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Oriented strandboards (OSB) having various properties were constructed 
by varying processing parameters including strand thickness, strand 
length, and panel density. A calculation method was developed for 
analyzing the fractal dimension of void size (FDVS) on the cross-section 
of OSB samples based on a computer image processing technique and 
the fractal geometry theory. The results showed that The FDVS on the 
cross-section of OSB varied with different processing parameters. The 
FDVS decreased with strand thickness and increased with panel density, 
whereas the FDVS irregularly changed with strand length. Especially for 
panels with the same overall porosity, the FDVS was dependent on the 
internal structure. Therefore, the FDVS could be a useful additional 
parameter for characterizing the internal structure of OSB.  
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INTRODUCTION 
 

Oriented strandboard (OSB) products are manufactured from wood strands with 

relatively small quantities of thermal-setting adhesive. Because of the nature of the mat-

forming process, many voids are present in the cross-section of OSB. Previous studies 

indicate that the knowledge about void characteristics is useful for optimizing the 

manufacturing process and improving the final properties of the wood-strand composites 

(Suchsland and Xu 1989; Kamke and Wolcott 1991; Dai and Steiner 1993; Lang and 

Wolcott 1995; Zombori et al. 2003; Li et al. 2009). Most studies in this field has dealt with 

composite porosity only. The void structure of the porous materials can be significantly 

different even at the same overall porosity level, which can result in great deviations in 

heat and mass transfer during hot pressing, and, as a consequence, the performance 

properties of the final products (e.g., strength and modulus) can also be very different. 

Therefore, in addition to the overall porosity, new void characterization techniques are 

needed, which could contribute to the development of more realistic analytical models for 

OSB manufacturing.  

Fractal theory is a non-Euclidean geometry theory that describes the irregularity 

and self-similarity in nature (Mandelbrot et al. 1984). By investigating the irregular shape 

and self-similarity of a natural object, the definition of space dimension can be extended. 

The so-called fractal dimension explains the randomness and self-similarity of fractal 

geometrical objects (Mandelbrot 1982). For materials with complex and irregular porous 

structure, the fractal theory provides an appropriate mathematical tool to study the 

relationship between void and density, on the one hand, and material performance (e.g., 
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modulus and strength), on the other. Therefore, fractal geometry has been widely applied 

to study the internal structure morphology of a great variety of porous materials, including 

soil (Bird and Perrier 2003), concrete (Diamond 1999), and porous silica (Yamaguchi et 

al. 2008). In fractal theory, the Sierpinski carpet (Winslow 1985; Barnsley 1988; Li et al. 

2013) can be applied to simulate the void structure.  

The objective of this study was to develop a calculation method for analyzing the 

fractal dimension of void size (FDVS) on the cross-section of OSB, based on a computer 

image processing technique. The effect of OSB processing parameters on the fractal 

dimension of void size is presented and discussed. 

 

 
EXPERIMENTAL 
 

OSB Manufacturing Parameters 
 The following parameters were the same for all panels in the panel manufacturing 

process. Panel dimensions were 600 × 600 × 11 mm (length × width × thickness), with a 

random strand orientation and 6% to 8% moisture content. Aspen strands were 

manufactured in the laboratory with a width of 30 mm, a density of 400 kg m-3, and 4% 

MDI resin. The pressing temperature was 210 °C for 3 min. Each group (from 1 to 12) of 

panels was tested with three repetitions. Three key variables were chosen for this study: 

strand thickness, strand length, and panel density. The variables were changed in the ranges 

as summarized in Table 1. 

 

Table 1. Processing Conditions 

Variable  Group # Strand thickness (mm) × length (mm) Panel density (kg.m-3) 

Strand 
Thickness 

Group 1 
Group 2 
Group 3 
Group 4 

0.4×125 
0.7×125 
1.0×125 
1.3×125 

640 
640 
640 
640 

Strand 
Length 

Group 5 
Group 6 
Group 7 
Group 2 
Group 8 

0.7×50 
0.7×75 

0.7×100 
0.7×125 
0.7×150 

640 
640 
640 
640 
640 

Panel 
Density 

Group 9 
Group 10 
Group 11 
Group 2 
Group 12 

0.7×125 
0.7×125 
0.7×125 
0.7×125 
0.7×125 

400 
480 
560 
640 
720 

 

Detecting Panel Voids using Image Processing 
 OSB panels were cut into 50 × 50 mm2 samples with very flat, clear edges. Every 

panel condition (group) had three repetitions. Each repetition had one set of eight 50 × 50 

mm2 samples for imaging and analyzing, i.e., 32 (4 × 8) edges for void measurements per 

panel condition. Thus, every panel condition (group) had 96 (32 ×3) edges (50 mm × 

11mm) for void measurements.  
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The measurements involved two steps: 

digital photo imaging and image analysis. 

