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Black gram husk was used as a solid substrate for laccase production by 
Pleurotus ostreatus, and various fermentation conditions were optimized 
based on an artificial intelligence method. A total of six parameters, i.e., 
temperature, inoculum concentration, moisture content, CuSO4, glucose, 
and peptone concentrations, were optimized. A total of 50 experiments 
were conducted, and the obtained data were modeled by a hybrid of 
artificial neural network (ANN) and genetic algorithm (GA) approaches. 
ANN was employed to model the experimental data, and the predicted 
values were further optimized by GA. Employment of ANN–GA hybrid 
methodology resulted in a significant improvement, as approximately 
two-fold laccase production (4244 U/gds) was achieved. 
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INTRODUCTION 
 

Laccases (EC 1.10.3.2, p-diphenol: dioxygenoxidoreductases) are oxidoreductase 

enzymes that catalyze the oxidation of phenolic compounds by molecular oxygen (Neifar 

et al. 2011; Riva 2006). These are multi-copper-containing enzymes that catalyze the 

oxidation of a wide range of substrates by a radically catalyzed reaction mechanism with 

the concomitant reduction of oxygen to water in four electron transfer processes (Neifar 

et al. 2011). With this mechanism of action, laccases can detoxify various oncogenic 

substances, harmful pollutants, and synthetic dyes, which are effluents generated by the 

various pulp, paper, and textile industries. They have the ability to delignify wood pulp, 

which is a beneficial effect for the paper industry. These enzymes are also used in the 

food industry and for soil bioremediation, nanobiotechnology, various biosensors, 

synthetic chemistry, microbial fuel cells, and cosmetics (Bourbonnais et al. 1997; 

Kantelinen et al. 1989; Mishra and Kumar 2007; Srebotnik and Hammel 2000).  

Reported sources of these enzymes include many microorganisms such as fungi, 

bacteria, yeast, marine algae, protozoans, and insects (Polizeli et al. 2005). Among these, 

fungi are a major group of microbes that are able to produce laccase in high amounts 

(Vivekanand et al. 2011). Laccases from white-rot fungi such as Trametes versicolor, 

Coriolus versicolor, Phanerochaete chrysosporium, and Pleurotus sp. (Landolo et al. 
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2011; Mishra and Kumar 2007; 2009; Tisma et al. 2012; Vivekanand et al. 2011) have 

been well studied in production as well as their industrial applications.    

Production of industrial enzymes in a cost-effective manner is a prerequisite for 

their use in industrial processes. In the last decade, solid-state fermentation (SSF) has 

been shown to be an economically viable method for the production of various industrial 

enzymes (Hymavathi et al. 2009; Laxmi et al. 2008; Mahalaxmi et al. 2009; 2010; 

Sathish and Prakasham 2010). Various researchers have studied different solid substrates 

for the production of laccase, such as horticultural waste, tomato waste, and banana 

waste, and it has been reported that SSF is the best approach for economically viable 

production of lignolytic enzymes (Iandolo et al. 2011; Xin and Geng 2011). The 

production levels of these strains are low; thus further advances in the effective 

production of lignolytic enzymes on an industrial scale requires the isolation of high-

yielding strains that are economically viable and readily available.  

Optimization of the process and nutrient parameters is one of the best methods 

used to increase enzymes and metabolites production. Numerous optimization methods 

such as the conventional one-at-a-time method (Laxmi et al. 2008), response surface 

methodology (RSM) (Hymavathi et al. 2009), simplex method (Sathish et al. 2008), and 

orthogonal arrays (Mahalaxmi et al. 2009; 2010) are usually used for the optimization of 

media. The one-at-a-time method is laborious and time consuming, and often interaction 

effects are overlooked. Even though statistical methods have proven to be better methods 

for optimization than the one-at-a-time method, they have some limitations. In these 

methods, the number of parameters and levels are limited. The level of Taguchi or 

orthogonal array design is also limited by this factor (Fang et al. 2003). To overcome 

these problems, artificial intelligence based optimizations such as artificial neural 

networks (ANN) and genetic algorithms (GA) can be considered. Effective utilization of 

ANN and GA to enhance enzyme production in SSF by optimizing culture media has 

been reported (Sathish and Prakasham 2010). Instead, studies regarding the optimization 

of SSF for the production of laccase are very limited in scientific literature (Tisma et al. 

