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A facile approach for producing fluorescent composite paper containing 
nitrogen-doped graphene quantum dots (N-GQDs) and graphene on the 
surface of the modified fibers was implemented from the exfoliation of 
graphite oxide (GO) using a one-step hydrothermal method. The 
properties of the composite paper were characterized by X-ray diffraction 
(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron 
microscopy (SEM), transmission electron microscopy (TEM), ultraviolet 
visible spectroscopy (UV), photoluminescence spectroscopy (PL), and 
confocal laser scanning microscopy (CLSM). The results indicated that the 
GO was reduced to graphene sheets, and the N-GQDs nanoparticles were 
deposited on the surface of these sheets. The composite paper remained 
undamaged, with a three-dimensional structure and smooth fibers during 
the hydrothermal process, and the average particle size of N-GQDs was 
less than 10 nm. Photoluminescence measurements showed that the 
composite paper had a strong ultraviolet absorption in the range of 200 to 
340 nm, and the band edge emission occurred at 475 nm. The CLSM 
image of composite paper exhibited a well-defined excitonic emission 
feature with an excitation wavelength of 405 nm. 
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INTRODUCTION 
 

Cellulose is the most abundant carbohydrate polymer resource on earth, and it 

shows many great properties such as flexibility, mechanical strength, biocompatibility, 

biodegradability, and renewability. Cellulose has been widely used in papermaking, 

printing, packing products, food and medicine products, etc. Recently, cellulose has shown 

potential applications in the field of optoelectronic composite materials, such as new 

cellulosic photoluminescent nanocomposite films, flexible cellulose-based sheets of 

electrical transducers, and energy storage devices (Chen et al. 2013). 

Luna-Martinez et al. (2011) embedded ZnS nanoparticles in carboxyl methyl 

cellulose to produce photoluminescent nanocomposite films. A type of flexible 

nanocomposite film of bacterial cellulose (BC) and graphene oxide (GO) with a layered 

structure prepared by a vacuum-assisted self-assembly technique displayed a notable 

improvement in electrical conductivity (Feng et al. 2012). A layer-by-layer assembled 

hybrid multilayer thin film using cellulose nanofibers (CNFs) as substrate was promising 

for flexible supercapacitors (Wang et al. 2014). A transparent and ultraviolet shielding 

composite film based on graphene oxide and cellulose acetate was fabricated via a solvent-

casting method. This material could be potentially applied as transparent UV-protective 
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coatings for packing biomedical, pharmaceutical, and food products (de Moraes et al. 

2015). Cellulose/graphene nanocomposites could be applied in multifunctional electronic 

and solvent sensor materials (Kafy et al. 2015). 

Graphene quantum dots (GQDs) are a type of zero-dimensional graphene sheets 

with lateral sizes less than 100 nm, and they are superior to traditional semiconductor 

quantum dots (QDs) because of their outstanding photoluminescence (PL) properties, 

excellent stability, high resistance to photobleaching, low toxicity, and good 

biocompatibility. These outstanding properties make GQDs potentially applicable in 

fluorescent anti-counterfeiting materials, optoelectronic functional composites, 

bioanalysis, drug and gene delivery, chemosensors, and biosensors (Yuan et al. 2012; Liu 

et al. 2013; Tang et al. 2015). 

Chemical heteroatom-doped GQDs, especially nitrogen-doped GQDs (N-GQDs), 

have a large surface area and more active sites to tune their intrinsic, carbon-based 

properties such as electronic characteristics, surface activity, and local chemical features 

(Xu et al. 2015; Zhao et al. 2015). For example, nitrogen-doped graphene quantum dots 

(N-GQDs) have an intrinsic peroxidase-like catalytic activity, which can be used to detect 

H2O2 and glucose over a wide range of pH and temperature (Lin et al. 2015). N-

GQDs/BiOBr nanohybrids show optimal photoactivity and excellent performance in the 

photoelectrochemical detection of glutathione as well as the photocatalytic degradation of 

rhodamine B (Yin et al. 2016). 