Images of the panel edges were digitally 

photographed using a high resolution CCD 

digital camera (Sony DSC-S70, Sony Inc. 

Japan). An image from the camera provided a 

precision level of 80 μm per pixel. The images 

were in digital RGB (2048 × 1536 × 8 bit) 

format. The images were then analyzed using 

the MATLAB software (MathWorks Inc., 

Natick, MA) image processing toolbox. All 

programs were written in the M-file format 

using MATLAB syntax. The major program 

steps included reading an image, identifying the 

voids, and characterizing the voids.  Figure 1 

shows the method of detecting panel voids. To 

visualize the voids, an original image (Fig. 1a) 

was first loaded to the MATLAB workspace 

using the imread function. The MATLAB 

software encoded the digital data into an array 

(two-dimensional array for a grayscale image). 

A complement of the image was conducted 

using the imcomplement function. In the output 

image, dark areas become lighter and light areas 

become darker. This step ensured that the 

pixels’ values for the voids were higher than 

those of the background, as illustrated in Fig. 1b. 

The complemented image was thresholded into 

a binary image, with the im2bw function at a 

level specified by the graythresh function. Tiny 

voids were then erased using the thestrel 

function, as shown in Fig. 1c. The obtained 

image was finally used to analyze the properties 

of the voids using the regionprops function, which included the area and porosity (the ratio 

of total void areas to the panel cross-section area) and this data was converted into a 

structured array (Li et al. 2007).  
 

FDVS Calculation Method 
The FDVS of OSB samples was determined based on the fractal geometry theory 

and previous void structure research on other porous materials. The “Sierpinski carpet 

model” (Winslow 1985; Barnsley 1988) was applied to simulate the fractal void size on 

cross-sections of OSB. Figure 2 shows the Sierpinski carpet approach. A square with side 

lengths equal to 1 was used as the initial element. Each side of the square was divided into 

a number of m equal parts (Fig. 2a). Thus, the initial square was divided into a number of 

small squares with an area of m2. A number of n small squares, with a side length equal to 

1/m, were then randomly selected and removed from the initial square (Fig. 2b). The 

remaining number of small squares is equaled to m2-n. The same operation was continued 

with the remaining small squares. As a result, the squares became smaller in size, while the 

Fig. 1. Processed image analysis 
procedure: (a) original image showing a 
typical cross-section photo of a set of 
eight 11×50×50 mm3 OSB samples; (b) 
complemented image; (c) image used to 
analyze the properties of the voids 
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quantity of squares increased (Fig. 2c, d). The black part of the graph represents the entity, 

while the white part of the graph represents the void. Figure 2, parts e, f, and g can be 

drawn using the same approach but different parameters (m and n). Especially, both 

Sierpinski carpet models Fig. 2b and 2f exhibit the same porosity; however, their void 

structures are different. The maximum void size in Fig. 2b and c was greater than that of 

Fig. 2f and g.  

The FDVS (D) of Sierpinski carpet model is defined in Eq.1, 

 

𝐷 =
𝐿𝑛(𝑚2 − 𝑛)

𝐿𝑛(
1

 𝑠
)

= −
2𝐿𝑛(𝑚2 − 𝑛)

𝐿𝑛(𝑠)
 

     (1) 

where s is the area of minimum void.  

 

 
Fig. 2. Formation of the Sierpinski carpet: (a) each side represents a number of m (m = 3) equal 
parts; (b) a number n (n = 1) of small squares were removed; (c) the same operation was 
continued based on (b); (d) the same operation is continued based on (c); (e) each side 
represents a number of m (m = 9) equal parts; (f) a number n (n = 9) of small squares were 
removed; and (g) the same operation was continued based on (f) 

 

The FDVS (D) as represented in Fig. 2b, c, and d, is shown in Eq. 2: 

 

    (2)  

 

The void data in Fig. 2a, b, c, and d are shown in Table 2. According to Table 2, a 

characteristics graph of the Sierpinski carpet (m=3, n=1) can be drawn, as shown in Fig. 3. 

Figure 3a demonstrates that smaller size voids have a higher quantity. Figure 3b shows the 

linear relationship between the logarithm of void area and logarithm of void quantity. In 

Fig. 3b, the slope of the linear regression was 0.946. According to the fractal theory, the 

FDVS of this Sierpinski carpet was 1.892 (0.946×2). Using the same calculation method, 

when m and n of the Sierpinski carpet model are equal to 9, as shown in Fig. 2f and 2g, the 
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FDVS is equal to 1.934. Obviously, two kinds of Sierpinski carpet models (Fig. 2b and Fig. 