2012). In the present study, various process and nutrient parameters that influence the 

laccase secretion in SSF were optimized based on a hybrid ANN-GA approach. 
 
 
EXPERIMENTAL 
 

Microorganism 
An isolated, hyper laccase-producing white-rot fungus, Pleurotus ostreatus 

PVCRSP-7, was used in the present study. Its secretion of lignolytic enzymes was further 

improved during the optimization studies in SSF. The fungi was maintained on potato 

dextrose agar (PDA) plates and stored at 4 °C.  

 

Inoculum Preparation  
An inoculum of P. ostreatus PVCRSP-7 grown on wheat grains was prepared 

according to Kumar and Chandra (1988). First, 200 g of wheat grains was placed in a 

1000-mL Erlenmeyer conical flask, followed by the addition of two volumes of distilled 

water, and the solution was then boiled for 30 min. Boiled wheat grains were 

supplemented with 0.2% calcium carbonate and 1.2% calcium sulphate and sterilized at 

15 lbs of pressure for 2 h. After sterilization, grains were cooled to room temperature and 

were inoculated with mycelial plugs grown on PDA agar plates and incubated at 25 °C. 
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Grains were ready for inoculation after 15 days of incubation. These mycelial cultivated 

wheat grains were used as the initial inoculum for the SSF studies. 

 

Solid State Fermentation Experiments 
Three grams of Vigna mungo (black gram, local name) husk was taken in a 250-

mL Erlenmeyer flasks and was moisturized with a salt solution (2.0% KH2PO4, 0.5 % 

MgSO4•7H2O, 0.1% CaCl2, 0.5% KCl, and 1.0% urea) to set the desired moisture level. 

The media were then sterilized at 121 °C for 1 h to provide proper cooking of the 

substrate and to increase susceptibility to microbial attack. The media were cooled to 

room temperature after autoclaving and inoculated with 3 g of the inoculum of P. 

ostreatus prepared as stated above. The inoculated flasks were incubated in static 

conditions at 25 °C in an incubator. After 10 days of incubation, 0.15 mg/g substrate 2,5-

xylidine inducer was added. The contents were mixed thoroughly four times daily during 

the fermentation period by gently hitting the flask bottom on the palm of the hand. All 

experiments were conducted in triplicate, and the results presented are mean values.  

 
Extraction of Laccase 

After the given period of incubation, the fermented substrate cultures (3 g) were 

subjected to extraction of the enzyme. The laccase enzyme was extracted with chilled 

phosphate buffer (50 mM, pH 6.0) by a simple contact method as per Sathish et al. 

(2008).  

The solid substrate was mixed with 25 mL of chilled buffer solution and kept for 

mixing in a rotary shaker (100 rpm) at 25 °C for 1 h. The homogenate was filtered 

through nylon cloth (200-mesh size), the procedure was repeated, and the filtrates were 

pooled. The pooled 50 mL of filtrate was centrifuged at 10,000 x g at 4 °C for 15 min. 

The clear supernatant was used for estimating the laccase activity. 

 

Estimation of Laccase Activity 
Laccase activity was measured using the ABTS oxidation procedure according to 

Prasad (2005). Enzyme activity was expressed as units per g of dry substrate (U/gds) and 

was defined as the amount of enzyme producing 1 µM of product per min per g of 

substrate extracted. 

 

Optimization by Hybrid ANN-GA Modelling 
Data sets 

In the present study, the most promising factors that influence the laccase 

production were optimized using neural networks and genetic algorithms. In preliminary 

studies, temperature, moisture content, CuSO4, size of inoculum, and glucose and 

peptone concentrations were found to be most predominant parameters influencing 

laccase production by Pleurotus ostreatus. These parameters were further optimized to 

increase the highest yield of laccase.  