 

 
 

Fig. 1. Fabrication procedure of paper-based composite N-GQDs/graphene/cellulose 

 

In this work, a one-step and facile method for preparing paper-based fluorescent 

materials on a large scale is presented. This method includes the assembly of zero-
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dimensional N-GQDs and two-dimensional graphene sheets on the surface of three-

dimensional paper fibers (Fig. 1). The resulting composite paper has potential applications 

in optoelectronic functional composites for bioanalysis, drug and gene delivery, 

chemosensors, and biosensors. Filter papers were selected as the template for the 

composites. Polyethyleneimine (PEI) played several important roles in the preparation of 

composite paper: a) forming of amine groups with the positive ionic charge to disperse the 

graphene sheets in the water suspension, b) modifying the charge of the fibers in filter 

paper to hold the graphene sheets onto the negatively charged fiber surfaces, and (c) 

maintaining a strong adhesion of graphene to the filter paper fibers even in the dry state 

(Guan et al. 2015). GO was exfoliated to fluorescent N-GQDs and large pieces of graphene 

sheets in the hydrothermal process. Meanwhile, N-GQDs were distributed on these 

graphene sheets to form N-GQDs/graphene (N-GQDs/G) composites. The N-GQDs/G 

coating on the surface of paper fibers created fluorescent properties in the paper-based 

composite.  

 
 
EXPERIMENTAL 
 

Materials 
Sulfuric acid (99%) was purchased from Yongda Chemical Reagents Co., Ltd. 

(Foshan, China). Potassium permanganate (KMnO4) was supplied by Tianjin Fengchuan 

Chemicals Reagents Co., Ltd. (Tianjin, China). Peroxide (H2O2) was provided from Tianjin 

Damao Chemical Reagents factory (Tianjin, China). Polyethyleneimine (PEI) was 

provided by Aladdin (Shanghai, China). 

 

Methods 
Synthesis of graphene oxide (GO) 

GO was obtained from graphite powder by the modified Hummers method 

(William et al. 1958). 

 

Preparation of N-GQDs/G/C composite paper 

Approximately 10 mg of GO was exfoliated in 30 mL of ultrapure water by 

sonication for 30 min. Next, 10 mL of PEI aqueous solution was added to the GO solution 

drop-wise under ultrasonication for 15 min and 50 mL of ultrapure water was also added 

for diluting to form a 90 mL stable GO-PEI suspension. The GO-PEI suspension and a 

filter paper were placed in a Teflon-lined stainless steel autoclave (100 mL) and heated to 

180 °C. After 10 h, the prepared N-GQDs/G/C composite paper was washed several times 

with water and absolute ethanol and dried in a vacuum oven at 60 °C for 24 h. 

 

Analytical methods 

The crystallinities of the samples were examined by X-ray diffraction (D8 

Advance, Bruker, Karlsruhe, Germany) with Cu-Kα radiation from 5° to 60°. X-ray 

photoelectron spectroscopy (XPS) measurements were performed with a Kratos Axis Ulra 

DLD X-ray photoelectron spectrometer (Manchester, United Kingdom). 

Scanning electron microscopy (SEM) images were recorded with Shimadzu SS-

550 instrument (Shimadzu Corp., Kyoto, Japan). Transmission electron microscopy (TEM) 

images were obtained from a JEM-2100 electron microscope (Kyoto, Japan).  



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bian et al. (2016). “Paper fluorescent composite,” BioResources 11(3), 6299-6308.  6302 

The UV-Vis absorbance spectra were collected on a Jasco V-570 spectrometer 

(Kyoto, Japan). 

The photoluminescence (PL) spectra were acquired with a PerkinElmer L55 

fluorescence spectrometer (Fremont, USA) under excitations from 300 nm to 375 nm with 

a 7.3 W Xe lamp. 

Confocal laser scanning microscopy (CLSM) was obtained with Leica TCS-SP5 

(Solms, Germany) to observe the photoluminescence phenomenon of paper-based 

composites.  

