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We investigated the influence of an additional mass bonded on a wooden 
bar on its apparent Young’s modulus based on a longitudinal vibration 
theory. Rectangular bars of Sitka spruce (Picea sitchensis Carr.) were 
used as experimental materials. After bonding an iron piece on a bar, a 
free-free longitudinal vibration test was performed to obtain the Young’s 
modulus. Modal analysis was also performed to examine the effect of a 
knot on the measured Young’s modulus. The Young’s modulus decreased 
with an increase in mass of iron pieces bonded on the specimen and that 
in a size of the knot, since the constants required for the frequency 
equation of longitudinal vibration changed due to the additional mass and 
the knot. An equation was developed which contains the effects of the 
mass and position of the iron piece on the constants. The Young’s moduli 
calculated by this equation resembled the values without an iron piece and 
the knot. Assuming a knot to be the additional mass, the estimation 
method used to examine the effect of a knot on the apparent Young’s 
modulus was proposed. The analysis showed that the higher the 
resonance mode and the nearer the position to an end, the more effective 
efforts to reduce the effect of the additional mass will be. 
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INTRODUCTION 
 

 Before strength tests are carried out on structural elements and full-size structural 

timber, the elastic modulus of a specimen must be frequently determined using 

nondestructive testing methods. Such cases tend to involve vibration tests that are 

performed by tapping a specimen: generally speaking, a longitudinal vibration test is 

mainly used as well as a flexural vibration test (Sonoda 2014). Because some structural 

elements and full-size structural timber contain defects such as knots, their influence on 

the elastic modulus is important. 

To investigate the influence of a defect on flexural vibration test results, an equation 

of flexural vibration was solved with a Rayleigh method, and the effects of a knot and loss 

of a section were studied, whereupon a high correlation between the dynamic Young’s 

modulus and bending strength was obtained (Nakayama 1968; 1974a,b,c; 1975; Nakayama 

and Aoki 1967; Nakayama and Oshiumi 1970a,b; Nakayama and Yoshikai 1974). In our 

previous work (Kubojima et al. 2003; 2005; 2006) an equation for the flexural vibration of 

a beam with additional mass was solved, and the effect of inhomogeneity in a beam on 

Young’s modulus was investigated.  
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Consequently, the reason for the inadequacy of the result of the Goens-Hearmon 

regression method (Goens 1931; Hearmon 1958) based on the Timoshenko bending theory 

(Timoshenko 1921) was clarified. Yang et al. (2001a,b, 2002) detected defects in wood via 

nondestructive means; using curvatures of the flexural vibration wave shape measured by 

modal analysis. Relative frequency shifts in free flexural vibration were investigated, and 

the defect position was detected (Roohnia et al. 2011). For longitudinal vibration, an 

inverse solution procedure enabling identification of the defect position from the power 

spectrum was exploited, and the defect position was effectively identified (Sobue et al. 

2010).  

The present work focused on the inhomogeneity of density (e.g. a knot) in a 

specimen. Although the frequency equation for the longitudinal vibration of a bar fixed at 

one end and with a concentrated mass at the other appears in many textbooks (e.g. 

Timoshenko 1928; Kawai 1953; Kawai 1954), no equation under a free-free condition 

could be found. The longitudinal vibration test for wood timber is mainly undertaken under 

a free-free condition. Accordingly, an equation to calculate accurate Young’s modulus 

values taking into account the additional mass was developed under a free-free condition, 

whereupon the change in the Young’s modulus caused by the additional mass, and its 

bonding position on a specimen and the effect of the resonance mode of the longitudinal 

vibration test were investigated.  

 

 

THEORY 
 

We assume that an additional mass has no effect on the actual Young's modulus of 

wood, even though it may affect the apparent modulus, as obtained by conventional, 

uncorrected vibrational methods. 

The differential equation for the longitudinal vibration of a rectangular bar of width 

b, thickness h and length l is, 

 

 
          (1) 
 

where x, y, t, E and  are the distance along the bar, the longitudinal displacement, time, 

Young’s modulus, and density, respectively. Solving Eq. (1), one obtains, 

 

      (2) 

 

where A and B are constants,  (= 2f, f: resonance frequency) is the angular frequency 

and, 

       (3) 
 

where C and D are constants and c is velocity. 

Young’s modulus is expressed by: 
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         (4) 

 

 The concentrated mass M is placed at x1 = l and x2 = 0 (Fig. 1). Since the axial 

force does not exist at each extremity, 
 

        (5) 

 

 
Fig. 1. A beam with additional mass 

 

Since both parts of the bar are connected and the difference in the axial force in the 

bar is equal to the inertia force exerted by the concentrated mass at x1 = l and x2 = 0, 

 

 

     (6) 

 

where, S is the cross sectional area of the bar. 

