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High-Permeability Filter Paper Prepared from Pulp Fiber 
Treated in NaOH/Urea/Thiourea System at Low 
Temperature 
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Pulp fibers were treated in aqueous NaOH/urea/thiourea solution at low 
temperatures (from -14 °C to 8 °C) to prepare high-permeability filter 
papers. The effects of treatment temperature and time were investigated 
to control the permeability of the filter paper. SEM images were taken to 
observe the physical configuration of fibers, and fiber quality analysis 
was used to characterize the properties of the fibers. The main 
parameters of the filter papers (permeability and bulk) were increased 
markedly. The permeability was  increased  from 150.1 L/(m2·s) for the 
untreated paper to 1136 L/(m2·s) for the treated paper, and from 4.3 
cm3/g for the untreated paper to over 5.5 cm3/g for the treated paper. 
The zero-span tensile strength changed only slightly. Moreover, the 
characteristics of the pulp fibers underwent some positive changes. 
These results demonstrate that the permeability of paper sheets can be 
preferably improved by treating fibers in NaOH/urea/thiourea solution at -
2 °C for 30 min. 
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INTRODUCTION 
 

Cellulosic fiber is the most abundant renewable resource and has attracted 

increasing attention for applications in many fields (Klemm et al. 2005). Cellulosic fibers 

are the basic materials involved in the production of various paper-based products. One 

driving force for the rising demand for fibers possessing various properties is a growing 

demand for various specialty papers. Different grades of paper products are strongly 

dependent upon the characteristics of their fibers. Essentially, treating fibers allows for 

vital cost reduction and value-added use of pulp fibers by the pulp and paper industry (Xu 

et al. 2013).  

Filter paper is a high value-added specialty paper possessing extremely high 

permeability, low pore size, and high porosity (Ma et al. 2014). Filter paper with high 

bulk (large dust-containing capacity) and high air permeability (low air resistance) is 

significant to its subsequent processing. In the conventional filter paper industry, the 

performance requirements of filter paper are often met via mercerization, a common 

method for preparing pulp fibers with highly swollen, reactive surfaces (Dinand et al. 

2002; Halonen et al. 2013). It is now well established that native cellulose (cellulose I) 

becomes swollen after alkali treatment and, upon washing, shrinks to yield a new 

allomorph with an antiparallel structure (cellulose II) (Yoshiharu et al. 1998, 2000). In 

general, filter paper is prepared such that the bulk is much greater than that of ordinary 
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paper, and this is done to maintain high permeability after the impregnation post-

treatment. In a sense, mercerizing pulp fibers with smooth, rounded surfaces is critical to 

the filter base paper to improve its  bulk and permeability. On the other hand, 

impregnating the base paper with resin to improve its quality and performance is a typical 

post-treatment used in current automobile filter paper production (Francucci et al. 2010; 

Lebrun et al. 2013). Chemical methods, based on the differences in cellulosic and non-

cellulosic materials’ stability in chemical solutions, are most commonly used to treat 

fibers (Liu et al. 2011). 

Cellulose is composed of β-(1→4)-linked D-glucopyranosyl units with three 

hydrogen groups, which can form tight arrays of inter- and intra-molecular hydrogen 

bonds (Klemm et al. 2005). Thus, the structure of cellulose is not easy to damage in 

common solvents. Historically, alkali solutions have been used to treat cellulose. As 

always, Zhang’s group used an alkali/additive solvent system to dissolve cellulose. They 

found that alkali/urea or thiourea can readily dissolve cellulose (Cai et al. 2005; Yang et 

al. 2005; Cai et al. 2008; Xiong et al. 2014). OH- groups break the hydrogen bonds and 

Na+ hydrations stabilize the hydrophilic hydroxyl groups. Urea, with high polarity and 

thus strong van der Waals forces, may accumulate on the hydrophobic cellulose regions, 

preventing cellulose molecules from gathering and damaging the hydrogen bonds 

between the fibers (Xiong et al. 2014). The low temperature effect is thought to be driven 

by entropy hydrate formation kinetics, which strengthens the network of the solvent 

hydrates such that they act on the fiber to a greater extent (Zhang et al. 2010). It is 

assumed that the network of the solvent hydrates becomes stronger and breaks the intra- 

and inter-molecular hydrogen bonds of cellulose at low temperature, smoothing and 

curling fibers, thus improving permeability. Moreover, these solvents are inexpensive and 

less toxic than conventional solvents.  