 

 
RESULTS AND DISCUSSION 
 

In the XRD pattern of graphite powder (Fig. 2a), a strong diffraction peak at 26.2° 

represented the hexagonal structure lattices of the (002) plane. The peak shifted to 10.2° in 

Fig. 2b as a result of the presence of carbonyl and oxygen functional groups in the graphitic 

structure of GO (Rajendran Ramachandran et al. 2015). The sharp peak at approximately 

10.2° disappeared in the crystalline patterns of N-GQDs/G and N-GQDs/G/C, which was 

attributed to the exfoliation of graphene oxide to reduce to N-GQDs and graphene sheets 

during the hydrothermal process because of the removal of oxygen-containing functional 

groups. 

 

 
 

Fig. 2. XRD patterns of (a) graphite, (b) GO, (c) N-GQDs/graphene, and (d) N-GQDs/G/C 
composite paper  

 
And a new broad diffraction peak (2θ) centered at approximately 22.5° in the N-

GQDs/G spectrum (Fig. 2c) was the characteristic diffraction peak of N-GQDs and 

graphene, which corresponded with the XRD patterns of nitrogen-doped carbon quantum 

dots (N-CQDs) and graphene reported in the literature (Xue et al. 2011; Han et al. 2015; 

Hu et al. 2015). The XRD peak corresponded to the (002) crystal plane of N-GQDs and 

graphene with turbostratic disorder. 
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Interestingly, there were no diffraction peaks originating from N-GQDs or 

graphene in the paper-based N-GQDs/G/C composite. The XRD pattern of N-GQDs/G/C 

(Fig. 2d) presented peaks around 2θ values of 14.93°, 16.60°, and 22.83°, which were 

attributed to the 100, 010, and 110 planes, respectively, of the cellulose Iβ crystalline 

structure (French 2014). The typical cellulose crystalline structure of N-GQDs/G/C 

indicated that the structure of cellulose in the filter paper was not destroyed under the high 

temperature and high pressure of the hydrothermal reaction system. The disappearance of 

the peak at 22.5° in Fig. 2c might be due to the uniform dispersion of N-GQDs and 

graphene on the surface of filter paper fibers, which matched with the XRD results reported 

previously (Feng et al. 2012; Kafy et al. 2015; Ramachandran et al. 2015). 

The XPS spectrum of N-GQDs/graphene/cellulose showed its surface functional 

groups and elemental states, including C, O, and N peaks (Fig. 3). The N 1s peak indicated 

the presence of PEI in the reaction system. The peak at 284.6 eV (C-C) in the C1s region 

suggested the graphitic sp2 carbon atoms in the graphene sheets. The cellulose and oxygen 

functional groups in N-GQDs and graphene sheets gave rise to the O 1s peak. 

 

 
Fig. 3. XPS spectrum of N-GQDs/graphene/cellulose 

 

The morphology of the N-GQDs/G/C composite paper was characterized by SEM 

(Fig. 4a, b, and c) and TEM (Fig. 4d through h). In the SEM images of N-GQDs/G 

composites, graphene sheets appeared as thin layers that covered the paper fibers, and the 

N-GQDs nanoparticles were deposited on the graphene sheets. 

TEM images of graphene sheets demonstrated an amorphous lamellar structure (Fig. 

4d). N-GQDs nanoparticles were dispersed well on the surface of graphene sheets, and they 

were quasi-spheres with an average size of less than 10 nm (Fig. 4f and 4g). The N-GQDs 

loaded on the graphene sheets might reduce the formation of a multilayer structure of the 

majority of graphene sheets like undoped graphene (Fig. 4e). The typical HRTEM image 

of N-GQDs indicated clearly that the lattice spacing of crystallinity was about 0.2 nm (Fig. 

4h). This result agreed with previous reports (Dey et al. 2014; Yin et al. 2016). 