The experimental data used for ANN design are presented in Table 1. A central 

composite design with 50 experiments was employed. The data were divided into two 

sets: 40 runs of the data set were used for training the network, and 10 runs of the data set 

were used as testing data. The training data were used to compute the network 

parameters. The testing data were used to ensure robustness of the network parameters.  
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Neural network modeling  

A feed-forward neural network, which uses an error back propagation-learning 

algorithm (BPNN), was constructed for modelling the laccase production. The network 

consists of three layers, i.e., the input, hidden, and output layers. All three layers were 

connected to the subsequent layers; the connections are called weights. The weights 

played a vital role in the optimization of the data. Experimental conditions were chosen 

as inputs for the network, and the output was laccase activity. The number of neurons in 

the hidden layer was optimized based on a trial and error method (examined from 3 to 

18). All of the data were normalized from -1 to +1. Scaled data passed through the input 

layer, were propagated from the input layer to the hidden layer, and finally passed to the 

output layer of the network. Every node in the input and the hidden layers is connected to 

the nodes in the subsequent layer. Each neuron in the hidden and output layers act as a 

summing junction that combines and modifies the inputs from the previous layer using 

the following equation,  

 

   ∑         
 
                          (1) 

 

where Yi is the net input to node j in the hidden and output layers, Xi is the output of the 

previous layer, Wij is the weights between the i
th

 and j
th 

node, n is the number of neurons, 

and bj is the bias associated with node j. 

The Sigmoid transfer function was used for the hidden layer, and the linear 

transfer function was used for the output layer to avoid error between observed and 

predicted values. During this process, the Levenberg-Marquardt algorithm was used for 

training the network. Initially, weight and bias values were taken randomly. However, in 

subsequent training steps, the weights and biases, in the hidden and output layers, were 

adjusted in accordance with a convergence criterion to obtain similarity in training and 

testing experimental titer values (Sathish and Prakasham 2010). 

 

Evaluation of ANN predictability 

To evaluate the ANN output error, the coefficient of determination, R
2
, was used, 

which describes the extent of variance in the modeled variables. The error was calculated 

based on difference between the experimental and predicted values. A popular measure 

such as mean squared error (MSE) or root mean squared error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE) were used to evaluate the 

ANN simulated data,    
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where n is the number of experiments, yp is the ANN predicted value, and ye is the 

experimental value. 

 

GA Optimization  
A genetic algorithm was used to search in different subspaces and to locate the 

global maximum on the objective function surface. The different parameters of GA, such 

as chromosome length (Lchr) as 36, population size (Npop) as 36, cross over probability 

(Cp) as 0.7, and mutation probability (Pmut) as 0.01, were taken. Optimum conditions 

were selected after evaluation of GA for 300 generations (Ngmax = 300) to achieve fine-

tuned fermentation conditions in the given range of input parameters. Neural networks 

and genetic algorithm toolboxes of MATLAB 7.0 (Mathworks, USA) were used in 

modelling studies. 

 
 
RESULTS AND DISCUSSION 
 

  Agro-industrial residues are generally considered the best substrates for SSF 

processes, and production of enzymes using these materials as a substrate is no exception 

to that. A number of such substrates have been employed for the cultivation of micro-

organisms to produce a host of enzymes, metabolites, and antibiotics (Hymavathi et al. 

2009; Laxmi et al. 2008; Mahalaxmi et al. 2009; 2010; Sathish et al. 2008). In the present 

study, an isolated P. ostreatus PVCRSP-7 was employed for laccase production in SSF 

using black gram husk as a substrate. In preliminary studies it was noticed that (data not 

shown) lignolytic enzyme secretion by P. ostreatus is influenced by various 

environmental conditions and supplemented nutrients. Optimization of these parameters 

is essential for further improvement of laccase production by isolated P. ostreatus 

PVCRSP-7. A feed forward neural network coupled to genetic algorithm was employed 

to optimize the selected parameters in order to achieve higher amounts of enzyme.   

Table 1 depicts the experimental design along with the observed lignolytic 

enzyme production by P. ostreatus.  The enzyme production varied from 1266 to 3873 

U/gds based on selected conditions. Observed minimum and maximum enzyme 

production indicates that selected parameters have a remarkable influence on laccase 

production. The data was further modeled with ANN, and conditions were optimized 

using the GA. For construction of ANN, the selected six variables, i.e., incubation 

temperature, moisture content, CuSO4 concentration, size of inoculum, and glucose and 

peptone concentrations, were chosen as input neurons in the input layer. 

