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A hydrogen peroxide (H2O2) solution was adapted for microwave 
pretreatment of microcrystalline cellulose, which can be further used for 
heavy metal adsorption. The H2O2 concentration, temperature, and 
retention time were the key factors affecting the microwave/hydrogen 
peroxide pretreatment process. A Box-Benhken design (BBD) with 
response surface methodology (RSM) was employed to design and 
optimize the microwave-hydrogen peroxide pretreatment process (H2O2 
pretreatment) of cellulose. After the H2O2 pretreatment, the crystallinity of 
cellulose decreased by 20% and the degree of polymerization (DP) 
decreased by up to 30%. The optimal conditions obtained by BBD were a 
H2O2 concentration of 8.37%, a temperature of 90 °C, and a retention time 
5.33 min. Under these conditions, a minimum DP of 91.74 was achieved. 
The results indicated that all three of the factors notably affected the 
reduction of cellulose polymerization degree and pronounced interactions 
existed among the response variables. The predictive model developed 
was able to optimize the pretreatment process for the reduction of 
cellulose polymerization degree, which could improve the cellulose 
modification reactivity. 
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INTRODUCTION 
 

Because of increasing concerns about energy consumption and environmental 

protection, cellulose is becoming a more commonly used renewable resource material. 

However, considerable hydrogen bonding in the intramolecular and intramolecular 

domains of the cellulose molecule and the complexity of the cellulose morphology 

and aggregate structures decrease its solubility with reagents; thus, cellulose exhibits 

low reactivity and poor uniformity during chemical reactions. A reduction in the 

crystallinity of cellulose must be achieved by various methods to improve the 

availability and accessibility of cellulose to reagents. There are several methods 

involving the physical and chemical pretreatment of cellulose (Zhao et al. 2006; 

Moharram and Mahmoud 2008; Peng et al. 2013). The most popular pretreatment 

incorporates physical and chemical methods, including microwave alkali treatment 

and ultrasonic alkali treatment (Khajavi et al. 2013; Peng et al. 2013; Ni et al. 2014, 

2015). However, these pretreatment methods require large quantities of alkali and a 

long processing duration of 12 to 16 h (Gurgel et al. 2008a,b; Hokkanen et al. 2013). 
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Presently, research is focusing on the development of a pretreatment method that 

combines a reduction in crystallinity with an improvement in process efficiency and 

environmental protection. 

Hydrogen peroxide (H2O2) is a type of chemical oxidant that is referred to as 

a green oxidant (Wang et al. 2009; Sheldon 2015). Some resistant materials can be 

oxidized using oxidation products containing only water and oxygen, which are 

compounds that result in minimal environmental damage (Menova and Cibulka 2012; 

Hartman et al. 2015). The standard oxidation reduction potential of H2O2 is 1.8 V, 

which increases to 2.8 V after treatment with additional reagents (potassium 

permanganate, hypochlorite, and chlorine dioxide), producing the hydroxyl radical, 

·OH. The hydroxyl radical has a strong oxidizing potential. Microwave pretreatment 

offers an alternative method to traditional heat-treatment, with the advantages of 

heating rapidly and minimal energy losses (Li and Xu 2013; Tyagi and Lo 2013; Ni 

et al. 2014). Similarly, microwave irradiation (with H2O2) is characteristically well-

distributed, efficient, and highly penetrable (Hou et al. 2008; Hashem et al. 2014). 

Accordingly, this method is recommended for improving sludge disintegration (Wang 

et al. 2009), the hydrolysis of cellulose (Ni et al. 2015), and the pretreatment of cotton 

fabrics (Hashem et al. 2014). However, microwave irradiation (with H2O2), as a 

pretreatment of cellulose to obtain a modified material, has yet to be fully investigated. 

Response surface methodology (RSM) is a useful tool based on statistical 

analysis that can be used to construct models and evaluate their influence on multiple 

factors and their interactions (Ya-Wei et al. 2015). Therefore, RSM has been 

employed in many studies as a powerful tool to explore the interactions among 

multiple factors. Predictive models, which are the most representative, have been used 

to analyze and optimize the operation parameters in many fields, including chemical 

(Adalarasan et al. 2015), medical (Chojnicka-Paszun and de Jongh 2014), and energy 

(Antonopoulou et al. 2012; Chen et al. 2012). This process could result in the 

development of desirable responses and reduce the number of experiments required. 