Recently, many studies of aqueous NaOH/urea/thiourea solution dissolving fibers 

have been conducted (Ruan et al. 2008; Jin et al. 2007; Mohsenzadeh et al. 2012; Xiong 

et al. 2014; Liu et al. 2015), but none have focused on swelling the fibers to improve the 

permeability of filter paper. Alkali is a simple chemical that can swell or even dissolve 

cellulose at high concentration. And addition of chemicals such as urea, thiourea, or a 

combination of urea and thiourea can provide a benefit to improve the dissolution 

behavior of cellulose in the alkali solution (Mohsenzadeh et al. 2012). It is worthy noting 

that the thiourea leads to better solubility of cellulose than the urea in alkali solution (Jin 

et al. 2007; Ruan et al. 2008). In this case, both thiourea and urea are supplied in alkali 

solution to treat pulp fibers. Compared with the mercerization (the alkali dosage was 

about 20%), the NaOH/urea/thiourea solution to treat pulp fibers only requires low alkali 

dosage (under 10%), and also the permeability of filter paper can be improved immensely. 

Unlike previous studies, pulp fibers are treated in alkali solution with additives such as 

urea and  thiourea under mild operating conditions. Such an approach supplies a novel 

and simple method to prepare high-permeability filter paper.  

The overall objective of this work was to evaluate the effect of NaOH/urea/ 

thiourea processing on the characteristics of cellulosic fibers and the permeability of 

paper and to consider the mechanism of swelling fibers in the solvent system. It was 

hypothesized that fibers treated by the NaOH/urea/thiourea solution system can improve 

the permeability of paper sheets and be used in the production of high value-added 

specialty papers requiring high permeability. The goal is to gain some meaningful 

information for the purpose of fundamental research.  
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EXPERIMENTAL 
 
Materials 

Fully bleached softwood kraft pulp (BSKP) fibers imported from Canada were 

supplied by Hengfeng Paper Co., Ltd. (Mudanjiang, China) and were soaked in water for 

12 h, drained, and torn into grain-size (length of about 1 cm) pieces. The pulp fibers were 

put into plastic bags, their moisture contents were measured after 24 h, and they were 

stored at 5 °C prior to use. All reagents were of analytical grade, were purchased from 

Tianjin Zhiyuan Chemical Reagent Co., Ltd. of China, and were used as received without 

further purification. An aqueous mixture of 6/6/8 parts NaOH/urea/thiourea was pre-

cooled at corresponding temperatures (8 to -14 °C).  

 

Fiber Treatment  
First, 15 g of dry pulp fibers was added to 300 mL of pre-cooled solution. 

Continuous stirring was done with a screw rotating at 600 rpm for 5 min. The mixture 

was immediately put into the treatment environment for 30 min, after which the mixture 

was extruded with a net and waste liquid was recycled. The treated fibers were washed 

with tap water several times, then the yield of treated pulp fiber was measured.  

 

Hand-sheet Preparation 
A JY98-DNⅢ ultrasonic cell crusher, supplied by Scientz Biotechnology Co., Ltd. 

(China), was employed to refine the fibers with the same power output, followed by 

measuring the moisture (referred to as materials preparation) to make sure the same basis 

weight was achieved. Handsheets with a target basis weight 80 g/m2 were made on a 

ZCX-200 handsheet former (China) without pressing to maintain high air permeability. 

The wet filter papers were dried at 80 °C for 15 min. Paper sheets were stored in a 

constant temperature and humidity room prior to testing. The methodologies of fiber 

treatment and hand-sheet preparation were determined from preliminary experiment and 

conventional experience.  

