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A simple strategy is reported for catalytic conversion of glucose to 5-
hydroxymethylfurfural (HMF) over AlI3 in N,N-dimethylacetamide (DMAC). 
When the reaction was conducted in DMAC at 120

o
C for 15 min over AlI3 

catalyst, HMF was obtained with a yield of 52%. The reaction course was 
monitored by 

13
C NMR spectroscopy and HPLC analysis. The results 

suggest that AlI3 catalyzes the three consecutive reactions consisting of 
mutarotation of α-glucopyranose to β-glucopyranose, isomerization of 
glucose to fructose, and dehydration of fructose to HMF. 
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INTRODUCTION 
 

 In view of the costs and challenges inherent in safely and continuously providing 

fossil energy resources, increasing attention has been paid to the conversion of biomass to 

biofuels and chemicals (Gallezot 2012; Zhou et al. 2011; Bozell 2010; Alonso et al. 

2010). 5-Hydroxymethylfurfural (HMF), an important biomass-derived platform 

chemical, can be converted to biofuels and a broad range of chemicals (Rosatella et al. 

2011; Román-Leshkov et al. 2007; Zhao et al. 2007; Huber et al. 2005), which are 

currently produced from petroleum.
 
Recently, our group has developed methods for 

converting HMF to maleic anhydride (Du et al. 2011), which is now mainly produced via 

selective oxidation of benzene, o-xylene, or n-butane in industry. In addition, we have 

developed methods for converting HMF to furan-based polyester and copolyester 

materials, fluorescent material, porous organic frameworks, and liquid fuel products, 

respectively (Ma et al. 2011; Ma et al. 2012a,b,c; Che et al. 2012). However, a simple 

and reliable way of acquiring HMF remains as a bottleneck for extending biomass chains. 

 HMF could be formed through acid-catalyzed dehydration of fructose (Román-

Leshkov et al. 2006; Tong et al. 2010; James et al. 2010). However, glucose, the isomer 

of fructose, is a better feedstock for HMF production because it is cheaper. It is the most 

abundant monosaccharide in nature, and it can be obtained from starch and cellulose. 

However, in comparison with fructose, it is more difficult to convert glucose to HMF. 

Zhang and co-workers reported the conversion of glucose to HMF using a CrCl2/ionic 

liquid system (Zhao et al. 2007). Some other Cr-containing catalytic systems have also 

been developed (Yong et al. 2008; Binder and Raines 2009; Yu et al. 2009; Li et al. 2009; 

Qi et al. 2010; Zhao et al. 2011; Zhang and Zhao 2011; Yuan et al. 2011; Hu et al. 2012). 

More efforts have been taken to develop low-toxic catalytic systems. In ionic liquids, 

Yb(OTf)3, H3BO3, H-ZSM-5, GeCl4, ZrO2, and SnCl4 have been used to catalyze this 

process. HMF was obtained with yields of 24 to 61% (Stahlberg et al. 2010; Stahlberg et 

al. 2011; Jadhav et al. 2012; Zhang et al. 2011; Qi et al. 2012; Hu et al. 2009). Under 
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microwave irradiation, the reactions over TiO2 and AlCl3 catalysts gave 37 to 61% yields 

of HMF (Dutta et al. 2011; De et al. 2011; Yang et al. 2012). In addition, ScCl3, ZnCl2 

combined with HCl, SO4
2-

/ZrO2-Al2O3, hydrotalcite combined with Amberlyst-15, Sn-

Mont, Sn-Beta zeolite combined with HCl, and AlCl3 combined with HCl have also been 

used to catalyze this process; HMF was obtained with yields of 30 to 62% (Beckerle and 

Okuda 2012; Deng et al. 2012; Yan et al. 2009; Ohara et al. 2010; Wang et al. 2012; 

Nikolla et al. 2011;      -Torres et al. 2012).
 
Unlike previous studies, we herein 

demonstrate a simple method for the catalytic conversion of glucose to HMF over metal 

halide. It was found that aluminum halides in N,N-dimethylacetamide (DMAC) were 

efficient for this important reaction, and the catalytic performance of aluminum halides 

decreases in the order of AlI3 > AlBr3 > AlCl3. A tentative reaction route, including 

mutarotation, isomerization, and dehydration, is proposed based on NMR and HPLC 

analysis.  

 

 
EXPERIMENTAL 
 

Materials 
 All reagents were of analytical grade and were used as purchased without further 

purification unless otherwise stated. AlI3 and methyl benzoate were purchased from Alfa 

Aesar. HMF, GaCl3, and InCl3 were purchased from Sigma-Aldrich. D-glucose and D-

fructose were purchased from Tianjin Kermel. AlCl3, DMAC, and other reagents were 

purchased from Shanghai Chemical Reagent Company. DMAC was distilled under 

reduced pressure before being used. 