Correspondingly, the laccase production was set as an output neuron in the output layer. 

The number of neurons in the hidden layer was chosen by a trial and error 

method, varying the neurons from 3 to 18. A cross-validation criterion was used to fix the 

optimal number of neurons in the hidden layer. In all the structures studied, the number 

of epochs was fixed at 1000.  

It was noticed that the hidden layer with eight neurons in the network resulted in 

the best correlation between the observed and predicted values, as well as the lowest 

MAPE and RMSE values. Further, the neural network was fixed with six, eight, and one 

neurons in the input, hidden, and output layers, respectively. Figure 1 depicts the 

constructed neural network topology. 
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Table 1. Experimental Design along with the Observed and ANN-predicted 
Laccase Activity Produced in SSF by Isolated P. ostreatus PVCRSP-7 

Run 
No 

Temp 
(°C) 

Moisture 
content 

(w/w) 

CuSO4 
(mg) 

Inoculum 
level (g) 

Glucose 
(g) 

Peptone 
(g) 

Laccase activity (U/gds) 

Obs
1 

Pred
2 

Res
3 

1 24.00 50.00 0.4 2.50 0.05 0.05 2500 2500.56 -0.56 
2 24.00 50.00 0.4 2.50 0.25 0.25 2370 2370.29 -0.29 
3 24.00 50.00 0.4 3.50 0.05 0.25 2654 2656.16 -2.16 
4 24.00 50.00 0.4 3.50 0.25 0.05 2886 2886.43 -0.43 
5 24.00 50.00 0.6 2.50 0.05 0.25 2855 2878.06 -23.06 
6 24.00 50.00 0.6 2.50 0.25 0.05 2546 2545.51 0.49 
7 24.00 50.00 0.6 3.50 0.05 0.05 3133 3132.2 0.80 
8 24.00 50.00 0.6 3.50 0.25 0.25 3565 3495.58 69.42 
9 24.00 70.00 0.4 2.50 0.05 0.25 2963 2961.94 1.06 

10 24.00 70.00 0.4 2.50 0.25 0.05 1728 1727.78 0.22 
11 24.00 70.00 0.4 3.50 0.05 0.05 3056 3056.98 -0.98 
12 24.00 70.00 0.4 3.50 0.25 0.25 3256 3254.82 1.18 
13 24.00 70.00 0.6 2.50 0.05 0.05 2238 2237.88 0.12 
14 24.00 70.00 0.6 2.50 0.25 0.25 3225 3224.62 0.38 
15 24.00 70.00 0.6 3.50 0.05 0.25 3272 3271.93 0.07 
16 24.00 70.00 0.6 3.50 0.25 0.05 2315 2316.57 -1.57 
17 26.00 50.00 0.4 2.50 0.05 0.25 2500 2500.1 -0.10 
18 26.00 50.00 0.4 2.50 0.25 0.05 2778 2770.38 7.62 
19 26.00 50.00 0.4 3.50 0.05 0.05 3210 3209.32 0.68 
20 26.00 50.00 0.4 3.50 0.25 0.25 2917 2916.33 0.67 
21 26.00 50.00 0.6 2.50 0.05 0.05 2485 2458.87 26.13 
22 26.00 50.00 0.6 2.50 0.25 0.25 2978 2978.24 -0.24 
23 26.00 50.00 0.6 3.50 0.05 0.25 2114 2114.86 -0.86 
24 26.00 50.00 0.6 3.50 0.25 0.05 2670 2678.37 -8.37 
25 26.00 70.00 0.4 2.50 0.05 0.05 2300 2299.65 0.35 
26 26.00 70.00 0.4 2.50 0.25 0.25 2562 2746.32 -184.32 
27 26.00 70.00 0.4 3.50 0.05 0.25 2438 2437.84 0.16 
28 26.00 70.00 0.4 3.50 0.25 0.05 2068 2067.03 0.97 
29 26.00 70.00 0.6 2.50 0.05 0.25 2037 2037.26 -0.26 
30 26.00 70.00 0.6 2.50 0.25 0.05 1751 1769.00 -18.00 
31 26.00 70.00 0.6 3.50 0.05 0.05 1266 1265.89 0.11 
32 26.00 70.00 0.6 3.50 0.25 0.25 2130 2118.83 11.17 
33 23.00 60.00 0.5 3.00 0.15 0.15 3364 3395.41 -31.41 
34 27.00 60.00 0.5 3.00 0.15 0.15 2932 2746.32 185.68 
35 25.00 40.00 0.5 3.00 0.15 0.15 3411 3411.10 -0.10 
36 25.00 80.00 0.5 3.00 0.15 0.15 2639 2639.96 -0.96 
37 25.00 60.00 0.3 3.00 0.15 0.15 3256 3255.97 0.03 
38 25.00 60.00 0.7 3.00 0.15 0.15 2978 2960.34 17.66 
39 25.00 60.00 0.5 2.00 0.15 0.15 2994 3016.72 -22.72 
40 25.00 60.00 0.5 4.00 0.15 0.15 3426 3419.63 6.37 
41 25.00 60.00 0.5 3.00 0.00 0.15 2917 2918.42 -1.42 
42 25.00 60.00 0.5 3.00 0.35 0.15 2932 2931.65 0.35 
43 25.00 60.00 0.5 3.00 0.15 0.00 2022 2029.97 -7.97 
44 25.00 60.00 0.5 3.00 0.15 0.35 2716 2654.82 61.18 
45 25.00 60.00 0.5 3.00 0.15 0.15 3781 3724.28 56.72 
46 25.00 60.00 0.5 3.00 0.15 0.15 3673 3724.28 -51.28 
47 25.00 60.00 0.5 3.00 0.15 0.15 3611 3724.28 -113.28 
48 25.00 60.00 0.5 3.00 0.15 0.15 3704 3724.28 -20.28 
49 25.00 60.00 0.5 3.00 0.15 0.15 3873 3724.28 148.72 
50 25.00 60.00 0.5 3.00 0.15 0.15 3688 3724.28 -36.28 
* 
Runs in bold (2, 5, 10, 16, 23, 30, 33, 38, 40, 48) for testing; 