 

Fiber Analysis, FTIR Analysis and SEM Observations 
A Motic BA300 Microscope (Motic China Group Co., Ltd) equipped with 

Panasonic WV-CP470/CH Surveillance Cameras (Japan) was employed to observe and 

compare the shapes of treated fiber and the fiber without treatment. The fiber length, 

width, shape factor, curl index, coarseness, fines, kink angle, and kink index were 

determined using a 912 Lorentzen & Wettre fiber tester (Sweden). The paper sheet 

samples were broken apart with a fiber mill, and the powder was further used for analysis 

with FT-IR spectrum (Nicolet 6700, Thermo Fisher Scientific, USA). For each sample, 

the data were recorded at a resolution of 4 cm-1 with an accumulation of 32 scans. Then, 

paper sheet samples were rapidly cut with a scalpel after they were placed onto supports 

with tape to obtain planar views. After the gold-coating procedure, an FEI Quanta-200 

environmental SEM (USA) was used to further observe the surface of paper and the 

cross-section of paper. The magnifications were 100X, 1000X, and 5000X, respectively. 

The value of the untreated fiber was used as the blank. 

 

Property Tests  
The principle of the YG461E Numerical Air Permeability Instrument, supplied by 

Ningbo Textile Instrument Factory (China), depends on the measurement of the air 
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passing through the sheet per unit area (φ 50.0 mm) at a certain pressure gradient, ∆р 

(20.0 mm water column), according to the ISO 9237: 1995 (E) (Zupin et al. 2012). In 

many filter products, appropriate air permeability is an important feature, as it helps to 

evaluate the performance of the industrial filter material (Tokarska 2008). 

The pore size of the filter paper was measured by an MP-10K Hole Size 

Reflectscope Reflector (Xinxiang Dongfeng Filtration Technology Co., Ltd. China) with 

isopropanol as the test medium. To regulate the valve, pressure was increased slowly. 

The pressure value P1 was recorded when the first series of bubbles were observed. Then, 

pressure value P2 was recorded when three series of bubbles appeared. P1 was used to 

characterize the maximum pore size, and P2 was used to characterize the average pore 

size. The pore size of the filter paper was defined as, 
 

4
S

D
P

 
                                          

 

where D denotes the pore size. The quantity S represents the test medium surface tension 

and was taken to be 21.35×10-3 N/m, and P indicates pressure.  

A Z-span1000 troubleshooter was supplied by Pulmac Instruments International 

(USA) to measure the zero-span tensile strength. The width of the sheet specimen was 

15±0.1 mm and the length was 100 mm. At least twelve data points were gathered for 

each sheet sample. 

A ZUS-4 paper thickness tester, supplied by Chang Chun Yueming Mini Testing 

Machine Co., Ltd (China), was employed to measure the thickness of the filter paper. The 

relationship of bulk with basis weight was, 
 

1000a
u

d
B

q


                                                                           (2)   

 

where bulk is Bu, da represents the thickness of the filter paper, and q denotes the basis 

weight. Fifteen data points were gathered for each sheet sample. 

 

 

RESULTS AND DISCUSSION 
 
Fiber Morphological and Quality Analysis 

The fiber morphology after various treatment stages is shown in Fig. 1. Fibers 

treated in aqueous NaOH/urea/thiourea solution underwent crucial changes in 

morphology. As can be seen from Fig. 1(a) and (c), fibers exhibited swelling and their 

cell wall became thickened after treatment. Broken fibers and fines were dissolved or 

sieved, which Table 1 also verifies. In some sense, the decrease in fines improved the 

permeability of the filter paper. Previous reports suggest that urea can form inclusion 

complexes in the presence of guest molecules through van der Waals force (Vasanthan et 

al. 1996; Rusa and Tonelli 2000). Figure 1(b) shows that the surface of the fibers forms a 

kind of cellulose/urea/thiourea complex that can prevent the dispersed fibers from re-

agglomerating. A tentative explanation about the power of urea/thiourea in altering the 

hydrogen bonding is given in Fig. 2, which is based on the following literature 

(Vasanthan et al. 1996; Rusa et al. 2000; Cai et al. 2005; Mohsenzadeh et al. 2012; 

Xiong et al. 2014; Liu et al. 2015) and micrographs of fibers (Fig. 1(b)). As shown in Fig. 

2, the hydrogen bonds between fiber and other fibers or water make full swelling of fibers 

(1)    
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difficult. The urea/thiourea solution treats pulp fibers and accumulates on them by 

forming hydrogen bonds with them, damaging the hydrogen bonds between fibers. 

Improvement of the fiber swelling can be obtained. This mechanism also applies to the 

fibrils of the pulp fibers.  