From Eqs. 2, 3, 5, and 6, 

 

      (7) 

where,  

 

         (8) 
 

and  = M/Sl is the ratio of the concentrated mass to that of the bar. Suffix n is the 

resonance mode number. Equation 7 is the frequency equation for the free-free longitudinal 

vibration with the concentrated mass. 

 

i) If  = 0, then Eq. 7 is as follows: 

 

         (9) 
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This is the frequency equation for a bar that has free ends without the concentrated 

mass. 

 

ii) If  = ∞, then Eq. 7 is as follows: 

 

        (10) 

 

If  = 0 or 1, then Eq. (10) is as follows: 

 

         (11) 

 

This is the frequency equation for a bar under a fixed-free condition without the 

concentrated mass. 

 

 
EXPERIMENTAL 
 
Specimens 

Sitka spruce (Picea sitchensis Carr.) was used for the specimens, which were 300 

mm (longitudinal, L) long, 30 mm (radial, R) wide, and 5 mm (tangential, T) thick. 

The specimens were conditioned at 20 °C and 65 % relative humidity until the 

weight was constant. The tests were conducted under the same conditions. 

 

Longitudinal Vibration Test 
To obtain the Young’s modulus, free-free longitudinal vibration tests were 

conducted by the following procedure: The test bar was placed on a small sponge at the 

position of x = l/2. The vibration was excited in the longitudinal direction at one end by a 

hammer, while the motion of the first mode of the bar was detected by a microphone at the 

other end. The signal was processed through an FFT digital signal analyzer to yield high-

resolution resonance frequencies. The sampling rate of the microphone signal and the FFT 

resolution were 20 to 12500 Hz and 0.25 Hz, respectively. A diagram of the experimental 

setup is shown in Fig. 2. The vibration test was conducted for the specimen without and 

with iron pieces 1 (0.63 g,   0.033), 2 (1.28 g,   0.067), and 3 (1.91 g,   0.099). The 

iron pieces were bonded at x = 0, 0.1l, 0.2l, 0.3l, 0.4l, and 0.5l on the LR-plane with two-

sided adhesive tape, which meant the same specimen could be used for bonding an iron 

piece on 6 positions of the specimen. 

 
 
Fig. 2. A diagram of the experimental setup 
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Modal analysis 
To simulate the resonance frequency in the L-direction of a specimen with a knot, 

modal analysis was conducted using an existing finite element method program, “ANSYS 

14.5” developed by ANSYS, Inc., which is a library program of Agriculture, Forestry and 

Fisheries Research Information Technology Center (AFFRIT), Ministry of Agriculture, 

Forestry and Fisheries (MAFF), Japan. The resonance frequency of the first mode was 

calculated with the block Lanczos method. The dimensions of the specimen were 300 mm 

(L) long, 30 mm (T) wide, and 5 mm (R) thick. Figure 3 shows the finite element mesh of 

the specimen. This model consisted of two dimensional quadrangle elements. The 

parameters used for the modal analysis were as follows: density was 330 kg/cm3 and 

Young’s modulus in the L-, T-, and R-directions were 7.35, 0.29, and 0.59 GPa, 

respectively, the shear moduli of the LT-, RT-, and LR-planes were 0.343, 0.015, and 0.637 

GPa, respectively, and Poisson’s ratio of the LT-plane was 0.60. They were values of the 

normal part of Japanese cedar (Cryptomeria japonica D. Don) (Forestry and Forest 

Products Research Institute 2004). The density of the knot was 900 kg/cm3 (Nakamura 

1972; Nakayama and Yoshiaki 1974). The positions of the knot were x = 0.1l, 0.2l, 0.3l, 

0.4l, and 0.5l (l = 300 mm). The diameters of the knot were 10, 20, and 29 mm. 

 

 
 
Fig. 3. Finite element model of a specimen with a knot 

 

 

RESULTS AND DISCUSSION 
 

Figure 4 shows the results of the longitudinal vibration test. The Young’s modulus 

calculated normally, namely, from Eqs. 4, 8, and 9, declined with the increase in additional 

mass.  

 
Fig. 4. Uncorrected Young's modulus, and Young’s modulus corrected by the mass of the iron 
pieces using Eq. 7 
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Conversely, given various  and , Eq. 7 was solved by the “Mathematica Ver. 9” 

software (Wolfram Research Co., Ltd.), which is a library program of AFFRIT, MAFF, 

Japan; the obtained mn was substituted into Eq. 8, and Young’s modulus was calculated 

from Eq. 4. The Young’s modulus values obtained in such manner were almost equivalent 

to that without the additional mass, which meant the effect of the additional mass on the 

Young’s modulus could be corrected using Eq. 7. 