In comparison with the central composite design, the Box-Behnken design requires 

relatively few experiments and offers higher efficiency. The Box-Behnken design 

requires not all influencing factors to be at a high level at the same time and ensures 

that all the experimental conditions are within a safe operating area (Ragonese et al. 

2002; Kehoe and Stokes 2011). 

The present study investigated a pretreatment of cellulose using H2O2 and 

microwave irradiation. Response surface methodology was employed to determine 

the effect of the H2O2 concentration, temperature, and retention time on cellulose and 

to estimate the interactions among these factors. The RSM model contained 17 

response variables to construct the optimal pretreatment conditions. 

 

 

EXPERIMENTAL 
 
Materials  

Microcrystalline cellulose (Aladdin Inc., Shanghai, China), hydrogen peroxide 

(Chengdu Kelon Chemical Reagent Factory, Chengdu, China), and copper ethylene 

diamine solution (Paper Research Institute of China) were obtained for use in the 

study. A microwave accelerated reaction system (MARS6) was obtained from CEM 

Corp., North Carolina, USA. 
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Methods 
To explore the optimal value of the influencing factors, a single-factor 

experiment was employed to determine the initial scope (Table 1). The Box-Benhken 

design (BBD) method was used to explore the importance of temperature, H2O2 

concentration, and retention time on the cellulose polymerization degree. In theory, 

the decreasing trend of DP and crystallinity corresponding to the change of the 

pretreatment condition was consistent, and the decreasing trend of DP was more 

obvious. Therefore, the DP was selected as the response value. In comparison with 

the central composite design method, the BBD method requires fewer experimental 

parameters, which results in increased efficiency (de Almeida Borges et al. 2013). 

The other important reason for choosing BBD was that BBD avoids “the corner 

points”, meaning experiments were avoided for all factors at extreme low or high 

levels, which ensures the operation safety. A three-level, three-factorial Box-Benhken 

design (BBD) was programmed using Design-Expert 8.0.6 software (Statease Inc., 

Minneapolis, USA). The H2O2 concentration (X1), temperature (X2), and retention 

time (X3) were adjusted over a range of 6% to 12%, 80 to 100 °C, and 0 to 10 min, 

respectively, with corresponding optimal values of 9% (X1), 90 °C (X2), and 5 min 

(X3). The Xi represented the actual values of the three variables (X1, X2, and X3), 

according to the experimental design (Table 2). The parameters were standardized 

according to Eq. 1 (Li and Xu 2013), 
 

𝑥𝑖 =
𝑋𝑖−𝑋0

△𝑋𝑖
                 i = 1, 2, 3                                               (1) 

 

where Xi is the coded value of the independent variable, Xi is the actual value of the 

independent variable, X0 is the actual value of the independent variable at the center 

point, and ∆Xi is the step change of Xi corresponding to a unit variation of the 

dimensionless value. 

 

Table 1. Treatment Levels 

Variables 
Treatment Levels 

1 2 3 4 5 6 7 

H2O2 concentration (%) 
0 3 6 9 12 15 18 

Temperature (°C) 0 60 70 80 90 100 110 

Treatment time (min) 0 2 5 8 10 15 20 
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Table 2. Matrix of the Experimental Design  

Run 

Coded values Actual values  

H2O2  

(%) 
Temperature  

(°C) 
Time  
(min) 

H2O2 

 (%) 
Temperature  

(°C) 
Time  
(min) 

1 0 1 1 9 100 10 

2 0 0 0 9 90 5 

3 1 1 0 12 100 5 

4 0 -1 -1 9 80 0 

5 -1 0 -1 6 90 0 

6 1 0 1 12 90 10 

7 0 -1 1 9 80 10 

8 0 0 0 9 90 5 

9 1 -1 0 12 80 5 

10 -1 1 0 6 100 5 

11 0 0 0 9 90 5 

12 0 0 0 9 90 5 

13 -1 0 1 6 90 10 

14 1 0 -1 12 90 0 

15 -1 -1 0 6 80 5 

16 0 1 -1 9 100 0 

17 0 0 0 9 90 5 

 