 

                                                                      
 

Fig. 1. Micrographs of fibers. Untreated fiber (a); Fiber during the treating process (b); Treated 
fiber (urea/thiourea complex was washed away) (c) 
  

 
Fig. 2. Schematic of change in hydrogen bonding 
 

Figure 3 shows SEM images papers and fibers. As can be seen from Fig. 3(a), (b), 

(c) and (d), the shape of the untreated fiber was ribbon-like, while that of the treated fiber 

was pole-like. The surface of the treated fiber was smooth. And the porosity values of 

treated papers were higher than those of untreated papers. Figure 3(e) and (f) reveal that 

the cross-section of the untreated fibers was flat and the lumen was large, whereas that of 

treated fibers was tumid and the lumen became small. Moreover, the cell wall of treated 

fibers became loose and fibrillated. In addition, the treated fiber exhibited marked 

swelling without breakage of its structure. This provides visual evidence that treating the 

fiber imparts high bulk to the sheet of paper, enhancing its permeability. SEM 

observation showed that the treated fibers had the potential to improve paper’s 

permeability and perform to a greater degree than ordinary fibers. 

The properties of fiber were determined using a 912 Lorentzen & Wettre fiber 

tester (Sweden). The results of fiber quality analysis are listed in Table 1. The value are 

averaged over the three data points  for each sample. The properties of treated fibers 

(length, width, curl index, coarseness, fines, kink angle, and kink index) changed 

following treatment. 
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Fig. 3. SEM images of papers and fibers. (a) untreated paper; (b) treated paper; (c) and (e) 
untreated fiber; (d) and (f) treated fiber 
 

The greatest increases, in the curl index (22.3% to 27.1%) and coarseness (160.8 

to 179.1 μg/m), suggest that aqueous NaOH/urea/thiourea solution facilitated the swelling 

of fibers. The kink index of treated fiber dramatically increased, by 42.3% (2.175 to 

3.094), indicating that the treatment destroyed hydrogen bonds in the fiber. Moreover, the 
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fines content decreased to 0.3% (from 2.3%). It was found that broken fibers and fines 

were dissolved or sieved by the treatment. Therefore, treating fibers with aqueous 

NaOH/urea/thiourea solution caused varying degrees of distortion in the fibers and made 

them swell. This had a great effect on the paper’s permeability.  

  

Fiber Analysis 
 To further understand the changes of the components, the FT-IR spectra of 

untreated and treated fiber are shown in Fig. 4, and the peaks are assigned by comparing 

with the literature data (Li et al. 2010; Zhai et al. 2015). As shown in the figure, both 

samples basically exhibited similar spectra, which indicated that  the treatment did not 

change the structure of pulp fiber. 

 The peak at 1103 cm-1 is indicative of associated OH groups from cellulose and 

hemicellulose. The band at 1161 cm-1 arises from C-O-C stretching of the β- (1,4)- 

glycosidic linkages. The peak at 3331 cm-1 is attributed to the stretching of OH groups, 

and the absorption at 2895 cm-1 is attributed to C-H stretching in CH2 groups in cellulose. 

A strong signal at 1030 cm-1 is indicative of C-O at C-C stretching. 
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Fig. 4. FT-IR spectra of untreated fiber and treated fiber 

 

Table 1. Fiber Quality Analysis Results 

 

Variable BSKP Fiber Treated Fiber 

Mean Length (mm) / Weighted (μm) 2.444 / 28.3 2.145 / 26.8 

Curl Index (%) 22.3 27.1 

Coarseness (μg/m) 160.8 179.1 

  Fines Content (%) 2.3 0.3 

Kink Angle (°) / Kink Index 54.8 / 2.175 58.5 / 3.094 
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Effect of Treatment Temperature on the Properties of the Filter Paper 
Temperature appeared to have an important role in the treatment, which promotes 

the formation of a stable inclusion complex hosted by urea, thiourea, and NaOH hydrates 

through hydrogen-bond networks at low temperature (Ruan et al. 2008). In this work, a 

large number of experiments were carried out to investigate the influence of treatment 

temperature on the properties of the filter paper, with treatment time fixed at 30 min. The 

results were evaluated and studied for pore size, permeability, bulk, and zero-span tensile 

strength, as shown in Fig. 5. The properties of the paper without treatment are shown in 

Table 2.  