 

Typical Procedure for Glucose Conversion 
 All the reaction experiments were conducted in a 50 mL two-necked flask 

equipped with a condenser and a magnetic stirrer. Typically, 0.5 mmol glucose and 0.1 

mmol AlI3 were mixed in 2 mL DMAC under N2. The mixture was stirred in a preheated 

oil bath at the desired temperature for a certain period of time. After reaction, the mixture 

was immediately cooled in an ice bath to terminate the reaction, followed by filtering off 

solid particles. The filtrate was added to a certain amount of methyl benzoate as internal 

standard and was diluted with ethyl acetate to 10 mL. The sample was filtrated with a    

0.2 μm micropore membrane before its analysis by GC and HPLC. 

 

HMF Quantification Procedure 
 HMF was analyzed with an Agilent 4890D GC device equipped with a flame 

ionization detector and FFAP capillary colum  (30 m × 0.32 mm × 0.4 μm). HMF w s 

confirmed by 
1
H NMR measured with a Bruker DRX-400 spectrometer, as well as an 

Agilent 6890N GC device equipped with an Agilent 5973 mass selective detector and 

HP-5 capillary colum  (30 m × 0.25 mm × 0.3 μm). HMF yield w s determi ed by the 

internal standard curve method with methyl benzoate as internal standard. 

 

Glucose and Fructose Quantification Procedure 
 Glucose and fructose are analyzed with a Waters 2695 HPLC equipped with 2414 

refractive index detector at 30
o
C and high performance carbohydrate column (4.6 mm × 

250 mm) at 30
o
C controlled with the column oven. Acetonitrile/water solution (75:25) 

with a flow rate of 1.4 mL/min was used as the mobile phase. The injection amount was 
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10 μL. Both glucose conversion and fructose yield were calculated by using an external 

standard curve method. 

 

 

RESULTS AND DISCUSSION 
 In the initial experiment, AlCl3 (10 mol% based on glucose) was used as the 

catalyst to convert glucose in DMAC at 100
o
C for 15 min. Very low yield (6%) of HMF 

was obtained. The yield of HMF was increased to 36% when the reaction temperature 

was 130
o
C. Prolonging the reaction to 240 min had little effect on the yield of HMF 

(Table 1, entries 1 to 3). When GaCl3 and InCl3 were used, lower yields of HMF were 

obtained (Table 1, entries 4 and 5). Several other metal chlorides such as FeCl3, LaCl3, 

CuCl2, and NiCl2 were tested. Much lower yields of HMF were obtained (Table 1, entries 

6-9). However, when AlBr3 and AlI3 were used, high yields of HMF were achieved 

(Table 1, entries 10 and 11). In particular, when 20 mol% AlI3 was used, HMF was 

obtained with a yield of 50% (Table 1, entry 12). Therefore, AlI3 was selected as the 

catalyst for the following study. Furthermore, a blank experiment was conducted without 

adding any metal chloride and only little HMF was obtained (Table 1, entry 13). 

  

Table 1.  Conversion of Glucose to HMF Catalyzed by Metal Halides a 
Entry Metal chloride T (

o
C) t (min) Yield (%) 

b
 

1 AlCl3 100 15 6 

2 AlCl3 130 15 36 

3 AlCl3 130 240 39 

4 GaCl3 130 15 29 

5 InCl3 130 15 22 

6 FeCl3 130 15 10 

7 LaCl3 130 15 9 

8 CuCl2 130 15 9 

9 NiCl2 130 15 6 

10 AlBr3 130 15 44 

11 AlI3 130 15 46 

12 
c
 AlI3 130 15 50 

13 - 130 15 5 
a
  Reaction conditions: 0.5 mmol glucose, 0.05 mmol metal chloride, 2 mL DMAC. 

b
  GC yields. 

c
  0.1 mmol AlI3 was used. 

 

 The effect of reaction temperature on the conversion of glucose to HMF was 

optimized. As shown in Fig. 1, from 90
o
C to 120

o
C, higher reaction temperatures gave 

higher conversion and HMF yields. When the reaction was performed at 120
o
C, glucose 

conversion reached over 99%, and HMF was obtained with a yield of 52%. An increase 

in the temperature to 130-150
o
C gave slightly decreased yields of HMF. Moreover, the 

increase of temperature generated more dark-brown insoluble solid polymers, commonly 

known as humin (Binder and Raines 2009), originating from the side-reaction of the 

decomposition of glucose. Thus, to avoid the formation of humin, the optimized 

temperature was set at 120
o
C. 
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Fig. 1. Effect of temperature on the conversion of glucose to HMF catalyzed by AlI3.  
Reaction conditions: 0.5 mmol glucose, 0.1 mmol AlI3, 2 mL DMAC, 15 min 
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Fig. 2. Effect of solvent on the conversion of glucose to HMF catalyzed by AlI3;  
Reaction conditions: 0.5 mmol glucose, 0.1 mmol AlI3, 2 mL Solvent, 120

o
C, 15 min 

 
 Conversions of glucose to HMF over AlI3 in different solvents were conducted. 

