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Barley straw is a lignocellulosic biomass that can be used to obtain 
value-added products for industrial applications. Barley straw hydrolysis 
with sodium sulfite facilitates the production of lignosulfonates. In this 
work, the delignification process of barley straw by solubilizing lignin 
through sulfite method was studied. Response surface methodology and 
artificial neural network were used to develop predictive models for 
simulation and optimization of delignification process of barley straw. The 
influence of parameters over sulfite concentration (1.0 to 10.0%), particle 
size (8 to 20), and reaction time (30 to 90 min) on total percentage of 
solubilized material was investigated through a three level three factor 
(33) full factorial central composite design with the help of Matlab® ver. 
8.1. The results show that particle size and sulfite concentration have the 
most significant effect on delignification process. Both techniques, 
response surface methodology and artificial neural networks, predicted 
the lignosulfonate yield adequately, although the artificial neural network 
technique produced a better fit (R2 = 0.9825) against the response 
surface methodology (R2 = 0.9290). Based on these findings, this study 
can be used as a guide to forecast the potential production of 
lignosulfonates from barley straw using different experimental conditions. 
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INTRODUCTION 
 

 Lignocellulosic biomass is a main element in producing environmentally friendly 

raw materials (Zhu et al. 2013). Because of its high production volume and low use, 

biomass from agricultural waste, such as barley straw, is a good alternative as a 

carbohydrate source. Barley (Hordeum vulgare) is the second most important crop among 

the secondary cereals. Its annual global production is 180 million tons, and each kilogram 

of grain results in about 0.750 kg of straw (Singh et al. 2014). Barley straw has low 

nutritional value and is usually used as bedding for livestock. The straw is considered a 

waste, and pollution problems can result due to careless disposal.  
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The effective use of these residues as source of chemical compounds requires the 

separation of cellulose, hemicellulose, and lignin (Kahar et al. 2013) via physical 

(Iskalieva et al. 2012; Subhedar and Gogate 2014), chemical (Yan et al. 2010; Duque et 

al. 2013), and biological treatments (El-Zawawy et al. 2011; Wang et al. 2011). The 

removal of lignin of plant waste is perhaps the most difficult process. An alternative to 

remove lignin from plant biomass is used sulfite (SO3)
2-, through the use of sodium, 

potassium, and calcium sulfite solutions (Meier et al. 1994; Chakrabarty et al. 2009). An 

advantage of this process is the production of soluble lignin (lignosulfonate) which has 

several industrial applications. The various functional groups of lignin provide many 

potential uses: dispersing agents in cement and plaster (Stráněl and Sebök 1997); 

emulsifiers and chelant (Weis and Bird 2001); polymer production (Effendi et al. 2008); 

soil conditioners (Deng et al. 2011); and vegetal growth promoters (Ertani et al. 2011). 

The use of sulfite for the removal of lignin in wood was a process widely used in the 

industry of paper pulp and had not been used for delignification of barley straw.  

So far, it is unclear which are the most important variables to consider during a 

process of separation of the components of barley straw. Solubilization of lignin requires 

high temperatures and pressures to disarticulate and disaggregate cellulosic matter fibers. 

The particle size of barley straw biomass should provide the greatest amount of possible 

contact surface for reactions with all available material. Sulfite concentration must be 

high enough to completely saturate the material and remain in contact with it for enough 

time to attain suitably high delignification. These parameters have been studied in other 

chemical processes, using reagents such as sodium hydroxide, sodium chlorite (Rossberg 

et al. 2014), hydrogen peroxide (Sheikh et al. 2014), and formic/acetic acid (Vanderghem 

et al. 2012), demonstrating their influence on the hydrolysis of lignocellulosic raw. In this 

work, the process to obtain lignosulfonates and the interactions between the variables 

(particle size, sulfite concentration, and reaction time) were modeled. This will allow a 

better understanding of the possible interactions between the variables studied during the 

delignification of barley straw. 