 
Table 2. Properties of Paper without Treatment 

Property Maximum Pore 
Size (μm) 

Average Pore 
Size (μm) 

Permeability 
(L/(m2·s)) 

Bulk 
(cm3/g) 

Zero-pan Tensile 
Strength (N) 

Value 41.0 39.0 150.1 4.3 164.3 

 

The pore size of paper has an impact on its filtering accuracy. Generally, the 

filtering accuracy increases with decreasing void fraction and pore size. It makes no sense 

to investigate the pore size separately. Thus, the pore size and permeability are always 

considered together. Generally, large pore size corresponds to high permeability. As Fig. 

5(a) and Table 2 show, the maximum pore size was increased by treatment from 41.0 μm 

for untreated paper to 50.5 μm for treated paper, and from 39.0 μm for untreated paper to 

45.6 μm for treated paper, which Fig. (a) and (b) also verified. This finding is likely a 

consequence of treated fiber’s swelling and smooth surface. Treatment increases the pore 

size of paper by deteriorating hydrogen bonds between fibers. However, the maximum 

pore size and average pore size decreased with increasing treatment temperature from -6 

to 8 °C. Otherwise, pore size was larger and decreased slightly from -14 to -6 °C. As is 

well known, an increase in temperature weakens the hydrogen bonding between the fiber 

and the solvent, such that the structure may collapse when the temperature is increased 

from -14 to 8 °C. Figure 5(a) shows that lower temperature equates to the larger pore size 

and that the effect of fiber treatment is unsatisfactory at high temperatures. 

It is generally accepted that the permeability of filter paper depends on its pore 

size and bulk. The effect of treatment temperature on the permeability of filter paper is 

depicted in Fig. 5(b). The permeability increased from 795.8 to 1184.2 L/(m2·s) with an 

increase in treatment temperature from -14 to -6 °C and decreased from 1184.2 to 537.4 

L/(m2·s) with an increase in treatment temperature from -6 to 8 °C. This indicates that 

temperature is quite important to the treatment of pulp fibers in aqueous NaOH/urea/ 

thiourea solution. Interestingly, the permeability of the paper was 379.89 L/(m2·s) after it 

was treated at room temperature, and that of paper without treatment was 150 L/(m2·s). 

With an increase in temperature, the hydrogen-bonding network structure of inclusion 

complex could be destroyed, depending on the relationship between the stability of the 

hydrogen bonds and temperature. At room temperature, the structure of inclusion 

complex had been destroyed seriously, and the increase in permeability may have been 

mainly due to alkali swelling at room temperature. Moreover, 379.89 L/(m2·s) is far 

below the requirements for high-permeability filter paper. Thus, low temperature favors 

effective fiber treatment in aqueous NaOH/urea/thiourea solution and greatly improves 

permeability. 

Bulk affects the sheet’s dust-containing capacity and the service life of the filter 

paper. It is accepted that, per unit mass of filter paper, greater volume reflects a greater 
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capacity of the filter paper to contain dust, which relates to its service life. The effect of 

treatment temperature on the bulk of filter paper is depicted in Fig. 5(c), and the values 

display a similar trend with Fig. 5(a). Table 2 and Fig. 5(c) indicate that the bulk of filter 

paper increased significantly (the bulk of paper without treatment was 4.3 cm3/g, while 

treatment increased the bulk to more than 5 cm3/g), and lower processing temperatures 

led to higher values of bulk. This may be attributed to the high treatment intensity, 

making fibers smooth and curled at low temperature. 

Zero-span tensile strength (ZSTS) characterizes the strength of single fibers. 

Generally, chemical processing causes fibrous fracture and ZSTS reduction. As can be 

seen in Fig. 5(d), the ZSTS gradually increased with increasing treatment temperature 

from -10 to 2 °C. Otherwise, treatment resulted in minor decreases in ZSTS with 

increasing treatment temperature from 2 to 8 °C. Moreover, the ZSTS of paper without 

treatment was 164.3 N, and the ZSTS slightly decreased after treatment. As explained 

above, the decrease was likely due to the solvent damaging the fibers. However, 

dissolving broken fibers and fines during treatment led to an increase of ZSTS to a 

certain degree. Based on the analysis of various properties, to obtain high permeability 

and damage the fiber slightly, the treatment process was most favorable at -2 °C.  

