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This study investigated the effect of oxygen plasma treatment on the 
glass transition temperature of enzymatic hydrolysis lignin (EHL) derived 
from the production of bio-ethanol. Differential scanning calorimetry 
(DSC) was used to obtain the glass transition temperature (Tg) of EHL. 
The results showed that the Tg value of EHL under different heating rates 
ranged from 160 to 200 °C, and there was a strong linear correlation 
between heating rate and Tg. The Tg value of oxygen plasma treated 
EHL decreased when compared with the untreated samples. The 
apparent Tg of the untreated sample was 168.2 °C, while the value of the 
treated sample was 161.5 °C. Distinct chain scission and introduction of 
oxygen-based functional groups on the surface of EHL were detected by 
XPS analysis. These changes may occur mainly on the bulky side chain 
and thus enhance molecular mobility of EHL. This indicates that oxygen 
plasma treatment can modify the structure and improve the reactivity of 
EHL efficiently. 
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INTRODUCTION 
 

 Bio-ethanol, as a form of renewable energy that can be produced from 

lignocellulosic materials, has recently received considerable attention with increasing 

environmental and energy concerns. Both cellulose and hemicellulose in lignocellulosic 

materials can be converted to simple sugars by enzymatic hydrolysis. The hydrolysis 

products can be subsequently fermented to ethanol, while lignin is a barrier to enzymatic 

saccharification of carbohydrates. Therefore, enzymatic hydrolysis lignin (EHL) is 

considered as a waste product in cellulosic ethanol processes. It is expected that a future 

lignocellulosic ethanol industry will generate large quantities of EHL (Zhu and Pan 

2010). Value-added utilization of EHL can help offset the cost of bio-ethanol production, 

boost the economic viability of the bio-ethanol industry, and also provide a source of 

renewable materials. 

Lignin is a highly branched polymer which contains a variety of functional 

groups; it is capable of undergoing a large number of modification reactions. Tremendous 

efforts have been made during the last 50 years to develop high-value lignin products 

(Lora and Glasser 2002; Kumar et al. 2009). Since both hydroxyl and aldehyde groups  
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are abundant in lignin, it has been used as a natural binder for making bio-composite 

products (Anglès et al. 2001; Velásquez et al. 2003; Dam et al. 2004; Zhou et al. 2011). 

Compared with formaldehyde-based resins, its environmental advantage could lead to a 

bright future for manufacturing bio-composites with lignin as a natural binder. However, 

bulky substituents on the aromatic ring, such as methoxy, diminish the available positions 

for polymerization and lower the reactivity of lignin. Therefore, ways to improve the 

reactivity of lignin has been the focus of attention. 

Various physical (ultrasonic processing and thermal treatment), chemical (acid or 

alkali treatment), and biological (enzymatic processes) methods, and their combinations 

for lignin modification have been reported (Ren and Fang 2005; Crestini et al. 2006; Qiu 

and Chen 2008; Brosse et al. 2010). A low temperature plasma treatment has been widely 

used for modifying polymeric materials over the past decades. Desired outcomes such as 

enhanced wettability, superior adhesion characteristics, and improved chemical reactivity 

can be achieved by plasma treatment. Few studies have investigated modifying lignin by 

plasma treatments (Toriz et al. 2004; Sahin 2009; Titova et al. 2010; Klarhoefer et al. 

2010). It is believed that plasma treatment is an effective method to modify the structure 

of lignin and implant reactive functional groups to lignin.  

The objective of this work was to investigate the effect of oxygen plasma        

treatment on the grass transition temperature of EHL using differential scanning 

calorimetry (DSC), so that the sufficient data could be applied to optimize pressing 

parameters in the manufacture of bio-composites with EHL as a natural binder. To better 

understand the effects of plasma treatment on the thermo characteristic of EHL, the 

chemical changes of treated EHL were also evaluated using X-ray photoelectron 

spectroscopy (XPS). 