Currently, there are well-known adjustment data methodologies for modeling 

industrial processes. They predict how behaviors are caused by interactions between 

variables, which are analyzed with a small number of experiments. Response surface 

methodology (RSM) is extremely effective at exploring the relationship between 

controllable factors and response variables for the purpose of modeling experimental 

laboratory results (Box and Wilson 1951). In RSM, a mathematical model η = 

F(x1,x2,…,xn) is developed to explain the real function, where  x1, x2, …, xn are factors 

influencing the response variable value (η) (Montgomery 2001). Another alternative is 

the artificial neural network (ANN), a computational technique for multifactorial analysis 

inspired by biological neural networks. An ANN consists of nodes distributed in layers 

interconnected by arcs assigned with certain weights. These nodes represent artificial 

neurons, which are processing units that execute a non-linear sum function (Dayhoff and 

DeLeo 2001). 

 In the present study the effects of combinations of variables as particle size, 

sulfite concentration, and reaction time are modeled using RSM and ANNs to determine 

relationships between the experimental variables in lignosulfonate solubilization. This is 

the first report comparing RSM and ANNs in delignification process modeling. 
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EXPERIMENTAL 
 

Raw Material 
 The lignocellulosic material used in this study was barley straw harvested in 

Zempoala, Hidalgo, Mexico. The biomass was milled and sieved through three meshes: 

mesh number 8 [2.0 mm]; mesh number 12 [1.68 mm]; and mesh number 20 [0.84 mm]. 

Chemical hydrolysis was performed in a semi-industrial autoclave (AV-3580 Prendo®, 

SEV, Puebla, México), which was modified to reach 3 atm of pressure; sodium sulfite 

(Reproquifin®, Sigma-Aldrich, St. Louis, MO, USA) was applied in 450-mL glass 

screw-top flasks. 

Characterization of barley straw was performed taking into account the Technical 

Association of the Pulp and Paper Industry (TAPPI) Standard (www.tappi.org). The 

measured components in barley straw were as follows: removable in solvent, removable 

in water, holocellulose, ashes and lignin. And their percentages were 3.5 % ± 0.43,11.2 % 

± 0.37, 56.3 % ± 1.45, 10.34 % ± 0.12 y 19.2 % ± 0.05, respectively. 18.2% of lignin was 

not soluble in acid and 1% was found as soluble lignin in acid. The moisture content of 

the straw was 5.6%. 

 

Experimental Method 
 Three samples (2 g) of ground straw from each particle size (mesh number 8, 12, 

and 20) were weighed and mixed with a 50 mL of sodium sulfite solution for each 

concentration (1, 5, and 10%). The digestion process was conducted in a closed system 

inside glass flasks, which were heated in an autoclave at 3 atm and 137 °C for 30-, 60-, 

and 90-min intervals to produce a cellulose pulp and solubilized material or liquor 

(Teschke and Demers 1996). The latter contained lignosulfonates, which were recovered 

in a vacuum with 1.6-µm pore filter paper. Range values for each parameter were chosen 

according to personal experience in previous experimental results. Finally, the solubilized 

material was quantified by weight difference (Ekeberg et al. 2006). The performance of 

solubilized material (Psol) is calculated with Eq. 1,  
 

      (1) 
 

where DWs is the initial dry weight, DWf: is the final dry weight, A: are the residual ash 

content, and W is the sample without sulfite (only water). 