1
Observed; 

2
Predicted; 

3
Residual 
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Fig. 1. Architecture of Neural Network constructed for optimization of laccase production in SSF 

 

The effectiveness of the neural network prediction was evaluated by calculating 

the coefficient of R
2
 value based on the measured and predicted outputs in the training 

and testing data. The calculated R
2
 value was found to be 0.9963, specifying the model 

accuracy of the constructed ANN. The obtained R
2
 value (0.9963) from ANN analysis 

was higher than the R
2
 value (0.9617) obtained from the multiple linear regression of the 

same data. This indicates the superior quality of ANN for modeling the non-linear data 

when compared with traditional multiple regression analysis.  

Figure 2 depicts the correlation between the experimental values and ANN 

predicted values. From this figure it can be observed that predicted values were 

concentrated near the diagonal line on the graph and no scattering points were noticed, 

which indicates the accuracy of the constructed ANN predictability.  

Further, the certainty of the neural network was assessed based on MSE, RMSE, 

MAE, and MAPE of the training and testing data. The overall MSE (3016.4), RMSE 

(54.92), MAE (3.56), and MAPE (8.9 X 10
-4

) of the training data suggests that the 

constructed network is appropriate. This was further confirmed by testing data values of 

260.94, 16.15, -7.12, and -2.65X 10
-3 

for MSE, RMSE, MAE, and MAPE, respectively.  

Such a low magnitude of values confirms that the proposed neural network is a good 

approximation for modeling the laccase production data by isolated P. ostreatus 

PVCRSP-7. Similar magnitude values were reported by Sathish and Prakasham (2010) 

and Rao et al. (2008) for L-glutaminase and alkaline protease productions, respectively.  
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Fig. 2. Correlation graph of real and predicted laccase production data 

 

Interaction Influence of Selected Variables on Laccase Production 
Figure 3 depicts the interactive influence of selected variables on lignolytic 

enzyme production by P. ostreatus. Figure 3a shows the interaction influence of moisture 

content and temperature. From this surface-contour plot it can be observed that moisture 

content above 50% and temperature below the 25 °C is favorable for higher amounts of 

laccase secretion by P. ostreatus. Figures 3b, 3d, and 3e indicate the interaction of CuSO4 

concentration with inoculum, glucose, and peptone; from all of these graphs it can be 

observed that CuSO4 at 0.6 mgs is a suitable concentration for optimum secretion of 

lignolytic enzyme by isolated P. ostreatus PVCRSP-7. From Figs. 3b and 3c it can be 

seen that 2.5 to 3.5 gms of initial inoculum is optimum.    