Each response variable Y was assessed as a function of three, first-order effects 

(X1, X2, and X3), three interaction effects (X1*X2, X1*X3, and X2*X3), and three, second-

order effects (X1
2, X2

2, and X3
2), and can be described according to Eq. 2, 

 

Y = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏11𝑋1
2 + 𝑏22𝑋2

2 + 𝑏33𝑋3
2 + 𝑏12𝑋1𝑋2 +

𝑏13𝑋1𝑋3 + 𝑏23𝑋2𝑋3                                                                (2) 
 

where Y is the predicted response, b0 is the intercept coefficient, bi is the linear term, 

bii is the squared effects term, and bij is the interaction term. 

Data obtained from BBD for the optimization of the pretreatment conditions 

were used to generate regression coefficients for the second-order multiple regression 

models. Analysis of variance (ANOVA) was performed using Design-Expert 8.0.6 

software. The coefficient of variation and the statistical significance were used to 

assess the quality of the fit to the polynomial model equation. Regression coefficient 

significance was assessed using F- and t-test parameters. The optimum values of the 

selected variables were obtained by analyzing the contour plot of the response surface 

and then solving for the regression equation.  

A microwave reactor from the microwave accelerated reaction system was 

used for the cellulose pretreatment process. At full power, the microwave reactor 

delivered approximately 1800 W of microwave energy at a frequency of 2450 MHz 
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and was controlled by a microcomputer that monitored the operations. According to 

the experimental design, the pretreatment was performed in a digestion tank with 

H2O2 solution (solid-liquid ratio 1:20) and microcrystalline cellulose at 80 to 90 °C 

for 0 to 15 min. The microwave reactor was digitally programmed to control the 

experimental conditions, which included a detection system to measure real-time 

temperature and power. After the reaction was complete, the mixture was cooled, 

centrifuged, and dried to a constant weight in an oven. Lastly, the microcrystalline 

cellulose (MCC) was treated with alkali (Hokkanen et al. 2013). 

The degree of polymerization (DP) of the cellulose was determined according 

to the GB/T1548 (1989) (Halidan Manat et al. 2006) testing standard. The specific 

method to dissolve the cellulose in copper (Cu) ethylene diamine solvent involved 

mixing fully to obtain a certain concentration solution (0.5 g/L). The viscosity was 

determined using a Nordic standard viscometer (Beijing, China), and then the DP was 

calculated by Eq. 3, 
 

DP0.905 = 0.75[𝜂]                                                           (3) 
 

where [η] is the intrinsic viscosity. 

The crystallinity index (CrI) was determined by the diffracted intensity of Cu 

radiation (1.54 Å), using an X-ray diffractometer (X-ray double crystal powder 

diffractometer, Smart Lab, RIGAKU, Japan). The operating voltage and current were 

set at 40 kV and 30 mA, respectively. The diffracted intensity was measured at a scan 

rate of 8°/min for 2 h ranging from 10° to 50°, and the step size was 0.012°. Before 

the tests, the samples were dried to a constant weight at 50 °C. The CrI is an indicator 

of the amount of crystalline versus amorphous structures, calculated from the 

diffracted intensity data. This method assumes a two-phase structure (crystalline 

amorphous) and a line between the intensity minima to obtain an arbitrary background 

to the diffraction trace, thus separating an arbitrary crystalline phase from an arbitrary 

amorphous phase (Ju et al. 2015). The CrI was calculated using crystallinity analysis 

software MDI Jade 5(Materials Data Ltd, USA), according to Eq. 4 (Focher et al. 2001), 
 

   𝐶𝑟𝐼(%) =
𝐼𝐶

𝐼𝑇𝑜𝑡𝑎𝑙
 × 100%                                                    (4) 

    𝐼𝑇𝑜𝑡𝑎𝑙 =  𝐼𝐶 + 𝐼𝐵   
 

where Ic is the intensity of the diffraction from the crystalline region and IB is the 

intensity of the diffraction of the amorphous area. 