 

 
EXPERIMENTAL 
 

Materials 
 EHL was extracted from corn stover residues, which was derived from the 

production of bio-ethanol in the pilot plant in Hei Longjiang Province, China, according 

to Liu and Cheng (2007) with 3-wt% NaOH solution. The reaction was conducted at     

65 °C with gentle stirring for 1h, and the solution was kept at this temperature for an 

additional half an hour. Then the mixture was filtered, and the alkaline filtrate and wash 

water were collected and acidified to pH 3 by the dropwise addition of 2-wt% dilute 

H2SO4 solution. The acidified mixtures were then heated in a water bath at 70 °C for 30 

minutes under continuous stirring. The precipitated lignin fractions were separated from 

the mixtures and centrifuged, then washed with water until neutral. The final products 

were dried in a vacuum oven at 60 °C for 24 h and screened to an average diameter of 20 

μm. Typical physical and chemical characteristics of EHL are: free-flowing brown 

powder; solid content 96.5%; moisture content (MC) 3%; elemental content C 57.3%, H 

5.9%, O 34.1%; OMe content 9.2%; and ash content 6.7%. 

 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Zhou et al. (2012). “Plasma-modified hydrolysis lignin,” BioResources 7(4), 4776-4785.  4778 

 
Oxygen Plasma Treatment of EHL 

Plasma treatments of EHL were carried out in a plasma reactor (HD-1B, made in 

Jiangsu, P.R. China), as shown in Fig. 1, with a radio frequency (RF) of 13.56 MHz. 

Powdery lignin was dispersed in a glass container to maximize surface exposure of the 

samples for uniform treatments. The system was evacuated to a base pressure of 0.1 to 

0.3 mTorr, and then oxygen was fed directly into the chamber. Such a cycle was repeated 

five times to remove volatile contaminants. By operating the gas feeding system valves, a 

pressure of 1.3 to 1.5 mTorr and a steady-state flow rate were maintained. A RF 

magnetron sputtering unit was used to produce oxygen plasma. The input power was set 

at 200 W and sustained for a period of 3 min. At the end of the reaction, the chamber was 

pressurized, and the samples were removed and stored under dry conditions for later 

analysis. 

 
 
Fig. 1. The schematic diagram of RF plasma reactor 
 

DSC Measurement 
A differential scanning calorimeter (Mettler toledo DSC823e, Switzerland) with 

high purity nitrogen (flow rate 10 mL/min) as the carrier gas was used to evaluate the 

thermokinetic behaviors of the EHL. Sample mass was ca. 12 mg. In order to eliminate 

the thermal history of the sample, two step scans were conducted. Firstly, the samples 

were heated in DSC from 25 
o
C to 100 

o
C, held at this temperature for 5 min, and cooled 

down to 25 
o
C naturally. At the second scan, the samples were heated from 25 

o
C to 250 

o
C at five different heating rates (5 

o
C/min, 10 

o
C /min, 15 

o
C/min, 20 

o
C/min, and         

25 
o
C/min). Because the thermal history of the samples was removed during the first 

heating run, the 2
nd

 heating run was used for analysis of glass transition temperature (Tg). 

To verify the Tg values, the untreated samples were annealed at a glass transition 

temperature region for 4 h to investigate the enthalpy relaxation of EHL. For each group, 

five replicates of untreated and treated EHL samples were scanned.  
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XPS Analysis 
X-ray photoelectron (XPS) spectroscopy was conducted to investigate the 

changes of elemental distributions and surface functionality of EHL after oxygen plasma 

treatment. Measurements were performed on a K-α using an Al Kα (1480 eV) X-ray 

source operated at 100 W under a vacuum of 5×10
−7

 mbar. To average out the 

heterogeneity of the sample, survey scans and high-resolution regional spectra were 

recorded from at least three measurement points in each sample.  

 

 

RESULTS AND DISCUSSION 
 

Glass Transition Temperature of EHL 
Figure 2 shows a DSC thermogram of the untreated EHL sample. As a typical 

amorphous polymer, EHL has a distinct stage of glass transition starting around 150 
o
C. 

The Tg of untreated EHL samples, indicated by an arrow as the medial point of the step 

change, was observed around 170 
o
C at the heating rate of 10 

o
C/min. The glass transition 

is a characteristic of the viscoelastic behavior of amorphous polymers. At temperatures 

below the transition, lignin is stiff and brittle. When lignin is thermally processed in the 

transition region, the stiffness of lignin decreases, and it exhibits rubber-like elasticity as 

a result of chain entanglements. If the material is not cross-linked, and provided that 

thermal degradation does not occur, further increase in temperature will eventually result 

in rubbery flow as the entanglements begin to slip. If cross-linking is present, such flow 

cannot occur (Irvine 1985). With regard to lignin, both dehydration and non-reversible 

reactions will take place within the lignin matrix with further increase in temperature 

above its glass transition. The non-reversible reactions might be caused by the formation 

of new ether-type linkages between phenylpropane units of lignin (Guigo et al. 2009). If 

lignin is used as a natural binder for bio-composites, a higher hot-pressing temperature in 

the composites is necessary in order to reach temperatures above the glass transition point 

of lignin to cure and bond the fibers. It has been shown that improved properties of 

fiberboards with EHL as a natural binder were obtained when the hot-pressing 

temperature was above the Tg value of EHL (Zhou et al. 2011). Lower Tg values of EHL 

samples imply that the temperature during hot-pressing can be decreased and it can also 

be optimized based on the Tg value.  