 

Data Fitting Techniques  
Response surface methodology 

 A three-level three factor (33) complete factorial design (CCD) was used to 

identify the relationship between the solubilized material (%) and process variables 

(particle size, heating time, and sulfite concentration). Hence, a total of 27 experiments 

were carried out in triplicate and the results were modeled by using RSM. Experimental 

values for the selected variables (with their units and notations) are presented in Table 1, 

and the corresponding CCD matrix is shown in Table 2. The data were fitted using the 

rstool command in the statistical toolbox of Matlab® ver. 8.1 (MathWorks®, Natick, 

MA, United States). The response variable Psol (total percentage of solubilized material) 

is expressed as a formula that depends on the values of the factors influencing the 

process. The resulting formula is based on the response surface quadratic model (Eq. 2), 
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𝑃𝑠𝑜𝑙(%) =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗
𝑗−1
𝑖=1 𝑥𝑖𝑥𝑗 +𝑘

𝑗=2 ∑ 𝛽𝑖𝑖𝑥
2𝑘

𝑖=1 + 𝑒𝑘
𝑖=1    (2) 

where β0 is the equation constant, βi is the linear term coefficient, βij is the variable 

interaction term coefficient, βii corresponds to the quadratic coefficient, xi and xj are 

independent variables, and e denotes the noise or observed error in the response model. 

An analysis of variance (ANOVA) was used to validate the fitness of the 

developed response surface model and the statistical significance of the regression 

coefficients. The interaction among independent variables and response variables was 

analyzed using response surface contour graphs. 

 

Table 1.  Experimental Range and Levels of Independent Process Variables 

Variable Unit Notation Range and Levels (Coded) 

-1 0 +1 

Barley Straw Size  A 8 12 20 

Heating Time min B 30 60 90 

Concentration % C 1 5 10 

 

Table 2.  CCD for Three Independent Variables and the Observed Responses 

Experiment 
No. 

Coded Values Real Values Psol (%) 

A B C A B C 

1 +1 0 +1 20 60 10 20.17 

2 +1 -1 +1 20 30 10 19.86 

3 -1 -1 +1 8 30 10 19.86 

4 -1 0 +1 8 60 10 16.84 

5 -1 -1 -1 8 30 1 5.60 

6 -1 -1 0 8 30 5 12.32 

7 +1 -1 -1 20 30 1 7.71 

8 +1 -1 0 20 30 5 20.22 

9 -1 0 -1 8 60 1 2.76 

10 -1 0 0 8 60 5 18.75 

11 +1 0 -1 20 60 1 7.86 

12 +1 0 0 20 60 5 22.56 

13 -1 +1 -1 8 90 1 4.27 

14 -1 +1 0 8 90 5 11.26 

15 -1 +1 +1 8 90 10 10.07 

16 +1 +1 -1 20 90 1 11.56 

17 +1 +1 0 20 90 5 22.15 

18 +1 +1 +1 20 90 10 20.94 

19 0 -1 -1 12 30 1 6.86 

20 0 -1 0 12 30 5 17.63 

21 0 -1 +1 12 30 10 15.20 

22 0 0 -1 12 60 1 7.68 

23 0 0 0 12 60 5 20.49 

24 0 0 +1 12 60 10 19.66 

25 0 +1 -1 12 90 1 9.98 

26 0 +1 0 12 90 5 19.42 

27 0 +1 +1 12 90 10 17.68 
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Artificial neural network 

 An ANN was developed to replicate the effects of interactions among the three 

quantified factors (particle size, heating time, and sulfite concentration) on the 

solubilization of lignosulfonate. The ANN input layer was composed of three neurons 

representing the three independent process variables. The output layer contained a single 

neuron representing the percentage of solubilized material as the process response, as in 

the RSM model. ANN data were analyzed using the ANN toolbox in Matlab® ver. 8.1. 

The Hyperbolic tangent sigmoid transfer function was used as activation function for 

every hidden layer, and the Linear transfer function was applied in the output layer. 

 

 

RESULTS AND DISCUSSION 
 

Experimental Results 
 Different Na2SO3 concentrations, heating times, and particles sizes during barley 

straw delignification resulted in different yields of solubilized material (Table 2). The 

minimum percentage obtained was 2.76% (experiment no. 9), and the maximum was 

22.56% (experiment no. 12), which showed the influence of the independent variables on 

the response variable. 