Figures 3c, 3d, and 3f depict that the concentration of additional glucose is 

regulated by other selected parameters. Observation reveals that 0.1 to 0.25 g of glucose 

is needed for enhanced lignolytic enzyme production by P. ostreatus. An additional 

nitrogen source (peptone) of 0.1 to 0.25 g is the most suitable concentration for the higher 

titer of laccase secretion by P. ostreatus (Figs. 3e and 3f).  

 

GA Optimization and Validation Studies 
The optimum concentration of each chosen parameter was determined by using 

the GA, which was coupled to the ANN. The ANN generated output, weights and bias 

values, were used in the GA objective function. Among the 300 conditions generated by 

the GA, the 10 most suitable conditions were chosen, and experiments were performed at 

those conditions. The best conditions for higher laccase production were observed to be 

at a temperature of 24.3 °C, inoculum concentration of 2.7 g, moisture content of 65% 

(w/w), CuSO4 of 0.55 mg/g substrate, glucose of 0.22 g/g substrate, and peptone of 0.18 

g/g substrate. At these conditions, the laccase production was found to be 4244 U/gds, 

which is approximately a one-fold increment of enzyme production.  
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Kerem et al. (1992) and Membrillo et al. (2008) reported that the maximum 

laccase production in SSF by P. ostreatus was 0.03 U/g and 0.04 U/g using cotton stalks 

and sugarcane bagasse as substrates, respectively. Prasad (2005) reported that the highest 

enzyme activity after optimization by P. ostreatus 1804 was 2093.21 U/g, which has an 

extensive variation with others. The present study obtained a high laccase yield (4244 

U/gds), which is closer to that of Prasad (2005). 

The moisture content of the substrate plays a vital role in the growth of the 

microorganism as well as in controlling the excess temperature generated during the 

fermentation time (Laxmi et al. 2008). Figure 3a depicts the interaction of temperature 

with moisture content; more moisture and low temperatures in the studied range is 

favorable for greater lignolytic enzyme secretion by Pleurotus ostreatus. The obtained 

optimum temperature 24.3 °C and 65% moisture content values were closer to that of the 

Prasad (2005) results. 

Copper is the key metal present in the laccase enzymes; the concentration of this 

metal in the media plays a critical role in fungal growth and secretion of enzymes (Tisma 

et al. 2012). In the present study, 0.55 mg of Cu
2+ 

was observed to be optimum for 

laccase production by Pleurotus sp. The obtained results are in agreement with the 

literature reports (Prasad 2005). 

Based on preliminary studies, glucose and peptone were chosen as carbon and 

nitrogen supplements (data not shown). Figure 3f shows the interaction of glucose and 

peptone on the laccase production by Pleurotus ostreatus. From this figure it can be 

observed that both sources are needed in equal proportions; they do not conflict with each 

other. The obtained results are in accordance with Mikiashvili et al. (2006), who 

observed that the addition of peptone increases the maximum laccase yield from P. 

ostreatus 98 and P. ostreatus 108.  

Statistical methods such as RSM and Taguchi facilitate the evaluation of the main 

and interaction effects of the factors. These methods have been employed to optimize the 

laccase production from white rot fungi (Levin et al. 2008; Teerapatsakul et al. 2007). 

Even though statistical methods reported better performance than the one at a time 

method, these methods also have some limitations. All statistical methods are limited by 

the number of factors, and these models determine the interaction influence based on the 

assumed polynomial models. To overcome these problems, artificial neural networks 

(ANN) and genetic algorithms (GA) have been utilized (Rao et al. 2008).  

The GA approach is used in optimization and has the potential to optimize 12 to 

14 variables at a time. Tisma et al. (2012) employed GA for optimization of the five 

components within 50 shake-flask experiments, where the highest laccase activity of 

2,378 U/dm was achieved. In the present study, a hybrid of these artificial methods was 

employed. The program was set to ANN to model the experimental data, and the modeled 

data were subsequently subjected to optimization by GA.   

