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Determination of the stiffness constants of Muiracatiara wood (Astronium 
lecointei) was performed using Fakopp 3D acoustic tomography and 
James V Mk II ultrasound devices. Specific gravity, moisture content, and 
compression perpendicular to grain tests followed standard Brazilian 
requirements. Statistical tests were calculated to 99% confidence 
intervals. Using Christoffel’s equation, equality between stiffness 
constants and static modulus of elasticity occurred only when using the 
acoustic tomography device. These results show the importance of the 
acoustic tomography device, not only to detect defects, but also in 
determining elastic constants of wood. 
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INTRODUCTION 
 

The study of wave propagation in orthotropic materials began in 1880 with the 

development of Christoffel’s equation (Bucur 1984). Christoffel’s work has contributed to 

the perception of the technique of acoustic wave propagation to estimate wood properties. 

Liang et al. (2008) reported that non-destructive dynamic methods (NDM) partially reflect 

circumstances that are not always reproducible. This leaves doubts as to the efficiency of 

using NDM as a way of characterizing wood and makes clear the need for more research 

in this area. 

Most studies using the propagation of waves method are associated with ultrasonics 

(Bucur 2006). However, references such as Deflorio et al. (2008), Dikrallah et al. (2010), 

Mariño et al. (2010), Zhang et al. (2011), Li et al. (2012), and Chimenti (2014) used the 

principle of stress waves propagation when estimating wood properties instead. The use of 

acoustic waves with frequencies greater than 20 kHz is an example of these ultrasonic 

methods. When these waves are excited with hammer shocks, mechanical waves are 

emitted. Using the stress waves propagation method through acoustic tomography (AT), it 

is possible to determine with greater accuracy the characteristics of the timber. This is 

because the device provides a range of velocities instead of a single value, as the ultrasound 

device does. Gilbert and Smiley (2004), Deflorio et al. (2008), Wang et al. (2009), Amodei 

et al. (2010), Li et al. (2012), Lin et al. (2013), Alves et al. (2013) and Li et al. (2014) used 

the stress waves technique exclusively for obtaining a tomographic image of wood species. 

References Wang et al. (2002, 2004), Ross et al. (2005), and Yamazaki and Sasaki (2010) 

determined that this wave type may also be used to estimate wood modulus of elasticity. 
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However, no author has used acoustic tomography (AT) to estimate wood elastic modulus 

yet. 

Authors such as Steiger (1997), Ross et al. (1998), Lourenço et al. (2007), and 

Teles et al. (2011) used the dynamic elastic modulus in response to the relationship 

between wave propagation velocity and wood specific gravity. However, these authors 

made use of an equation without considering the various Poisson coefficient influences and 

transverse elastic modulus. Bucur (2006) and Gonçalves et al. (2011), called the product 

of Christoffel´s equation an elastic constant. Therefore, comparisons between the elastic 

constant and the dynamic elastic modulus may sometimes occur, so long as the modulus 

of elasticity is calculated by a static test. 

 Nicolotti et al. (2003) pointed out that different types of energies can provide 

information about the different properties of wood. Included among these energies are 

ultrasonic waves and their subsequent effect on the determination of elastic properties. This 

paper aims to use AT to estimate the elastic constants of Muiracatiara, a Brazilian wood, 

and compare these constants to the results determined using the ultrasonic waves 

propagation method. 

 
 
MATERIALS AND METHODS 
 

Propagation of Ultrasonic Waves in Wood 
The wave propagation in wood can be explained using movement equations 

established for an anisotropic solid. These can be determined by utilizing a combination of 

Newton's law and a generalized form of Hooke's law (Bucur 1984; Carrasco and Azevedo 

2003), (Eq. 1),  
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where  is the specific gravity, ü is acceleration, and  is deformation.  

Considering the definition of deformation, Eq. 2, and substituting into Eq. 1, Eq. 3 

is obtained. The resulting Ciklm is a fourth degree tensor also known as an elastic constant 

tensor. As Ciklm is symmetrical in relation to 1, the indices in the second term within the 

brackets of Eq. (3) can be swapped, obtaining Eq. 4. 
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Assuming that plane harmonic waves are spreading in the material, the solution of 

Eq. 6 is given by Eq. 5, 
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wherein u0i is the amplitude of the components of the displacement vector and kj is the 

components of the wave vector. The value u0i can be written as u0i, where u0 is the 

amplitude of the displacement and i are the direction cosines of the displacement vector 

of the particle. 