 

Response Surface Methodology 
 The RSM model was developed using a quadratic model with three axes for the 

process variables, where x is particle size, y is heating time, and z is sulfite concentration. 

Using a 99% confidence level, the following quadratic equation, in terms of actual 

variables, was calculated,  

Psol(x, y, z) = -20.3164 + 2.3312 x +  0.2032 y + 4.5859 z +  3.7856 ×
10-3 xy + 2.7021 × 10-2 xz -1.4610 × 10-3 yz -7.6452 × 10-2x2 -1.8724 ×
10-3 y2 -0.3445 z2           (3) 

where Psol(x,y,z) indicates the percentage of solubilized material. 

ANOVA of the response surface quadratic model showed the influence of the 

three independent variables (x, y, z) on the response variable Psol (Table 3), taking into 

account a Fisher’s F value (24.717) and a very low probability value (p < 0.0001). The 

correlation coefficient (R2) between the experimental data and those predicted by the 

response surface model was 0.9290, indicating that the experimental data were 

adequately adjusted (Fig. 1 A). The ANOVA analysis confirmed that the response surface 

model can be used to simulate solubilized material yield from barley straw because it 

produced values within the range of experimental values.  

A regression analysis of the model equation (Table 4) showed that the main 

effects of the variables particle size and concentration were significant (p < 0.05), but 

time and square interaction had no effect on the treatment. 

Three contour plots illustrated the interactions between the independent variables 

and their effects on the solubilized material. These graphs are three-dimensional 

representations of the response surface as a function of two independent variables, while 

the third variable is assigned a fixed value. The particle size 18, heating time 68 min and 

sulfite concentration 7% were selected as fixed values because their combination 

produces the maximum percentage of solubilized material.   The relationships between 
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heating time and sulfite concentration, sulfite concentration and particle size interaction, 

and particle size and heating time are presented in Fig. 1 B, C and D, respectively. 

There was not a strong effect from the combination of variables; individually, 

particle size and sulfite concentration affected the response value. The percent yield of 

solubilized material was inversely proportional to particle size; this variable determines 

the amount of surface contact between lignin and the solution, which affects 

solubilization (Abud et al. 2013). At 5% sulfite, solubilization was favored because it 

brought enough sulfite into contact with the aqueous medium, leading to cation 

separation dependent on medium pH, ionic strength, and temperature. These conditions 

produced a dynamic chemical balance among species (sulfur dioxide, sulfurous acid, and 

sulfite and bisulfite anions), causing the formation of certain species in response to 

medium conditions (Chakrabarty 2009). The 3 atm pressure level also favored 

delignification. Depressurization of fibers at 5% sulfite ensured that all chemical species 

were in the necessary position for SO3 ions to react with lignin and form lignosulfonates. 

 

 
 

Fig. 1. Analysis of RSM model of delignification process of barley straw 

 

  

R   = 0.9290
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Table 3.  ANOVA of the RSM Quadratic Model of Barley Straw Delignification 

Source Sum of 
squares 

Degree of 
freedom (df) 

Mean square F-value p-value 

Model 911.33 9 101.26 24.717 < 0.0001 

Linear 563.14 3 187.71 45.821 < 0.0001 

Nonlinear 348.19 6 58.032 14.66 < 0.0001 

Residual 69.643 17 4.0967   

Total 980.97 26 37.73   

 

 Lignin molecules contain approximately 4 to 8% sulfur (Glasser 1981), mainly in 

the form of sulfonate groups, which cause lignin to become soluble in water. Longer 

reaction times were expected to increase sulfite incorporation into lignin, but Fig. 1 D 

shows that time had no effect. This result was due to the creation of weak nucleophilic 

sites in the lignin aromatic ring in response to the pH of the solution. These sites compete 

with sulfite ions for the carbonyl ion intermediaries, forming condensed structures. 

Condensation reactions of this sort may explain why the increase in sulfite concentration 

and heating time decreased the amount of solubilized material (Deng et al. 2011). 