The polar aprotic solvents that have good solubility for glucose, such as DMAC, N,N-

dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide 

(DMSO), were investigated. As shown in Fig. 2, solvents remarkably influenced the 

catalytic efficiency. The effect of solvents on glucose conversion and HMF yield were in 

the order DMAC > DMF > NMP > DMSO. Neither levulinic acid nor formic acid (the 

rehydration products of HMF) was detected in the reaction mixtures, which indicated that 

the rehydration side reaction of HMF was prevented. 

 The effect of reaction time on the conversion of glucose to HMF at 120
o
C was 

investigated, and the results are shown in Fig. 3. Glucose conversion increased in the 

course of the reaction and reached over 99% in 30 min. The maximal HMF yield of 52% 
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was obtained in 15 min. Fructose was detected. Initially, fructose yield reached 8% in     

1 min, and then decreased slowly until no fructose could be detected in 30 min. The 

variation of glucose conversion and HMF yield with reaction time was also investigated 

at 110
o
C and 130

o
C, and the results were similar to those obtained at 120

o
C. 
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Fig. 3. Variation of glucose conversion, HMF yield, and fructose yield with reaction temperature 
and time; Reaction conditions: 0.5 mmol glucose, 0.1 mmol AlI3, 2 mL DMAC 

 

 In the reaction of converting glucose to HMF, water was produced. AlI3 was 

probably hydrolyzed to aluminum hydroxide (Al(OH)3) and hydroiodic acid (HI), which 

might also catalyze the conversion of glucose to HMF. In order to clarify whether 

Al(OH)3 or HI catalyzed this reaction, some comparison experiments were conducted. 

The results are listed in Table 2. Both Al(OH)3 and HI were found to be inactive, no 

matter whether they were used alone or together, suggesting that AlI3 itself, not its 

hydrolyzed products, catalyze the conversion of glucose to HMF. 

 

Table 2.  Effects of AlI3 and its Hydrolyzed Products on Converting Glucose to 
HMF a 

Entry Catalyst Yield (%) 
b
 

1 0.1 mmol AlI3 52 

2 0.1 mmol Al(OH)3 3 

3 0.3 mmol HI 3 

4 0.1 mmol Al(OH)3 + 0.3 mmol HI 3 
a
  Reaction conditions: 0.5 mmol glucose, 2 mL DMAC, 120

o
C, 15 min. 

b
  GC yields. 

 

 To gain more insight into the process for glucose conversion to HMF catalyzed by 

AlI3, we collected a series of 
13

C NMR spectra of glucose in DMAC under different 

conditions (Fig. 4). It can be seen from Fig. 4a that in DMAC at 120
o
C for 1 min, glucose 

was in the α-glucopyranose form. The six peaks appearing in Fig. 4a belong to the six 

c rbo s of α-glucopyranose.
 
When AlI3 was added, a mixture of α-glucopyranose and β-

glucopyranose was obtained. The twelve peaks in Fig. 4d belong to six carbons of α-

glucopyranose and six carbons of β-glucopyranose (Duquesnoy et al. 2008; Roslund et al. 
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2008). This indicated that AlI3 promoted the mutarotation of α-glucopyranose to β-

glucopyranose.
 
Similarly, it can be seen from Figs. 4b and 4c that AlBr3 and AlCl3 also 

promoted the mutarotation of α-glucopyranose to β-glucopyranose. 

 

 
Fig. 4. 

13
C NMR spectra of 0.5 mmol glucose in 2 mL DMAC (with d6-DMSO as external 

standard) at 120
o
C for 1 min under different conditions: a) without AlX3; b) in the presence of 0.1 

mmol AlCl3; c) in the presence of 0.1 mmol AlBr3; d) in the presence of 0.1 mmol AlI3 
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Scheme 1. Speculated reaction route of conversion of glucose to HMF catalyzed by AlI3 

 

 It should be noted that fructose was obtained during the reaction process. 

However, no fructose was obtained in the absence of AlX3 under the same conditions, 

which indicated that AlI3 could promote the isomerization of glucose to fructose. To 

clarify whether AlI3 can catalyze the dehydration of fructose to HMF, an experiment with 

fructose as feedstock was conducted, and HMF was obtained with a yield of 54%, while 

only little HMF was obtained in the absence of AlI3. These results clearly indicated that 

AlI3 could catalyze the dehydration of fructose to HMF. On the basis of the NMR study 

and the experiments described above, a speculated reaction route is proposed in Scheme 1. 
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Potentially catalytic applications in conversion of various carbohydrates and reaction 

mechanism investigation are currently under study. 

 
 
CONCLUSIONS 
 

1. Aluminum halides in DMAC can provide a simple and efficient system for converting 

glucose to HMF. The catalytic performance of aluminum halides decreases in the 

order of AlI3 > AlBr3 > AlCl3. When AlI3 in DMAC was used, HMF was obtained 

with a yield of 52% at 120
o
C in 15 min. 

2. 13
C NMR spectra indicated that aluminum halides could promote the mutarotation of 

α-glucopyranose to β-glucopyranose. 

3. HPLC and comparison experiments indicated that AlI3 could promote the          

isomerization of glucose to fructose and catalyze the dehydration of fructose to HMF. 
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