Substituting the value expressed by Eq. 5 into Eq. 4 yields Eq. 6. This equation can 

be written in a more homogeneous manner by making ui=umim, where the tensor im is the 

unit tensor or, Kronecker delta (Eq. 7). 
 

mlkiklmi

2
u k k Cu ω ρ               (6) 

 

0u )k kCδω (ρ
mlk iklmim

 2
             (7) 

 

Equation 7 was developed by Christoffel (Bucur 1984) and is commonly known as 

Christoffel’s equation. It represents a set of three homogeneous equations of first degree 

(linear) in u1, u2 and u3. These equations have nonzero, not trivial solutions, only if the 

determinant of the coefficient matrix is equal to zero (Eq. 8). 

The development of this equation provides a cubic equation represented by 2 (or 

in terms of v2). The three roots of the equation are different and generate three disparate 

values of propagation velocities. 
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In general, it is more convenient to write Eq. 7 in the form of Eq. 9, wherein tensor 

λim, i.e. Christoffel´s tensor, is defined as Eq. 10. 
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In Eq. 9, v represents the phase velocity of the waves and ni (implicit in im) denotes 

the direction cosines of the normal for the wavefronts. Thus, the new factor to be calculated 

is given by Eq. 11. The tensor im depends on the structural symmetry and direction of the 

wave in the material. Thus, Eq. 11 can be rewritten in matrix form, Eq. 12. 
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It is often convenient to use matrix notation instead of tensor notation. For this, the 

following scheme is adopted: 11→ (1), 22 → (2), 33 → (3), 23 → (4), 13 → (5), 12 → (6). 

Thus, by expanding Eq. 10 and using the symmetry of the tensor Ciklm, Eq. 13 is obtained. 
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A careful examination of Eq. 12 shows that the displacement vectors (eigenvectors) 

associated with each eigenvalue (ρv2), are mutually perpendicular. For a given direction of 

propagation, defined by the wave vector k


, three waves propagate with displacement 

vectors mutually perpendicular to each other but with varying velocities. In general, these 

waves are not purely longitudinal or purely transverse. 

However, for certain directions of propagation in a given medium material, in which 

k


 is an eigenvector of im, a wave is purely longitudinal and the other two are purely 

transverse. For a pure longitudinal wave the displacement vector of the particle u


 is parallel 

to the unit vector perpendicular to the wavefronts n


. Therefore, the vector product nu


  is 

zero. On the other hand, for a pure transverse wave, the same vectors are perpendicular to 

each other and, consequently, the scalar product nu


  is also zero. 

Christoffel has demonstrated that the direction cosines i of the displacement of the 

particles of the wavefronts are connected with their corresponding wave velocities, Eq. 14. 
 

2

1133122111
 vρ αλ αλ αλ α 

 
2

2233222121
 vρ αλ αλ αλ α 

           (14) 

2

3333232131
 vρ αλ αλ αλ α 

 
 

This set of equations can be easily deduced from Eq. 9 by replacing um for the 

direction cosines i with the particle u


 displacement vector, Eq. 15. Thus, the known 

propagation velocity of the wave, propagation direction, and specific gravity of the wood 

allows for the determination of the elastic constants in the matrix. 
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The determination of elastic constants of wood can be simplified as the 

determination of a solid orthogonal isotropic; otherwise known as an orthotropic solid. A 

matrix of the elastic coefficients of an orthotropic solid is provided in Eq. 16. Thus, it is 

possible to distinguish three structural planes of symmetry in a wooden sample, all of which 

are elastic, as illustrated in Fig. 1. 
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Fig. 1. Planes and directions of wood symmetry 

 

The first plane, denoted by X2OX3, whose unit normal vector is parallel to the X1 

axis, is perpendicular to the direction of the wood grain. The second plane, also called the 

tangential plane, is defined as X1OX2. This plane’s unit normal vector follows the direction 

of the X3 axis and is parallel to the layers of annual growth. The third plane known as the 

radial plane and denoted by X1OX3, is mutually perpendicular to the other two planes. The 

unit normal vector of this plane is parallel to the direction of axis X2. The X2OX3, X1OX2 

and X1OX3 parallel planes are also elastic symmetry planes. The directions of the symmetry 

axes X1, X2 and X3 are specifically labeled longitudinal (L), tangential (T) and radial (R).  