 

Table 4.  Regression Analysis using the 33 Factorial CCD 

Model term Coefficient 
estimate 

Standard error F-value p-value 

A 3.3711 0.4691 7.1862 < 0.0001 

B 0.6357 0.4691 1.3552 0.1931 

C 4.8118 0.4691 10.257 < 0.0001 

AB 0.8057 0.5745 1.4023 0.1788 

AC 0.7579 0.5745 1.3192 0.2046 

BC -0.2087 0.5745 -0.3632 0.7209 

A2 -1.3228 0.8125 -1.6280 0.1219 

B2 -1.6852 0.8125 -2.0740 0.0536 

C2 -6.3549 0.8125 -7.8214 < 0.0001 

 

 These results suggested that 9% SO3 is optimum for creating a balance among the 

species in an aqueous solution (sulfur dioxide, sulfurous acid, and sulfite and bisulfite 

anions). This condition is also ideal for releasing the sulfite ions needed to attain bonding 

on the surface of 18-mesh size particles, obtaining lignin solubility. 

 

Artificial Neural Network 
 The experimental response data was used to identify the most appropriate ANN 

model to represent this biotechnological process. It was also intended to identify the 

combination of input values that produced the optimum amount of solubilized material. A 

script was also implemented to find the ANN model with the lowest quadratic error. This 

script generated ANN models starting with a three-layer model in which the first (input) 

layer contained three neurons (particle size, heating time, and sulfite concentration). The 

number of hidden layers varied from one to ten, and the output layer consisted of a single 

neuron that indicated the percentage of solubilized material. 

A random selection of 70% of the data (i.e., 19 samples) was chosen to train the 

ANN, and another 15% (4 samples) was used to validate the model. Finally, 15% (4 

samples) was considered to test it. The obtained ANNs were trained with a Levenberg-

Marquardt backpropagation algorithm (Hagan et al. 2014). Each ANN contained from 1 
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to 10 hidden layers, and every layer was composed of 3 to 50 neurons. The network with 

the best performance contained four hidden layers and their corresponding neurons 

(9:5:9:3), where R2 = 0.9825. Table 5 shows a comparison among ANN’s with high 

performance and different number of hidden layers. 

 

Table 5.  R2 and RMSE values for ANNs with different number of hidden layers. 

Hidden layers R2 RMSE 

1 0.9127 1.749 

2 0.9515 1.395 

3 0.9727 1.045 

4 0.9825 0.8391 

 

 The goodness-of-fit between the experimental and the predicted response given 

by the ANN model had a high correlation value (R2 = 0.9825) (Fig. 2 A). Thus, the 

developed ANN model accurately replicated the material solubilization process using the 

particle size, heating time, and sulfite concentration variables. 

 

Comparison of RSM and ANN Models 
 To validate the RSM and ANN models, 9 experiments were performed with a 

combination of values for the three factors, whereas such values were not used to 

generate the models (Table 6). The comparison between RSM and ANN residuals are 

shown in Fig. 2 B, where the ANN model shows a lower deviation than the RSM model. 

 

 
Fig. 2. Analysis of ANN model for delignification process of barley straw  

 

Table 6.  Validation Data Set 

Run Size 
(mesh 

number) 

Time 
(min) 

Sulfite 
Conc. 
(%) 

Psol (%) RSM ANN 
Predicted Residual Predicted Residual 

1 8 45 3 5.0252 11.2645 6.2393 4.0049 -1.0202 

2 8 45 5 15.2848 15.2255 -0.0593 16.3915 1.1067 

3 8 45 10 14.2296 13.0714 -1.1582 11.396 -2.8336 

4 12 45 3 15.8937 15.479 -0.4147 16.0132 0.1195 

5 12 45 5 19.1167 19.6562 0.5394 20.1615 1.0448 

6 12 45 10 18.8931 18.0425 -0.8506 19.631 0.7379 

7 20 45 3 18.3713 16.5686 -1.8027 17.5181 -0.8531 

8 20 45 5 22.4443 21.1781 -1.2662 20.5703 -1.874 

9 20 45 10 21.0221 20.6452 -0.3769 20.3085 -0.7136 

 

