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In this study, Xylosma racemosum was selected as the raw material and 
its compressive strength was predicted through nondestructive methods. 
The test data consisted of 160 near-infrared (NIR) absorption spectra of 
the wood samples obtained using an NIR spectrometer, with the 
wavelength range of 900 to 1900 nm. The original absorption spectra were 
pre-processed with multiplicative scatter correction (MSC) and Savitzky-
Golay (SG) smoothing and divided into several intervals using the 
backward interval partial least squares (BiPLS) method. The optimal 
combination of intervals with the smallest root mean square error of cross 
validation (RMSECV) value was selected, and a genetic algorithm (GA) 
was used to select featured wavelengths. Finally, a partial least squares 
(PLS) regression model was established with the featured wavelengths. 
The BiPLS-GA-PLS model outperformed the other models, resulting in a 
high prediction correlation coefficient of 0.927 and a root mean square 
error rate of 4.06. Based on the results, it is feasible to accurately measure 
the compressive strength of wood processed by different methods using 
near-infrared spectroscopy. 
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INTRODUCTION 
 

 Wood is a very important construction material that requires a high degree of 

structural performance and reliability. Researchers have studied various properties of wood 

to determine the structural capacity of timber or lumber, i.e., defects, strips, density, 

moisture content, etc.  

 The compressive strength of wood plays an important role in the sorting degree of 

timber because it is related to the mechanical and technological properties of wood. It is 

important to inspect the compressive strength of wood correctly, rapidly, and simply. The 

determination of the compressive strength is accomplished using standardized methods that 

are time-consuming, destructive, and costly (Herizo et al. 2015). Furthermore, the 

repeatability of testing lacks consistency. To promote efficiency and complete usage, the 

application of nondestructive techniques may prove effective in predicting the compressive 

strength of wood. 

 Near-infrared (NIR) spectroscopy is an effective tool in wood research. It can be 

calibrated to predict various physical and chemical properties of wood (Satoru and Hikaru 

2015). For example, basic density (Santos et al. 2012), moisture content (Eom et al. 2013), 

drying stress level (Ken et al. 2013), wood color (Yang et al. 2012), surface roughness 

(Zhang et al. 2015), lignin (Rambo et al. 2016), cellulose (Li et al. 2015), hemicellulose 

(Li et al. 2015), and extractives (He et al. 2013) have been determined using NIR 
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spectroscopy. In addition, NIR spectroscopy has been used to classify wood species and 

their origins (Adepipe et al. 2008; Castillo et al. 2008). 

 To measure the compressive strength of wood, this study determined the effect of 

different pre-processing methods of the original NIR data on the regression model. 

Additionally, the results of the wavelength selection, using backward interval partial least 

squares and genetic algorithm, were investigated, and the predictive effects of the different 

regression models were compared. The main goal of this study is to develop calibrations 

for determining the compressive strength of wood using NIR spectroscopy and to evaluate 

the predictive ability of the calibrations.  

 

 

EXPERIMENTAL 
 

Sampling Preparation 
 Thirty green logs of Xylosma racemosum wood were collected from Chonghe 

Forest, Heilongjiang province, China. Twelve trees were collected, and disks measuring 5 

cm in thick compared to the length of the log were cut from each tree at a height of 1.3 m. 

After preprocessing, the discs were divided and cut into small samples with dimensions of 

20 mm x 20 mm x 20 mm. A total of 180 samples were prepared without defects or 

significant differences in color.  

Figure 1 shows the process of sample collection. The samples were randomly 

divided into two groups: 120 samples for the calibration set and 40 samples for the 

prediction set. 

 

Log Discs

20mm

20mm

20mm

Sample

Fig. 1. The process of samples collection 

 

NIR Spectra Measurements  
 The NIR spectra were acquired using an absorption peak mode with an ultra-

compact NIR fiber optic spectrometer (Insion Co., GmbH, Heilbronn, Germany) from 900 

to 1900 nm at 9 nm intervals. The spectrometer utilized two bifurcated fiber optic probes 

to scan the sample surface. The NIR spectra data were obtained from SPEC view 7.1 

software (Insion Co., GmbH, Heilbronn, Germany). The temperature and relative humidity 

were controlled at 22 °C and 50%, respectively. The whole process of NIR spectra 

measurements was carried out based on “Standard method for near infrared qualitative 

analysis of wood (LY/T 2053-2012)”. 

 Each facet exhibited different absorption peaks because the growth characteristics 

of timber differ. Thus, five spectra were collected from every facet, and 30 spectra from 

each sample were averaged to represent a pooled mean. The wavelength from 1000 to 1600 

nm contained the main information about the wood properties (Todorović et al. 2015). 
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Determination of Compressive Strength 
 In accordance with national standards, “Method of testing in compressive strength 

parallel to grain of wood (GB/T 1935-2009)”, all the samples were pressed along the grain 

at a uniform rate until they were destroyed (1.5 to 2 min per sample) to determine the 

compressive strength of wood. 
 