There is no general rule for selecting the number of neurons in a hidden layer. It 

depends on the complexity of the system being modeled (Rao et al. 2008). According to 

Sathish and Prakasham (2010), a trial and error method is the best approach to determine 

the optimal number of neurons in the hidden layer. In the present study, eight neurons in 

the hidden layer gave the best predicted values. The obtained correlation coefficient (R
2
 = 

0.9963) indicates the proposed ANN model is adequate to model the experimental data. 

This was further confirmed by the MSE, RSME, and MAPE values of the training and 

testing data. The validation data also confirm that the GA predictions were trustworthy. 
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Fig. 3. Interaction influence of selected fermentation factors on laccase production (a) 
temperature vs. moisture content, (b) CuSO4 concentration vs. inoculum concentration, (c) 
inoculum concentration vs. glucose concentration, (d) CuSO4 concentration vs. glucose 
concentration, (e) CuSO4 concentration vs. peptone concentration, and (f) glucose concentration 
vs. peptone concentration 
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CONCLUSIONS 
 

1. In comparison with other fungal strains, the isolated P. ostreatus PVCRSP-7 secreted 

higher amounts of laccase in SSF using black gram husk as a substrate.   
 

2. The hybridization of the ANN-GA methods yielded the better optimum conditions. 

With the help of these methods, the laccase production was improved to 4244 U/gds 

which is nearly 100% improvement when compared with “one-at-a-time” method of 

optimization.  

 

 

REFERENCES CITED 
 
Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., and Borneman, S. (1997). 

“Reactivities of various mediators and laccases with kraft pulp and lignin model 

compounds,” Appl. Environ. Microbiol 63(12), 4627-4632. 

Fang, B., Chen, H., Xie, X., Wan, N., and Hu, Z. (2003). “Using genetic algorithms 

coupling neural networks in a study of xylitol production: Medium optimization,” 

Process Biochem 38(7), 979-985.  

Hymavathi, M., Sathish, T., Subba Rao, Ch., and  Prakasham, R. S. (2009). “Enhance-

ment of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using 

response surface methodology,” Appl. Biochem. Biotechnol. 159(1),191-198. 

Iandolo, D., Piscitelli, A., Sannia, G., and Faraco, V. (2011). “Enzyme production by 

solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato 

pomace,” Appl. Biochem. Biotechnol. 163(1), 40-51. 

Kantelinen, A., Hatakka, A., and Viikari, L. (1989). “Production of lignin peroxidase and 

laccase by Phlebia radiata,” Appl. Microbiol. Biotechnol. 31(3), 234-239. 

Kerem, Z., Friesem, D., and Hadar, Y. (1992). “Lignocellulose degradation during solid-

state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium,” Appl. 

Environ. Microbiol. 58(4), 1121-1127. 

Kumar, S., and Chandra, K. D. (1988). “Studies on the utilization of rice bran for spawn 

production of Agaricus bisporus,” Ind. J. Mushrooms 149(1-2), 10-15. 

Laxmi, G. S., Sathish, T., Rao, Ch. S., Brahmaiah, P., Hymavathi, M., and Prakasham, R. 

S. (2008). “Palm fiber as novel substrate for enhanced xylanase production by 

isolated Aspergillus sp. RSP-6,”Curr. Trend. Biotechnol. Pharma 2(3), 447-455. 

Levin, L., Herrmann, C., and Papinutti, V. L. (2008). “Optimization of lignocellulolytic 

enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation 

using response surface methodology,” Biochem. Eng. J 39(1), 207-214. 

Mahalaxmi, Y., Sathish, T. and Prakasham, R. S. (2009). “Development of balanced 

medium composition for improved rifamycin B production by isolated Amycolatopsis 

sp. RSP-3,” Lett. Appl. Microbiol. 49(5), 533-538. 

Mahalaxmi, Y., Sathish, T., SubbaRao, C. H., and Prakasham, R. S. (2010). “Corn husk 

as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp 

RSP 3 under SSF,” Process Biochem 45(1), 47-53. 

Membrillo, I., Sanchez, C., Meneses, M., Favela, E., and Loera, O. (2008). “Effect of 

substrate particle size and additional nitrogen source on production of 

lignocellulolytic enzymes by Pleurotus ostreatus strains,” Bioresource Technol. 