 

 

RESULTS AND DISCUSSION 
 
Quadratic Models for All Response Variables 

The model showed that the DP was a function of X1, X2, and X3. The 17 

variables were assessed using ANOVA second-order equations that incorporated the 

interactions between the three variables and the coefficients for each variable and 

fitted them to quadratic models. The ANOVA F-value described the significance of 

individual factors and their interactions, whereas the P-value illustrates the 

significance of the coefficient. The F-value of 1054 was large enough to signify that 

the model was significant.  There was a 0.01% chance that the highly significant F-

value could have occurred from noise. The original model from the Design-Expert 8 
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software, including the interaction terms, X1*X2, X1*X3, and X2*X3, indicated that the 

model terms were significant. In this case X1, X2, X3, X1*X2, X1*X3, X2*X3, X1
2, X2

2, 

X3
2 resulted in significance. Model parameters with a P-value less than 0.0500 indicate 

model terms are significant. Values greater than 0.1000 indicate the model terms are 

not significant.  If there are many insignificant model terms (not counting those 

required to support hierarchy), model reduction may improve your model. The 

ANOVA results are shown in Table 3. 

A ‘lack-of-fit F-value’ of 0.67 signified that the model was not significant, 

which was related to the error rate. According to the model, there was a 61% chance 

that the F-value size occurred from noise.   

The DP was predicted based on the results obtained from the simulation 

conducted and Eq. 2. The model in Table 3 was statistically significant. The sequence 

of influence of the three factors on the degree of polymerization was X1 > X2 > X3. 

Figure 1 illustrates that the error between the actual value and predicted value was 

minimal, and the actual value and predicted value on both sides was evenly dispersed 

diagonally, suggesting that the equation well-described the model. In addition, the 

regression coefficient was high (R2 = 0.99), indicating that the model successfully 

described the correlation relationship between the factors and the DP (Shukla et al. 

2014). Therefore, a quadratic model was chosen in accordance with the experimental 

results.  

Usually, if the coefficient of variation (CV) of a model is less than 10%, then 

the model has good repeatability. For the DP, the coefficient of variation was 0.41%, 

indicating that the model exhibited an excellent ability to predict the observed data. 

The adequate precision value (Table 3) was employed as a measure of the signal-to-

noise ratio. The precision value compares a range of predicted values at the design 

points to the average prediction error. A precision value of 88.497 indicated that an 

adequate signal was produced (a ratio > 4 is considered desirable) (Ahmadi et al. 

2005). Therefore, this model can be used to navigate the design space. The coefficients 

of the quadratic model were calculated using least-squared means, multiple linear 

regression analysis, and the model’s goodness-of-fit, and were evaluated according to 

the R2 coefficient. The value of square of the correlation coefficient (R2) was 0.99, 

shows that the quadratic model described the experimental result well. Because of the 

high R2 coefficient, the resulting quadratic model can be considered suitable for 

describing the relationship among H2O2 concentration (X1), temperature (X2), and 

retention time (X3). The validity of BBD was checked by predicted values versus 

actual values and Normal Plot of Residuals (Fig. 1)  

According to Eq. 2 and Table 3, Eq. 5 and Eq. 6 were produced. Eq. 5 was the final 

equation in terms of Coded Factors. Eq. 6 was the final equation in terms of actual factors. 

 

(5) 

 

      
                               (6) 

 

Equation 6 represents the actual factors in their original units. According to 

Eq. 3, the highest coefficient value resulted from the relationship between H2O2 

DP = 92.13 + 3.49𝑋1 − 1.22𝑋2 − 1.40𝑋3 − 2.67𝑋1𝑋2 + 3.90𝑋1𝑋3 + 1.49𝑋2𝑋3 + 8.83𝑋1
2

+ 13.47𝑋2
2 + 9.14𝑋3

2 

DP = 1225.80 − 9.79𝐻2𝑂2 − 23.72𝑇 − 8.75𝑡 − 0.09𝐻2𝑂2𝑇 + 0.26𝐻2𝑂2𝑡 + 0.03𝑇𝑡
+ 0.98𝐻2𝑂2

2 + 0.13𝑇2 + 0.37𝑡2 
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concentration and DP, indicating that DP was dependent upon the H2O2 concentration. 