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 RT

38

40

42

44

46

48

50

52

54

Maximum pore size

Average pore size

P
o

re
 s

iz
e

 （
μ
m
）

Treat temperature (℃)

   

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 RT

400

600

800

1000

1200

 P
e

rm
e

a
b

ili
ty

 (
L
/
(
m
2
·
s
)

)

Treat temperature （ ℃）

 
                                                                                                

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 RT

4.8

5.0

5.2

5.4

5.6

5.8

6.0

B
u

lk
(c
m
3
/
g

)

Treat temperature (℃)

   

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 RT

130

135

140

145

150

155

160

165

170

175

180

Z
e

ro
-s

p
a

n
 t
e

n
s
ile

 s
tr

e
n

g
th

  
（
N）

Modify temperature（ ℃）

                                                                                            
Fig. 5. Effect of temperature on filter paper properties: (a) pore size; (b) permeability;  
(c) bulk; (d) zero-span tensile strength. RT represents room temperature (25 °C) 
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Effect of Treatment Time on the Characteristics of the Filter Paper  
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Fig. 6. Effect of treatment time on the permeability, yield (a) and bulk (b) of the filter paper 
 

The solvent molecules (NaOH, urea, thiourea, and water) and the cellulose 

macromolecules lead to inclusion complex formation through hydrogen bonds, which are 

relatively stable at low temperature. The treatment of pulp fibers in NaOH/urea/thiourea 

system can be described as two parts: first, the fibers are immersed in the precooled 

solvent and dispersed as cellulose chains; second, NaOH, urea, thiourea hydrates form an 

inclusion complex at the surface of fibers (Cai et al. 2008). Short treatment time is not 

favorable for the dispersion of cellulose, leading to unsatisfactory treatment. However, a 

lot of pulp fibers are dissolved in the solvent if a long treatment time is provided, leading 

to low treated pulp fiber yield. Figure 6(a) and (b) show the effects of treatment time on 

the characteristics of the filter paper at -2 °C. The results in Fig. 6(a) revealed that the 

paper permeability was sharply increased with increasing of the treatment time from 10 

to 30 min and there were minor decreases after 30 min; meanwhile the yield of the treated 

pulp fiber was considerably decreased. The highest permeability at 30 min, which was 

80.6% of the yield, was obtained by treatment with NaOH/urea/thiourea at -2 °C. The 

effect of treatment time on the bulk of filter paper is depicted in Fig. 6(b), and the values 

display a similar trend with permeability in Fig. 6(a). In the early stages of the treatment, 

Na+ of the alkali existed as [Na(H2O)m]+ and OH− existed as [OH(H2O)n]−. [OH(H2O)n]− 

broke hydrogen bonds, and [Na(H2O)m]+ stabilized the hydrophilic hydroxyl groups 

(Xiong et al. 2014). Urea/thiourea accumulated on the cellulose’s hydrophobic region. 

The hydrogen bonds of the amorphous zone were quickly damaged with the cooperation 

of the solvent system. The proper time was favorable for the treatment of components in 

aqueous NaOH/urea/thiourea solution. As can be seen in Fig. 6, 30 min was found to be 

the most efficient, time-saving duration for treating pulp fibers and was suitable for 

preparing filter paper with high permeability. 

 
 
CONCLUSIONS 
 
1. Pulp fibers were treated in an NaOH/urea/thiourea system in this study, and the 

effects of treatment temperature and time on filtration properties of filter paper were 

investigated. According to the experimental data and fiber morphology observations, 

(a) (b) 
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the permeability and bulk of the filter paper were improved by the solvent treatment 

at low temperatures. 

2. The fibers curled noticeably increased (from 22.3% to 27.1% in curl index), and 

obviously swelled (increased from 160.8 to 179.1 μg/m in coarseness) with treatment, 

leading to higher permeability. 

3. When the treatment was conducted at -2 °C for 30 min, the permeability increased to 

1136 L/(m2·s) and the treatment resulted in only a slight reduction in the zero-span 

tensile strength (164.3 to 160.4 N).  

4. This study provides a novel and simple method to achieve high-permeability filter 

paper production via the treatment of fiber in alkali solution with additives such as 

urea and thiourea under mild operating conditions. 
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