99(16), 7842-7847. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Chiranjeevi et al. (2014). “Laccase by neural nets,” BioResources 9(2), 2459-2470.  2470 

Mikiashvili, N., Wasser, S. P., Nevo, E., and Elisashvili, V. (2006). “Effects of carbon 

and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity,” World J. 

Microbiol. Biotechnol 22(9), 999-1002. 

Mishra, A., and Kumar, S. (2007). “Cyanobacterial biomass as N-supplement to agro-

waste for hyper production of laccase from Pleurotus ostreatus in solid state 

fermentation,” Process Biochem. 42(4), 681-685. 

Mishra, A., and Kumar, S. (2009). “Kinetic studies of laccase enzyme of Coriolus 

versicolor MTCC 138 in an inexpensive culture medium,” Biochem. Eng. J. 46(3), 

252-256. 

Neifar, M., Kamoun, A., Jaouani, A., Ellouze-Ghorbel, R., and Ellouze-Chaabouni, S. 

(2011). “Application of asymmetrical and hoke designs for optimization of laccase 

production by the white-rot fungus Fomes fomentarius in solid-state fermentation,” 

Enz. Res 1(1), 2011. 

Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A., and Amorim, D. S. 

(2005). “Xylanases from fungi: Properties and industrial applications,” Appl. 

Microbiol. Biotechnol. 67(5), 577-591. 

Prasad, K. (2005). Degradation of Xenobiotic Compounds using Laccase, Ph.D. 

dissertation, Vidyasagar University, Midnapur, West Bengal, India.  

Rao, Ch. S., Sathish, T., Mahalaxmi, M., Laxmi, G. S., Rao, R. S., and Prakasham, R. S.  

(2008). “Modeling and optimization of fermentation factors for enhancement of 

alkaline protease production by isolated Bacillus circulans using feed-forward neural 

network and genetic algorithm,” J. Appl. Microbiol. 104(3), 889-898. 

Riva, S. (2006). “Laccases: Blue enzymes for green chemistry,” Trends Biotechnol.  

24(5), 219-226. 

Sathish, T., and Prakasham, R. S. (2010). “Enrichment of glutaminase production by 

Bacillus subtilis RSP-GLU in submerged cultivation based on neural network - 

genetic algorithm approach,” J. Chem. Technol. Biotechnol. 85(1), 50-58. 

Sathish, T., Laxmi, G. S., Rao, Ch.S., Brahmaiah, P.,  and Prakasham, R. S. (2008). 

“Mixture design as first step for improved glutaminase production in solid-state 

fermentation by isolated Bacillus,” Lett. Appl. Microbiol. 47(4), 256-262. 

Srebotnik, E., and Hammel, K. E. (2000). “Degradation of nonphenolic lignin by the 

laccase /1hydroxybenzotriazole system,” J. Biotechnol 81(2-3), 179-188.  

Teerapatsakul, C., Parra, R., Bucke, C., and Chitradon, L. (2007). “Improvement of 

laccase production from Ganoderma sp KU-Alk4 by medium engineering,” World J. 

Microbiol. Biotechnol 23(11), 1519-1527. 

Tisma, M., Znidarsic-Plazl, P., Vasic-Racki, D., and Zelic, B. (2012). “Optimization of 

laccase production by Trametes versicolor cultivated on industrial waste,” Appl. 

Biochem. Biotechnol. 166(1), 36-46. 

Vivekanand, V., Dwivedi, P., Pareek, N., and Singh, R. P. (2011). “Banana peel: A 

potential substrate for laccase production by Aspergillus fumigatus VkJ 2.4.5 in solid-

state fermentation,” Appl. Biochem. Biotechnol. 165(1), 204-220. 

Xin, F. X., and Geng, A. L. (2011). “Utilization of horticultural waste for laccase 

production by Trametes versicolor under solid-state fermentation,” Appl. Biochem. 

Biotechnol. 163(2), 235-246. 

 

Article submitted: Feb. 5, 2014; Peer review completed: March 6, 2014; Revised version 

received and accepted: March 11, 2014; Published: March 19, 2014. 