Glass transition temperature of various kinds of lignin has been investigated by 

different techniques over the past few decades (Hatakeyama and Hatakeyama 2010). The 

Tg values are found in a wide temperature range depending on plant species, isolation 

methods, and post treatments (Hatakeyama et al. 1982; Glasser and Jain 1993; Jain and 

Glasser 1993; Hatakeyama and Quinn 1999; Laborie et al. 2004; Li and Sarkanen 2005). 

As shown in Fig. 2, the Tg value ranged from 160 to 200 
o
C at the different heating rates. 

These values were much higher than that of industrial hydrolysis lignin from 75 to 90
 o
C, 

as  reported by Hatakeyama et al. (2010), based on EHL obtained as a by-product from 

the production of bio-ethanol (Hatakeyama et al. 2010). This is probably due to the 

different plant species and the different hydrolysis conditions. Moreover, the molecular 

motion of isolated lignin was confirmed at a temperature higher than that of lignin in situ 

by the above result (Salmén 1984; Hatakeyama 1992), which was expected as molecular 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=V27a4i@@J15Gb9ohJA@&field=AU&value=Hatakeyama,%20H&ut=5237273&pos=%7b2%7d
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weight is related glass transition temperature (Blanchard 1974). 

Since amorphous polymers show enthalpy relaxation when glassification slowly 

takes place, EHL samples were annealed at 165
 o

C for 4 h, cooled slowly, and then heated 

at the rate of 10 
o
C/min. By annealing, enthalpy relaxation is identified as an endothermic 

shoulder peak in DSC curves (Hatakeyama et al. 2010). The enthalpy relaxation of EHL 

is visible as indicated by an arrow in Fig. 2. It indicates that lignin is a typical amorphous 

polymer having a broad spectrum of molecular higher order structure which coaggregates 

by annealing (Hatakeyama et al. 2010).  
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Fig. 2. DSC heating curve of EHL and enthalpy relaxation of EHL annealed at 165 

o
C for 4h 

 

Effect of Oxygen Plasma Treatment on Glass Transition Temperature of 
EHL 

Figure 3 presents the DSC thermograms of one group of untreated and oxygen 

plasma treated EHL samples under different heating rates. It can be seen that there was a 

clear step change being detected and the size of the step change increased with increasing 

heating rate for all samples. The Tg values, indicated by an arrow, increased with 

increasing heating rate for all samples and ranged from 160 to 200 
o
C. Because of the lag 

in heat conduction and sample relaxation, the characteristic temperature (T) of thermal 

properties was delayed due to the high heating rate. Theoretically, if all experimental 

conditions are constant, such as the heat conduction of the pan and sample thickness, the 

heating rate can only change the kinetics of the thermal behavior. In that case, the 

relationship between T and heating rate should be linear (Liu et al. 2009). The Tg was 

plotted as a function of heating rate in Fig. 4 based on the measured data from Fig. 3. It 

shows a strong linear correlation between heating rate and Tg for both untreated and 

treated samples. The intercept was assumed as an apparent Tg of samples, which 

represents Tg when the heating rate is extremely slow and approaching 0 
o
C/min (Park 

and Wang 2005; Liu et al. 2009). The apparent Tg of the untreated sample was 168.2 
o
C, 

while the value of the treated one was 161.5 
o
C. From Fig. 4, it is obvious that Tg values 

of oxygen plasma treated samples were lower than that of untreated samples at the 

different heating time. Molecular motion of lignin is characterized by phenylpropane 

units in the molecular chain; bulky side chain and slight cross-linking establish intra- and 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=V27a4i@@J15Gb9ohJA@&field=AU&value=Hatakeyama,%20H&ut=5237273&pos=%7b2%7d
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=V27a4i@@J15Gb9ohJA@&field=AU&value=Hatakeyama,%20H&ut=5237273&pos=%7b2%7d
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intermolecular chains. Rigid groups in the main chain and cross-linking restrict molecular 

motion and have the effect of increasing the glass transition temperature. In contrast, 

bulky side chains enhance molecular mobility of lignin through the local mode relaxation 