To explore the optical properties of N-GQDs/G/C composite paper, the ultraviolet 

absorption spectrum was obtained with a UV spectrophotometry. As shown in Fig. 5a, 

there were two absorption regions in the ranges of 200 nm to 300 nm and 350 nm to 400 

nm. Absorption bands from 200 nm to 300 nm were due to the n-π* and π-π* transitions 

of C¼C and C¼O bonds. The absorption band at approximately 360 nm indicated the 

formation of excited defect surface states, which was induced by the N heteroatoms from 

composite paper. These results were consistent with the literature (Gong et al. 2015; Han 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bian et al. (2016). “Paper fluorescent composite,” BioResources 11(3), 6299-6308.  6304 

et al. 2015). Moreover, the absorption bond of composite paper at 360 nm had a red shifter 

from that of 340 nm in N-GQDs solution reported by other researchers (Lin et al. 2015; 

Yin et al. 2016). 

 
 

Fig. 4. (a through c) SEM images of N-GQDs/graphene/cellulose; (d through h) TEM images of 
N-GQDs/graphene  
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Fig. 5. (a) DRS UV-visible spectrum and (b) PL spectra of N-GQDs/graphene/cellulose 
 

The photoluminescence (PL) properties of the N-GQDs/G/C composite paper were 

investigated with excitation in the range of 300 nm to 375 nm. As shown in Fig. 5b, there 

was a strong fluorescence emission peak at approximately 475 nm. This PL behavior might 

represent the distribution of fluorescent N-GQDs/G on the surface of paper fibers. The 

fluorescence emission band had a barely noticeable shift when the excitation wavelength 

changed from 300 nm to 375 nm. The emission spectra of fluorescent carbon quantum dots 

is usually affected by the CQDs size and surface states (Han et al. 2015; Hu et al. 2015), 

which demonstrated that N-GQDs in the composite paper had both uniform size and 

surface activity. 

 

 
 

Fig. 6. CLSM images of blank filter paper in (a) bright field and(c) dark field; composite N-
GQDs/graphene/cellulose in (b) bright field and(d) dark field  

 

Moreover, the PL intensity of N-GQDs/G/C at 345 nm was much higher than that 

of the N-GQDs solution in previous reports (Dey et al. 2014; Shi et al. 2015). There are 

several possible reasons for this result. First, the N-GQDs have a high crystallinity, which 

reduces the non-radiative electron-hole recombination centers to give rise to the strongly 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bian et al. (2016). “Paper fluorescent composite,” BioResources 11(3), 6299-6308.  6306 

fluorescent C-dots. Secondly, energy transduction from graphene sheet to N-GQDs 

significantly enhances the PL intensity. Finally, the three-dimensional structure of filter 

paper fibers is an excellent substrate for the assembly N-GQDs and graphene, which 

creates the N-GQDs/G/C composite with a higher PL intensity. 

The CLSM images of blank filter paper and composite paper N-GQDs/G/C from 

the bright filed are shown in Fig. 6a and b. Three-dimensional net structure of the filter 

papers fibers was observed evidently. The N-GQDs/G/C composite paper exhibited intense 

blue fluorescence under dark field with an excitation wavelength of 405 nm (Fig. 6b), but 

the blank filter paper did not produce any fluorescence (Fig. 6d). This result indicated that 

the composite paper has potential applications in optoelectronic materials, fluorescent 

materials, etc. 

 

 

CONCLUSIONS 
 

1. An effective method was adopted for the preparation of N-GQDs/graphene/cellulose 

composite paper. Its structure and fluorescence properties were analyzed by XRD, XPS, 

SEM, TEM, UV, PL, and CLSM. 

2. The XRD and XPS results indicated the GO was reduced to N-GQDs and graphene 

sheets, and N-GQDs were deposited on these sheets. 

3. SEM and TEM revealed that N-GQDs were distributed uniformly on the graphene 

sheets, and the average diameter of N-GQDs was 10 nm. The three-dimensional 

structure of the composite paper was not damaged during processing. 

4. The optical properties of N-GQDs/G/C composite paper were measured by DRS UV, 

PL, and CLSM. The composite had strong absorption from 200 to 340 nm. Smooth PL 

spectra of composite paper showed fewer defects and higher fluorescence intensity. 

The paper-based composite exhibited intense blue fluorescence under dark field with 

an excitation wavelength of 405 nm. 
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