Pre-processing of NIR Spectra 
 After transforming the NIR spectral data into the absorption frequencies, the 

spectrum was pre-processed to eliminate high-frequency noise, baseline drift, light 

scattering, and other negative effects. Common pre-processing methods include 

normalization, smoothing, Fourier transform, etc. The multiplicative scatter correction 

(MSC) and the Savitzky-Golay (SG) smoothing methods were selected for pre-processing, 

and the results were compared. Multiplicative scatter correction reduces the influence of 

scattering particle size and uneven distribution from NIR spectroscopy, and SG smoothing 

eliminates the baseline drift and tilt noise. 

 

Data Analysis 
Backward interval partial least squares (BiPLS) 

 A BiPLS algorithm, developed by Nørgaard et al. (2000), was used to divide the 

spectrum into n smaller equidistant regions (sub-intervals), and displayed partial least 

squares (PLS) regression models to represent each sub-interval. Then, the root mean square 

error of cross validation (RMSECV) was calculated for each sub-interval. Thereafter, the 

algorithm reduced the sub-intervals (m) that exhibited the largest RMSECV. The result was 

an optimized PLS regression model and RMSECV for the n-m sub-intervals. This 

procedure was continued until only a few sub-intervals remained. When the RMSECV of 

the sub-intervals was minimal, the optimal combination interval was achieved. 

 

Genetic algorithm (GA) 

 A genetic algorithm simulates Darwin’s genetic selection and the natural 

elimination process of biological evolution. The GA method is an adaptive search inspired 

by the mechanics of natural genetics and natural selection, and it has been successfully 

applied to select variables in NIR spectroscopy for building a multivariate calibration 

model. The fitness of the model was calculated as the inverse of the RMSECV value, and 

the resulting model was applied to the validation set (Zou et al. 2010). 

 

Model Evaluation Standard 
 The quality of the models was assessed using several common statistical measures, 

which included the linear coefficient of determination (R2), the root mean square error of 

the calibration (RMSEC), and the root mean square error of the prediction (RMSEP). 

Selection of the final model was based on the predictability, following a procedure by 

Gierlinger et al. (2002). 

 

 

RESULTS AND DISCUSSION  
 

Wood Compressive Strength Determination 
 The compressive strength of the 160 wood samples ranged from 60.31 MPa to 

84.85 MPa. The samples were randomly divided into calibration sets and prediction sets. 
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The statistical characteristics of the compressive strength of the two sets are summarized 

in Table 1. 

 
Near-infrared Spectroscopy of Samples and Pre-Processing of Spectra 
 Figure 2 shows the NIR absorption of all of the samples from 906 to 1864 nm. To 

verify the superior capability of the calibration models, partial least squares regression 

(PLSR), multiple linear regression (MLR), and principal component regression (PCR) 

were used to interpret the relationship between the calibration set and the prediction set. 

Table 2 shows the prediction results based on different models and pre-processing methods. 

 

Table 1. Statistics of the Compressive Strength from the Calibration and 
Prediction Sets 

Samples 
Maximum 

(MPa) 
Minimum 

(MPa) 
Mean 
(MPa) 

Standard Deviation 
(MPa) 

Calibration set (n = 120) 84.47 60.31 71.68 7.51 

Prediction set (n = 40) 84.85 61.51 72.30 7.16 

n: number of wood samples 

 

   
 (a)                                                                      (b) 

Fig. 2. Original spectra of Xylosma racemosum in the (a) calibration sets and (b) prediction sets 
 

Table 2. Prediction Results of Wood Compressive Strength Based on Various 
Models and Pre-Processing Methods 

Pre-Processing method Unprocessed MSC SG MSC+SG 

PLSR 

RC
2 0.75 0.814 0.808 0.819 

SEC 4.692 4.352 4.41 4.227 

RP
2 0.667 0.805 0.817 0.824 

SEP 4.497 4.294 4.277 4.269 

MLR 

RC
2 0.709 0.728 0.847 0.877 

SEC 4.69 4.588 4.138 4.124 

RP
2 0.627 0.675 0.764 0.854 

SEP 4.707 4.508 4.38 4.275 

PCR 

RC
2 0.716 0.806 0.743 0.877 

SEC 4.991 4.266 4.279 4.141 

RP
2 0.739 0.817 0.803 0.827 

SEP 4.372 4.315 4.329 4.266 

PLSR: partial least squares; MLR: multiple linear regression; PCR: principal component 
regression; Rc

2: coefficient of determination of the calibration model; Rp
2: coefficient of 

determination of the prediction model; SEC: the root mean square error of calibration; SEP: the 
root mean square error of prediction; MSC: multiplicative scatter correction; SG: Savitzky-Golay 



 

PEER-REVIEWED ARTICLE                  bioresources.com 

 

 

Liang et al. (2016). “Nondestructive strength,” BioResources 11(3), 7205-7213.  7209 

For the prediction models, the spectra pre-processed with the combination of MSC 

and SG provided better results than those pre-processed with MSC, SG, or untreated. 