(Hatakeyama et al. 2010). The above results indicate that the bulky side chains or cross-

linking of EHL might be changed; even the ring might be opened during oxygen plasma 

treatment, since the Tg values of treated samples decreased. Therefore, to better 

understand the effects of plasma treatment on the thermokinetic behavior of EHL, X-ray 

photoelectron (XPS) analysis of EHL samples was conducted. 

 

      
(a) Untreated samples                                                     (b) Treated samples 

 
Fig. 3. DSC curves of untreated and oxygen plasma treated EHL at different heating rates 
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Fig. 4. The glass transition temperature (Tg) of samples as a function of heating rate 
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Effect of Oxygen Plasma Treatment on Chemical Change of EHL 
From the low-resolution XPS spectra results, the O/C atomic ratio was found to 

be 0.25 of the untreated samples and was increased notably to 0.40 after oxygen plasma 

treatment. Moreover, the deconvoluted peak areas of the untreated and treated EHL 

surfaces in the C1s spectra were significantly different as well (Fig. 5). The peak areas of 

oxygen-related functional groups concerning the peaks C2 (corresponds to carbon atoms 

linked to single oxygen), C3 (carbon atoms linked two non-carbonyl oxygen, or to single 

carbonyl oxygen), and C4 (carbon atoms bonded to carbonyl and non-carbonyl oxygen) 

of the treated samples were increased by 126, 37, and 246%, respectively, compared with 

the untreated samples. On the other hand, a considerable decrease in C1, which 

corresponds to carbon atoms only linked to carbon and/or hydrogen, such as C-C and C-
H groups of plasma-treated lignin, was identified. This indicates that a great number of 

oxygen-related functional groups are attached to the surface of EHL after treatment 

(Dorris and Gray 1978a,b). During the oxygen plasma treatment, oxygen-based polar 

species with high energy (0 to 20 eV) as so-called oxygen plasma will be generated, such 

as oxygen free radicals and atoms, ionized oxygen molecules, ozone, and a number of 

other oxygen metastable states, while the bond energies of the atoms of organic structures 

are variable and less than the energy range of such species (Denes et al. 2005). Therefore, 

plasma can lead to polymer chain scission and promote the formation of free radicals and 

ions. As a result, fragmentation, isomerization, cross-linking, and the introduction of 

functional groups to the surface of polymer materials occur (Li et al. 2007). Considering 

the lignin structure, it has C-H, C-C, C=C, C-O, and C=O functionalities with bond 

energies less than 20eV (Lide 1995). Hence, oxygen plasma is intense enough to 

dissociate almost all chemical bonds involved in recovering lignin structures and to create 

free radical species. Meanwhile, oxygen-based polar species react with these free radical 

species by the generation of hydroxyl, carbonyl, and carboxyl groups on the surface of 

EHL. The XPS analysis results imply that the chain scission and the introduction of 

functional groups occur mainly on the bulky side chain. These changes enhance 

molecular mobility of EHL, so that the Tg values decrease after oxygen plasma treatment. 
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(a) Untreated samples                                                 (b) Treated samples 
 
Fig. 5. The high-resolution C1s XPS spectra of untreated and oxygen plasma treated EHL 
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CONCLUSIONS 
 

The Tg values of isolated enzymatic hydrolysis lignin (EHL) under different 

heating rates ranged from 160 to 200 
o
C. They were much higher than that of industrial 

hydrolysis lignin, which was also obtained as a by-product from the production of bio-

ethanol.  

The glass transition temperature (Tg) of EHL was decreased after being treated by 

oxygen plasma due to efficiently modified chemical structure of EHL. Distinct chain 

scission and introduction of oxygen-based functional groups were detected by XPS 

analysis. These changes may occur mainly on the bulky side chain and thus enhance 

molecular mobility of EHL.  

Lower Tg values of oxygen plasma treated EHL samples imply that the 

temperature of hot-pressing can be decreased and also be optimized based on the Tg  value 

so that good cross-linking between EHL and lignocellulosic fibers will probably be 

formed when EHL is used as an natural thermosetting binder. 
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