Figure 5 shows the results of the modal analysis. The Young’s modulus calculated 

normally from Eqs. 4, 8, and 9, declined with the increase in the diameter of the knot. Here, 

a rectangular bar of width b, thickness h, length l and a circular knot of radius r is 

considered (Fig. 6). The densities of the knot and other part are M and , respectively. 

 

        (12) 
 

When the diameters of the knot are 10, 20, and 29 mm, values of  are 0.015, 0.060, and 

0.13, respectively. 

 
Fig. 5. Uncorrected Young's modulus, and Young’s modulus corrected by the size of the knot 
using Eq. 7 

 

 
 

Fig. 6. A rectangular beam with a circular knot 

 

Given various  and , Eq. 7 was solved by the “Mathematica Ver. 9” software; 

the obtained mn was substituted into Eq. 8, and Young’s modulus was calculated from Eq. 

4. The Young’s modulus values obtained in such manner were almost equivalent to that 

without the knot, which meant the effect of the knot on the Young’s modulus could be 

corrected using Eq. 7. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Kubojima et al. (2014). “Added mass vs. modulus,” BioResources 9(3), 5088-5098.  5094 

Next, a knot is assumed to be the additional mass. Although the Young’s modulus 

of wood itself is not changed by the additional mass, the value calculated by Eq. 9 is lower 

than the accurate value. For example, we consider that Young’s modulus is apparently 

reduced by a knot by 10 % if Eq. (9) is used. The first resonance mode is used.  

Young’s modulus of the n-th resonance mode using Eq. 9 is as follows: 

 

        (13) 
 

Young’s modulus of the n-th resonance mode using Eq. 7 is as follows: 

 

        (14) 
 

When n = 1 and Ea = 0.9E, from Eqs. 13 and 14, m1 = 0.9p » 2.98. 

Substituting various  values and m1 = 2.98 into Eq. 7,  is calculated and r 

obtained from Eq. 12. 

The shaded part of Fig. 7 shows the region of 0.9 £  Ea/E £  1. Japanese cedar 

(Cryptomeria japonica D. Don) is considered and b, l,  and M values are 30 mm (T), 300 

mm (L), 330 kg/m3, and 900 kg/m3, respectively. 

 

 

 
 

Fig. 7. Relationship between the knot radius and the knot position when the decrease in the 
Young’s modulus is not more than 10 % 

 

The higher resonance mode of longitudinal vibration is less influenced by the 

specimen setting conditions of a specimen (Arima et al. 1990; Aratake et al. 1992). The 

additional mass relates to the specimen setting conditions as shown in the theory section. 

Thus, the effect of the resonance mode was investigated. The additional mass is placed at 

the anti-nodal positions of the free-free longitudinal vibration shown in Table 1. 
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Table 1. Nodal and Anti-Nodal Positions of Free-Free Longitudinal Vibration 

Resonance mode number Node Anti-node 

1 l/2 0, l 

2 l/4, 3l/4 0, l/2, l 

3 l/6, l/2, 5l/6 0, l/3, 2l/3, l 

4 l/8, 3l/8, 5l/8, 7l/8 0, l/4, l/2, 3l/4, l 

5 l/10, 3l/10, l/2, 7l/10, 9l/10 0, l/5, 2l/5, 3l/5, 4l/5, l 

 

 

 
 
Fig. 8. The effect of the resonance mode on the decrease in Young’s modulus by the additional 
mass 
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The ratio of Young’s modulus using Eq. (9) to that using Eq. (7) is expressed based 

on Eqs. 13 and 14 as follows: 

 

         (15) 
 

Figure 8 shows the relationship between Ea/E and  for n = 1 to 5. The value of 

Ea/E decreased with increases in  and  while it decreased less with an increase in n. The 

longitudinal displacement of vibration decreases with an increase in n, which means that 

ensuring a higher resonance mode and a position nearer to the end among the anti-nodal 

positions are effective means of reducing the effect of the additional mass. Hence, when 

the longitudinal vibration is used, as high a resonance mode as possible should be used. 

 
 
CONCLUSIONS 
 

1. The effects of the additional mass and the knot on the apparent Young’s modulus could 

be corrected using Eq. 7. 

2. Assuming a knot to be the additional mass, a method of estimation to examine the effect 

of a knot on the apparent Young’s modulus was proposed. 

3. Ensuring a higher resonance mode and a position nearer to an end among the anti-nodal 

positions will be effective in reducing the effect of the additional mass. 
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