Moreover, the values of b1 were positive, suggesting that the value of DP increased 

with increasing H2O2 concentration, while the opposite was true for X2 and X3. The 

value of b13 was greater than b12,23, indicating that the effects of the interaction 

between X1 and X3 was more pronounced. This was supported by the F-values obtained 

when the interaction between the variables was considered (Table 3). 

 

Table 3. ANOVA of the Surface Quadratic Model of the Degree of Polymerization 

Source 
Sum of 
squares 

df 
Mean 
square 

F-value P-value 

Model 1813.05 9 201.45 1054.32 <0.0001 

X1 97.23 1 97.23 508.88 <0.0001 

X2 11.88 1 11.88 62.19 <0.0001 

X3 1.26 1 1.26 6.62 0.0369 

X1*X2 28.46 1 28.46 148.96 <0.0001 

X1*X3 61.00 1 61.00 319.23 <0.0001 

X2*X3 8.82 1 8.82 46.17 0.0003 

X12 327.97 1 327.97 1716.51 <0.0001 

X22 764.05 1 764.05 3998.76 <0.0001 

X32 352.00 1 352.00 1842.23 <0.0001 

Residual 1.34 7 0.19   

Lack-of-Fit 0.45 3 0.15 0.67 0.6130 

Pure error 0.89 4 0.22   

Corrected total 1814.39 16    

Standard 
deviation 

0.44   R2 0.99 

Mean 106.92   
Coefficient 
of variation 

(%) 
0.41 

Adequate 
precision 

88.497   PRESS 8.55 
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Fig. 1. Predicted values versus actual values for the polymerization degree (DP) (a); 
Normal Plot of Residuals for the polymerization degree (DP) (b). 

 

Pretreatment Condition Optimization 
The response surface plot and the contour map of DP are shown in Fig. 2. The 

DP of cellulose was dependent on X1, X2, and X3. In comparison to the density of the 

contour plot in Fig. 2, the H2O2 concentration and microwave processing temperature 

exhibited the greatest influence on the degree of polymerization.  This result was in 

agreement with the ANOVA results and the regression equation: the F-value of X1*X3 

was greater than X2*X3. According to Eq. 5, the linear programming function was used 

to obtain the best pretreatment conditions, which included an H2O2 concentration of 

8.37%, a temperature of 90 °C, and a retention time of 5.32 min. The minimum value 

of DP, obtained from these experimental conditions, was 91.74.  

 

 

Color points by 

value of DP 

R2=0.9953 

P-value < 0.0001 

F-value= 1054.32 

 
 

(b) 

(a) 
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Fig. 2. Three-dimensional response surface plots for the degree of polymerization:  
A) H2O2 concentration and temperature; B) H2O2 concentration and retention time; and  
C) temperature and retention time 
 

Cellulose Crystallinity  
Crystallinity values pre- and post-treatment are listed in Fig. 3 and Table 4. 

Cellulose peaks, including cellulose I and cellulose II, appeared at different peak 
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positions. The peaks of cellulose I were located at approximately 22.6°, 16.2°, and 

22.6°. The peak at 16.2° was very close to the peak at 14.8°, forming a relatively wide 

diffraction peak. Meanwhile, the peaks of cellulose II were located at approximately 

12°, 19.9°, and 21.7° (Nam et al. 2016). 