Figure 3 shows the wood spectra of samples pre-processed with the combination of MSC 

and SG. The spectra were smoother, and the noise and baseline drift were mostly 

eliminated. 
 

    
(a)                                                                        (b)  

Fig. 3. Spectra of wood samples pre-processed with a combination of MSC and SG:  
(a) calibration sets; (b) prediction sets 

 

Wavelength Selection  
Optimal spectra intervals selected by backward interval partial least squares (BiPLS) 

 After preprocessing with the combination of MSC and SG, BiPLS was applied to 

select optimal intervals from the spectra. One hundred and seventeen spectrum values were 

divided into 5 to 20 intervals. Table 3 shows the relationship between the number of 

wavelength variables selected by BiPLS and the number of intervals. 

 

Table 3. Optimal Spectra Intervals by BiPLS 

Number of Intervals Number of Selected Intervals RMSECV Variables 

5 3 4.3025 70 

6 4 4.3568 76 

7 4 4.1465 64 

8 4 4.3139 58 

9 4 4.2002 50 

10 5 4.1576 58 

11 5 4.1722 52 

12 6 4.5407 58 

13 8 4.5244 70 

14 8 4.3315 65 

15 7 4.4763 54 

16 8 4.5871 58 

17 9 4.5762 60 

18 9 4.3438 58 

19 9 4.3433 55 

 20 10 4.4350 58 

RMSECV: the root mean square error of cross validation 
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The smallest RMSECV occurred when the number of intervals was 7. The optimal 

combination of intervals, i.e., 2, 3, 4, and 6 corresponded to 1046.23 to 1177.66 nm, 

1185.88 to 1317.61 nm, 1325.85 to 1457.88 nm, and 1606.75 to 1739.37 nm, respectively, 

in the spectral regions shown in Fig. 4 (64 wavelengths total). 

 

 
Fig. 4. Spectral interval selection by BiPLS 

 

Feature wavelengths selected by genetic algorithm (GA) 

 After the optimal intervals were selected by BiPLS, GA was employed to select 8 

wavelengths (1259.95, 1268.18, 1276.42, 1284.65, 1317.61, 1325.85, 1424.85, and 1433.1 

nm), corresponding to the optimal points of the RMSECV curve in Fig. 5a. Figure 5b shows 

the selected wavelengths in the spectra by BiPLS-GA. 

 

  
 (a)                                                                      (b)                                                          

Fig. 5. (a) RMSECV curve based on different numbers of variables selected by GA; (b) the 
location of selected variables in the spectrum 

 

Table 4. Comparison of Models  

Models Selected Variables 
Calibration Set Prediction Set 
Rc RMSEC Rp RMSEP 

PLS 117 0.819 4.227 0.824 4.269 

iPLS 22 0.844 4.201 0.836 4.252 

biPLS 64 0.893 4.159 0.871 4.216 

GA-PLS 16 0.917 4.077 0.904 4.198 

BiPLS-GA-PLS 8 0.936 4.030 0.927 4.061 

Rc: coefficient of determination of the calibration model; Rp: coefficient of determination of the 
prediction model; SEC: the root mean square error of calibration; SEP: the root mean square 
error of prediction 
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Predictive Effects of the Model 
 The optimal wavelengths in the calibration sets were utilized to build the calibration 

models. The experiment compared the prediction effects of the five models: PLS, iPLS, 

BiPLS, GA-PLS, and BiPLS-GA-PLS (Table 4). The BiPLS-SPA-PLS model obtained the 

best prediction result. This model yielded the lowest RMSEP of 4.061 and the highest Rp 

of 0.927. The GA-PLS model was the next-best model, while the performance of the PLS 

model provided the worst fit. Figure 6 shows the relationship between the measured and 

the predicted compressive strengths of Xylosma racemosum with BiPLS-GA-PLS as the 

prediction model. 

 

   
(a)                                                                 (b)  

 

Fig. 6. Relationships between the measured and the predicted compressive strengths of Xylosma 
racemosum in the (a) calibration set and (b) prediction set 

 

 The BiPLS-GA-PLS model combined the advantages of BiPLS and GA. This 

model removed the noise and low information region, while retaining useful information 

and selecting the optimal intervals for calibrating the model. With high accuracy and good 

predictive ability, the BiPLS-GA-PLS model is robust and simple. 

 

 

CONCLUSIONS 
 

1. This study revealed the relationship between the near-infrared (NIR) spectrum and the 

compressive strength of wood. The near-infrared spectrum can be used to determine 

the compressive strength of wood.  

2. Compared with the prediction results from the other four models, BiPLS-GA-PLS was 

most capable of determining the compressive strength of wood. An NIR model for the 

compressive strength determination for multiple species of wood warrants future study. 
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