Using the proposed method, it is possible to determine the stiffness constants (SC) 

in directions perpendicular to the wood grain and the average between tangential and radial 

fibers. After establishing the velocity of wave propagation in both AT and ultrasonic tests 

using Christoffel's equation, the wood stiffness constant values were approximately 

estimated to be the dynamic modulus of elasticity. Equation 17 was used by Gonçalves and 

Bartholomew (2000), and Bucur (2006), who obtained excellent results. 
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In Eq. 17, the variable SC is the stiffness constant (MPa), V0 is the velocity of wave 

propagation (m.s-1),  is wood specific gravity, at 12% moisture content (kg.m-³), and g is 

the acceleration of gravity 10 (m.s-2). 

 

Material 
The wood used was Muiracatiara (Astronium lecointei), which is native to the 

Amazon region of Brazil. For the manufacture of test pieces, cross-sections of 150x150 

mm2 were cut from seven beams 2500 mm length. The samples were air-dried and 

subsequently cut into smaller parts. After drying, the wood pieces were stored for humidity 

stabilization according to Brazilian standard NBR 7190 (1997). From each wooden beam, 

150 mm edge cubes were selected with an additional 14 samples taken for compression 

tests (tangentially and radially oriented). Two samples from each beam were also collected 

for moisture content and specific gravity tests. The moisture content and specific gravity 

of the wood samples were determined according to NBR 7190 (1997) with corrections 

performed using ASTM D 2395 (1998) and ISO 3130 (1975). Figure 2 shows the removal 

scheme of samples used in tests. 

   
                          (a)                                                 (b) 

 

 
                        (c)                                          (d) 

Fig. 2. Removal scheme of the samples used in the tests: (a) wooden beam, (b) 15 cm edge 
cube and 15x15x5 cm3 piece, (c) tangential and radial directions pieces for compression tests, 
and (d) moisture content and specific gravity test samples 

 

Experimental Tests 
Both destructive and non-destructive tests were performed at the Advanced 

Research Center of Wood and New Materials in the Federal University of Minas Gerais, 

Brazil.  

Two devices were used to determine the wave propagation velocity: the Acoustic 

Tomograph (AT) Fakopp 3D and James V Mk II ultrasound. The AT used 8 piezoelectric 

transducers while the ultrasound used two (one transmitter and one receiver). During the 

AT tests, 150 mm edge cubes were used, Fig. 2b. In each piece, eight sensors were attached 

on a horizontal plane (2 sensors per edge). The software determined a grid of 42 wave 

propagation velocities capable of scanning the entire surface of the wood piece (because 

the diagonal of the matrix is null). Through this matrix, an average velocity was computed. 

During the ultrasonic waves method, tests were conducted using two transducers, which 
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were attached to cross-sections using gel. One transducer emitted a wave signal (emitter), 

which was captured by the other transducer (receiver). 

Figure 3a displays the position of the transducers installed (high sensitivity 

accelerometers) and that it is ready for the beginning of the AT test. This test involved 

exciting each transducer through a hammer shock, which then emitted a mechanical wave. 

The travel time of the pulse between the excited sensor and the receivers was measured, 

and software calculated the velocity of each mechanical wave. After excitation of all 

sensors, a measuring net was obtained (Fig. 3b). The surface cross-sectional graph, or 

tomographic image, was determined by the values of the ratio between the velocity of the 

wave between two sensors and the highest velocity. The highest velocity was considered 

to be that of a completely healthy timber. The software transformed this information into 

isochromatic velocities and presented the tomographic image shown in Fig. 3c. 

     
                     (a)                                           (b)                                      (c) 
 

Fig. 3. a) Parameters used in the AT test, b) velocities of each mechanic wave, and c) 
tomographic image 

 

A James V Mk II device attached to an oscilloscope for waveforms was used in 

tests using ultrasonic waves. The transducers had a 25 mm diameter and a 150 kHz 

frequency and were fixed in a spring-loaded mechanism to ensure that the pressure 

engagement in all tests was the same (Fig. 4). 
 

 

 
 

Fig. 4. Ultrasonic wave tests 

 

The normal MOE to grain is considered as the mean value between the results of 

the MOE’s destructive tests both in tangential and radial direction. In non-destructive tests, 

using ultrasound, it also used the average of the experimental results both in tangential and 

radial direction. In this test it used the specimens shown in Fig. 2c.  
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In the non-destructive testing, using acoustic tomograph, experimental results that 

provide the wave’s speed in normal direction to fibers, the specimens used were those 

shown in Fig. 2b. 

