.  If the lignin in retted fibers, although low at 0.24%, had not 
been removed by bleaching, it would result in acid-insoluble residuals in microfibers and 
CNWs after acid hydrolysis thus impacting purity.  Bleaching removed not only lignin, 
but also hemicellulose, producing relatively pure cellulosic fibers for the next acid 
hydrolysis treatment.  The hemicellulose content could be estimated from the difference 
between the holocellulose content and α-cellulose content in Table 2. After bleaching, the 
hemicellulose content was no more than 0.22%, and the klason lignin content was zero. 
Bhatnagar (2005) reported that the average hemicellulose contents of the flax bast fiber 
and hemp fiber after acid hydrolysis and alkali treatment were 1 to 2%, and their average 
lignin content was 3%.  The alkali retting and bleaching treatment used in this study were 
more effective in removing lignin and hemicelluloses. Microfibers and CNWs obtained 
from acid hydrolysis were pure cellulose fibers.  
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Fourier Transform Infrared (FT-IR) Spectroscopy  
In Fig. 3, the FT-IR spectra show the functional groups on the fiber surfaces and 

within detectable regions below the fiber surfaces.  
 

 
Fig. 3. FT-IR spectra of the fibers 

 
Hydroxyl stretching vibrations are found between 3000 cm-1 and 3500 cm-1.  

Clearly, a highly hydrogen bonded network exists, as indicated by the lower frequencies, 
with some free hydroxyls at high frequencies. The intensity of this peak envelope 
increased gradually going from untreated fiber, retted fiber, bleached fiber, microfiber, to 
nanofiber because the specific surface area of the fibers increased. More hydroxyl groups 
in the surface and in the detectable regions below the surface are exposed as the fiber size 
is reduced from the macro to the nano scales.  The peaks at 2896.6 cm-1, 1718.3 cm-1, 
1307.5cm-1, and 1020 cm-1 represent the C-H, C=O, C-O, and C-C stretching, 
respectively.  The peak at 1648.8 cm-1 (C=C stretching) found in untreated kenaf bast 
fibers disappeared in all the treated fibers.  This corresponds to the removal of carbon-
carbon unsaturation present in lignin components and extractives.  

Crystallinity  
The X-ray diffraction spectra of the fibers are shown in Fig. 4.  The calculated 

degrees of fiber crystallinity of the fibers are shown in Table 4. The fiber crystallinities 
gradually increased at each stage of the process.  Alkaline retting removes lignin and 
hemicelluloses, so that the percentage of the crystalline regions in cellulose increased.  
Hydrogen peroxide bleaching accelerated the cleavage of the cellulose molecular chains 
within the amorphous regions, resulting in the further increase of the crystallinity of the 
bleached fibers.  In addition, the remaining lignin was degraded by hydrogen peroxide 
and removed during bleaching. Acid hydrolysis improved the crystallinity of the fibers 
significantly by the cleavage of glycosidic bonds in cellulose molecular chains within 
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amorphous regions.  Therefore, the relative amounts of amorphous regions were greatly 
diminished.  However, the crystalline regions were highly resistant to acid hydrolysis.  

 
Fig. 4. X-ray diffraction spectra of the fibers 

 
    Table 4. Fiber Crystallinities 

Types of fibers Raw kenaf bast fiber Retted fiber Bleached fiber Microfiber CNW 

Crystallinities 49.9% 63.8% 68.9% 83.5% 83.9% 

 
Tensile Strengths of CNW/PVA Composites 

The tensile strengths of the CNW/PVA composites are shown in Fig. 5. The SEM 
images of the fracture surface of the samples are shown in Fig. 6. 

 
Fig. 5. Tensile strength of the CNW/PVA composites 
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2. Approximately 22.6% of the α-cellulose in the raw kenaf bast fibers could be 
converted into crystalline nanowhiskers (CNWs).  

3. The fiber crystallinity increased at each stage of the chemical processes.  A high 
crystallinity of CNW, 83.9%, was obtained.   

4. The CNWs endowed the CNW/PVA composites with a significantly improved tensile 
strength of 46.2% when only 9% (wt%) CNWs were incorporated.     
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