2f) have a same porosity but different FDVS. Smaller void size can result in greater FDVS. 

And if the quantity of voids is zero (n =0), the fractal dimension of equaled 2. 

 

Table 2. Parameters of the Sierpinski Carpet  

Void type Area (s) Side length  (r) Quantity (Ns) 

1 1/9 1/3 1 

2 1/81 1/9 8 

3 1/729 1/27 64 

4 1/6561 1/81 512 

… … … … 

 

 

 
Fig. 3. Characteristics graph of Sierpinski carpet model: (a) curve fitting between void type (area) 
and the quantity of voids; (b) natural logarithm relationship between the void area and the quantity 

 

 
RESULTS AND DISCUSSION 
 
FDVS Calculation of Panel Sample 

According to the calculation method for the FDVS in the Sierpinski carpet and the 

data from the image analysis, the void characteristic graphs of the panel sample cross-

section for every group can be drawn (Fig. 4 shows such graphs). 

A program was written to automatically calculate the quantity of the voids under 

different area ranges. Figure 4a demonstrates that a smaller area void can cover a larger 

quantity. Figure 4b shows that the linear relationship between the logarithm of void area, 

the logarithm of void quantity, and the slope of the linear regression was 0.918. According 

to the Sierpinski carpet model, the FDVS was 1.836 (0.918×2). Compared with the exact 

fractal of the Sierpinski carpet, the void size of the panel cross-section was approximately 

fractal. The fractal dimension can be used to characterize the structure of the cross-section. 

The data obtained by this method are plotted in Figs. 5, 6, 7, and 8. 
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Fig. 4. One of the void characteristics graphs of panel sample cross-section: (a) relationship 
between the void type and the quantity; (b) relationship between the void size and the quantity 
(slope = 0.918) 
 

Relationship between Processing Parameters and FDVS 
Figure 5 shows that at a given panel density and strand length, the FDVS decreased 

and the porosity increased with increasing strand thickness. Thicker strands lead to less 

uniformity in mat formation and more difficulty in mat consolidation; therefore, the 

porosity increased with increasing strand thickness. Higher porosity lead to lower FDVS.  

 
Fig. 5. Dependency of FDVS and porosities on strand thickness (strand length 125 mm; panel 
density 640 kg.m-3) 

 
Fig. 6. Dependency of FDVS and porosities on strand length (strand thickness 0.7 mm; panel 
density is 640 kg.m-3)  
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Figure 6 demonstrates that the difference in strand length (50 mm to 150 mm) has 

little impact on the porosity in contrast to the strand thickness (Fig. 5). In general, longer 

strand lengths result in slightly lower porosity (Li et al. 2009); however, the porosity is 

nearly the same. The data revealed an irregular relationship between the FDVS and the 

strand length. As the strand lengths increased from approximately 50 mm to 150 mm, the 

FDVS increased first before decreasing and then increased again. The lower FDVS appear 

to be at the strand lengths of 50 and 100 mm. The fractal theory could be used for 

explaining the reason of this phenomenon. As shown in Fig. 2b and f, both Sierpinski carpet 

models exhibit the same porosity, however, the FDVS are different. The maximum void 

size in Fig. 7b was greater than that of Fig. 7f. Accordingly, different strand lengths can 

lead to various internal void structures of the wood-strand composites. The internal void 

structures not only affect the porosity of the panel, but they also affect the distribution of 

void sizes. When OSB panels have different internal void structures at the same porosity 

level, greater FDVS values are represented for a smaller maximum void size and for more 

voids in the panels. 

Figure 7 shows that the porosity decreased and the FDVS increased with an increase 

in the panel density. Understandably, higher density panels should have a lower porosity 

and a higher fractal dimension of the void size. The effect of panel density was more 

obvious than that of the strand length and width.  

 
Fig. 7. Dependency of FDVS and porosities on panel density (strand thickness 0.7 mm; strand 
length 125 mm) 
 

CONCLUSIONS 
 

1. A combination of image processing techniques and the fractal theory contributed to the 

void structure characterization on the cross-section of OSB.  

2. The FDVS varied with different processing parameters. The FDVS decreased with 

strand thickness and increased with panel density, whereas the FDVS irregularly 

changed with strand length.  

3. At same overall porosity level, the FDVS was dependent on the internal void structure. 

The FDVS was useful for describing structural differences in OSB, especially for 

panels with the same overall porosity, but different void structures.  

4. The method for analyzing FDVS can be used for modeling fractal heat and mass 

transfer, resulting in more realistic data. 
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