 
 

RESULTS AND DISCUSSION 
 

The average wave propagation velocity for the species Astronium lecointei was 

1347 m.s-1 when the acoustic tomography device was used and 1769 m.s-1 when the 

ultrasonic device was used, a difference of more than 30%. 

The AT test provided a velocity array (42 velocities). The highest propagation 

velocity, which was used as a reference, corresponded to a timber free from defects. The 

remaining values of the velocities matrix were determined by the device software. The 

values of maximum velocities were close to the values of the wave propagation velocities 

calculated by ultrasonic waves (Table 1). This was expected because the maximum velocity 

in the AT test was probably representative of sound paths for which the wood was free of 

defects, and velocities with ultrasound were determined in pieces totally free of defects. 

Table 1 shows that the velocities of both the AT and ultrasound tests did not only 

depend on the specific gravity. Several authors such as Shaji et al. (2000), Wang et al. 

(2004), Oliveira and Sales (2005), and Bucur (2006) confirm this, further indicating that 

these velocities also depend on wood anatomy and chemical composition. 

Table 1 shows the values of the stiffness constants, calculated by Christoffel´s 

equation, SC=(ρV²/g*105), Eq. 1, for AT and ultrasound tests. Performing an analysis of 

null difference between pairs of values (experimental modulus of elasticity versus stiffness 

constants) with a significance level of 99% probability, the possibility of equality between 

the experimental modulus of elasticity and the stiffness constants of AT tests (with 

confidence interval -208; 936, t-value = 2.36 and p-value = 0.056) can be concluded. For 

the stiffness constants of ultrasound tests, the hypothesis of equality was represented with 

a confidence interval of 1197; 1638, with a t-value of 22.46 and p-value of 0.000. As the 

confidence interval does not include zero and the p-value is very low, the difference null 

hypothesis is rejected, i.e. SC values are not equal.  

In the graph of Fig. 5 (normalized in relation to E.M.E) it was observed that the 

ratio between the stiffness constants using ultrasound and the experimental modulus of 

elasticity ranged between 75% and 225%. As such a calibration coefficient to consider 

variables such as the attenuation of the wave was required. The ratio between the stiffness 

constants and experimental modulus of elasticity through AT test varied between -10% and 

130%, with mean values close. This was expected, as 42 velocities which mapped the entire 

wood cross section were used in the determination of the stiffness constants through AT 

test.  

It can also be seen in this graph that the stiffness constants through AT test values 

calculated with maximum velocities were close to the values of the stiffness constants 

through ultrasound test. This occurred because the ultrasound tests were performed on 

specimens free of defects, and the maximum speed in the AT test is determined in a region 

where the wood is free of defects.  

Figure 5 shows a graph of the ratio S.C./E.M.E. (the average and maximum S.C. 

for both AT and US tests) and specific gravity. 
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Table 1. Specific Gravity Values (S.G.), Propagation Velocities (P.V.), 
Experimental Modulus of Elasticity (E.M.E.) and Stiffness Constants (S.C.) for AT 
and Ultrasound (US) Tests 

Piece 
number 

S.G. 
(Kg.m-³) 

P.V. 
AT test 
(m.s-1) 

P.V. 
maximum 

(m.s-1) 

P.V. 
US test  
(m.s-1) 

E.M.E. 
(MPa) 

S.C. 
AT test 
(MPa) 

S.C.  
US test 
(MPa) 

1 714 1305 1806 1773 893 1191 2245 

2 725 1430 1713 1733 834 1408 2179 

3 730 1551 1888 1815 731 1757 2405 

4 750 1042 1178 1605 834 830 1930 

5 838 1415 1918 1671 962 1634 2340 

6 842 1157 1932 1846 1247 1187 2869 

7 859 1531 2363 1943 1790 1832 3244 

Average 780 1347 1828 1769 1042 1406 2459 
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Fig. 5. Experimental results 

 
 
CONCLUSIONS 
 

1. With 95% significance it can be concluded that the possibility of equality between the 

stiffness constants and the experimental module of elasticity occurs only for acoustic 

tomography tests. 

Ultrasound 
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2. Although the ultrasonic device is described by many authors as an efficient method for 

the determination of the stiffness constants through correlation equations, it proved 

ineffective for a direct approach as proposed in this work. 

3. Stiffness constants through Acoustic Tomograph test values calculated with maximum 

velocities are close to the values of stiffness constants through US test. 

4. Though the Acoustic Tomograph tests were carried out without the prior control of 

defects in the specimens, the values found were closer to the values of the static MOE 

than those found with the ultrasonic tests. 
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