  

 

Table 4. Crystallinity (CrI) of Untreated and Microwave-Hydrogen Peroxide-
Pretreated Cellulose 

Sample Crl 
(%) 

Peak 
(°) 

Untreated 
70.31 16.2, 14.8, 19.8, 22.8 

Microwave-H2O2  
56.07 15.9, 14.0, 22.8 
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Fig. 3. X-ray diffraction patterns of A) untreated and B) microwave-hydrogen peroxide-pretreated 
cellulose  
 

The characteristic peaks of the untreated microcrystalline cellulose were 

located at 2θ = 14.7°, 16.8°, 22.8°, and 34.7°. The diffractogram revealed a relatively 

ordered structure, with a narrow peak at 22.8° and a diffuse peak between 14.8° and 

16.2°. The sharper diffraction peak at 22.8° indicates a region of higher crystallinity. 

Linear cellulose molecules are linked laterally by hydrogen bonds to form linear 

bundles, giving rise to a crystalline structure. Individual fibrillary units consist of long 

periods of ordered crystalline regions interrupted by disordered amorphous regions. 

The pretreatment of cellulose causes a rearrangement of the crystal packing of chains 

from native cellulose I (chains aligned in parallel) to cellulose II (anti-parallel 

arrangement). This change is irreversible and is normally accompanied by a decrease 

in crystallinity. The microwave-hydrogen peroxide pretreatment loosened the 

hydrogen bonding within the fiber bundles, causing the microfibers to move apart. 

After the pretreatment process, the crystallinity of cellulose decreased 20%, resulting 

from the activation of cellulose and the increase in accessibility of the fiber. 

A) 

B) 
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Degree of Polymerization of Cellulose  
The results obtained in this study are listed in Table 5. The degree of 

polymerization for cellulose was determined by the Cu ethylene diamine solution 

viscosity method after the pretreatment process of cellulose. After processing, the 

degree of polymerization for cellulose declined, especially for the optimal value group 

(Runs 2, 8, 11, 12, and 17), by up to 30% (degree of polymerization for untreated 

microcrystalline cellulose was 132.6), which was similar to the effect of alkali 

pretreatment (NaOH 20 wt. %) with ultrasound for 12 to 16 h. The decrease of 

cellulose DP was mainly due to the oxidation of hydroxyl free radical. Hydroxyl free 

radical produced by the decomposition of hydrogen peroxide could cut off the long 

chain of cellulose and then reduce the DP. Low concentration (H2O2) and temperature 

were of no advantage to the reaction. High concentration would produce excess H2O2, 
and high temperature can achieve the response quickly though not completely. In a 

microwave frequency alternating electromagnetic field, the chance of cellulose 

hydrogen bond fracture was increased with the increasing of collision frequency 

between the molecules. However, with the extension of reaction time, a lot of heat 

would be generated within the molecules as a result of microwave heating. Then the 

hydrogen bonds which have been broken could form again, and thus the results 

backfire. Therefore, identifying the tendency of the decrease of DP and optimizing of 

experimental conditions were necessary. 

 

Table 5. Degree of Polymerization (DP) of Pretreated Cellulose 

Run DP 
Removal rate 

 (%) 

1 114.28 13.8 

2 92.95 29.9 

3 114.14 13.9 

4 118.17 10.9 

5 110.7 16.5 

6 117.3 11.5 

7 114.07 13.9 

8 91.76 30.8 

9 121.59 8.3 

10 112.59 15.1 

11 91.93 30.7 

12 91.95 30.7 

13 102.43 22.8 

14 109.95 17.1 

15 109.37 16.8 

16 112.44 15.2 

17 92.04 30.6 
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CONCLUSIONS  
 

1. A quadratic model was established, according to RSM, based on the best fit to the 

experimental data. The model yielded a high coefficient of determination, 

indicating that the model was capable of predicting an optimized treatment 

process. 

2. The effects of the three factors on the degree of polymerization for microwave-

hydrogen peroxide pretreated cellulose were X1 > X2 > X3, and the optimal 

conditions obtained by BBD were an H2O2 concentration of 8.37%, a temperature 

of 90 °C, and a retention time of 5.33 min. The crystallinity and DP values 

decreased by 20% and up to 30%, respectively.  

3. In comparison with the alkali pretreatment, the microwave-hydrogen peroxide 

pretreatment obtained a similar effect. The optimal conditions required a shorter 

treatment time (5 min) and a lower reagent dosage (8.37%).  
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