R   = 0.9825
2

	 	

A B 
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The performance for each model was statistically analyzed with the root mean 

square error (RMSE), coefficient (R2) determination, and absolute average deviation 

(AAD), based on the following equations (Geyikci et al. 2012), 

 RMSE =  (
1

n
∑ (Psol,pred-Psol,exp)2n

i=1 )
1/2

      (4) 

𝑅2 =
(∑ (𝑃𝑠𝑜𝑙,𝑒𝑥𝑝−𝑃𝑠𝑜𝑙,𝑒𝑥𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑃𝑠𝑜𝑙,𝑝𝑟𝑒𝑑−𝑃𝑠𝑜𝑙,𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1 )
2

∑ (𝑃𝑠𝑜𝑙,𝑒𝑥𝑝−𝑃𝑠𝑜𝑙,𝑒𝑥𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2(𝑃𝑠𝑜𝑙,𝑝𝑟𝑒𝑑−𝑃𝑠𝑜𝑙,𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

    (5) 

AAD = (
1

n
∑ (

Psol,pred-Psol,exp

Psol,exp
)n

i=1 ) × 100     (6) 

where n is the number of points, Psol,pred is the value from the RSM or ANN model, Psol,exp 

is the value from the experimental data, and the symbol  𝑃𝑠𝑜𝑙,𝑝𝑟𝑒𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  indicates the average of 

the equation beneath the symbol. 

 Values in both models were near to those of the experimental data, but the higher 

regression coefficient value of the ANN model indicated that it provided a better fit than 

the RSM model (Table 7). 

 

Table 7.  Comparison of RSM and ANN Models 

 RSM ANN 

RMSE 2.27 1.36 

R2 0.78 0.92 

ADD (%) 10.46 4.36 

 

 The RSM and ANN techniques were both used satisfactorily to model 

biotechnological processes. In one example, RSM was used to optimize the efficiency of 

Cr(IV) elimination in an aqueous medium, attaining a fit with 95% confidence (Jain et al. 

2011). Another study used both RSM and ANN to model dye extraction from annatto 

seed with high resulting coefficients (RSM, R2 = 0.89; ANN, R2 = 0.95) (Sinha et al. 

2013). In a third example, barley straw hydrolysis conditions were optimized using the 

variables of processing pressure, initial moisture content of wheat straw, and processing 

time (Maache-Rezzoug et al. 2011). RSM was then applied to 19 experimental results to 

produce a second-degree equation with a high coefficient (R2 = 0.96), confirming that 

RSM was the most appropriate model for this process. Moreover, RSM and ANN have 

been applied to modeling and optimization for ultrasonic assisted adsorption of brilliant 

green and eosin B (Jamshidi et al. 2016), optimization of adsorption of Janus Green B 

from aqueous solution (Ghaedi et al., 2016), removal of methylene blue and Pb2+ ions 

(Mazaheri et al. 2015), ultrasound assisted ternary adsorption of dyes (Asfaram et al. 

2015), and modeling of quaternary dyes adsorption (Alipanahpour et al. 2016). 

 
 
CONCLUSIONS 
 

1. Only particle size and sulfite concentration had a significant effect on the 

lignosulfonate yield. Neither time nor a combination of all three variables showed a 

significant influence on the treatment.  

2. RSM and ANN techniques effectively fit experimental data from the solubilization 

process of barley straw in lignosulfonate production. Both techniques predicted the 
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lignosulfonate production in an adequate way, but the ANN technique fit the data 

more accurately.  

3. Based on these findings, this study can be used as a guide to predict the solubilization 

of lignosulfonate from barley straw under different experimental conditions. 
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