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The plant Ensete ventricosum is used in agriculture in Africa. It is a source 
of fibres, which can be used in the interaction with polymers. This study 
deals with a material utilization of these fibres with a length of 1 to 2 mm, 
2 to 3 mm, and 3 to 5 mm, together with reactoplastics resin ChS Epoxy 
1200/324, following requirements of developing countries. Some areas of 
the African continent suffer from a lack of wood, and material based on 
epoxy and fibres can substitute for many wood products. The aim of this 
experiment was to describe basic mechanical properties (tensile strength 
σm, strain at the break εb, modulus of the elasticity Et, and impact strength 
an) of the composite material reinforced with fibres of the false banana 
plant, Ensete ventricosum. The plant, which originated in Ethiopia, is 
exploitable in developing countries. Geometrical aspects and morphology 
of the used fibres was characterized by scanning electron microscopy 
(SEM). The addition of fibres increased the modulus of elasticity and the 
impact strength, whereas the tensile strength and the strain at break were 
decreased. 

 
Keywords: Permanently sustainable sources; Local resources; False banana plant; Reactoplastics  

 
Contact information: a: Czech University of Life Sciences Prague, Faculty of Engineering, Department of 

Material Science and Manufacturing Technology, Kamýcká 129, 165 21, Prague 6, Czech Republic;  

b: University of Salerno, Department of Industrial Engineering, Salerno, Italy; 

* Corresponding author:muller@tf.czu.cz 

 

 

INTRODUCTION 
 

The exploitation of permanently sustainable sources is key in terms of global 

society. Cheap and available materials are suitable to use in material engineering in 

developing countries, including those in Sub-Saharan Africa. An ideal example is the 

material exploitation of secondary agricultural products, such as fibres of the false banana 

plant (De Assis et al. 2015; Zaman and Beg 2016). 

The design of new materials based on natural renewable resources is essential for 

both environmental and economic analyses (Alves et al. 2010). Presently, there is great 

attention to the application of natural fibres as a substitute for synthetic fibres (Mizera et 

al. 2016).  

These fibres from renewable energy sources are environmentally friendly, 

biodegradable, and recyclable, and obviously, the use of natural fibres reduces problems 

of waste disposal and reduces environmental pollution (Kalia et al. 2013; Valášek and 

Müller 2015; Mizera et al. 2016). 

In the past few decades, research and engineering interest has shifted from 

traditional monolithic materials to fibre-reinforced polymer-based materials, due to their 

unique advantages of a high strength to a weight ratio, a non-corrosive property, and high 

fracture toughness. These composite materials consist of a low strength polymeric matrix 

and high strength fibres, such as carbon, glass, and aramid; they have dominated the 
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aerospace, leisure, automotive, construction, and sporting industries. Unfortunately, these 

fibres have serious drawbacks, such as being non-renewable and non-recyclable; having 

high energy consumption in the manufacturing process; presenting health risks when 

inhaled; and being non-biodegradable (Cheung et al. 2009). 

Natural fibres can be used as reinforcements in composite materials (Poole et al. 

2009; Mizera et al. 2016). They can be suitable substitutes for synthetic fibres because they 

have relatively high strength, stiffness, and low density (Wambua et al. 2003; Faruk et al. 

2012; Mizera et al. 2016). Natural fibres such as jute, kenaf, hemp, sisal, flax, bagasse, 

etc., are successfully used as the filler in plastic composites (Lu et al. 2003; Kakou et al. 

2014; Zhao et al. 2014; Abdul Nasir et al. 2015; Doumbia et al. 2015). Their advantages 

are their low price, low density, abundance, renewability, biodegradability, and 

environmental friendliness (Nechwatal et al. 2003; Sharifah and Martin 2004; Cheung et 

al. 2009; Mominul Haque et al. 2009; Ku et al. 2011).  

The main disadvantages of natural fillers utilized in polymeric composites are their 

low wettability and non-homogeneity (Herrera-Franco and Valadez-Gonzalez 2005). The 

fibres are mostly hydrophilic natural fibres, and they have low tensile strength (Sharifah 

and Martin 2004; Alkbir et al. 2016; Mizera et al. 2016). These problems can be alleviated 

by suitable compatibilisers and coupling agents (Prasad et al. 2016). 

One suitable plant with great potential for the production of natural fibres is ensete 

(Ensete ventricosum), also known as a false banana (Tsehaye and Kebebew 2006; Mizera 

et al. 2016). Ensete ventricosum does not produce edible fruits and it is not categorized as 

usual banana plants (genera Musa). Traditionally, Ensete ventricosum fibres have been 

harvested from leaves of this plant for the production of ropes, etc. Composite material 

reinforced with the Ensete ventricosum fibres could be used for the production of parts for 

the automotive industry.   

Natural fibres gained from the plant Ensete ventricosum have many advantages 

similar to most natural fibres, e.g., price, low density, age-resistance, and low abrasiveness 

during processing (Chandramohan and Bharanichandar 2014; Pupure et al. 2016). Their 

disadvantages are related to the biological essence of the material, e.g., decreased 

resistance to degradation environments, sensitivity to water and moisture effects, and 

sensitivity to higher temperatures or biological corrosion. Composites with natural fibres 

hold increasingly important positions in modern material engineering (Messiry 2013; 

Chandramohanand Bharanichandar 2014).  

According to De Assis et al. (2015), banana fibres have many advantages for 

industrial applications, e.g., they have properties like waterproof, UV protection (because 

of lignin content), and moisture absorption; they are anti-oxidant and biodegradable, etc.  

An optimization of the matrix reinforcing with the filler depends on an interfacial 

interaction. A transfer of a stress from the matrix to the reinforcement occurs by adhesion, 

i.e., Coulomb’s friction in the interface of the matrix and fibres (Ruggiero et al. 2015; 

Valášek et al. 2015; Ruggiero et al. 2016). There is a logical requirement for the highest 

strength and creating corresponding mutual interaction. The modern concept of the fibre 

composites uses fibre surface treatments for an optimization of this boundary; however, it 

increases the technological demands of the fibre preparation and of the composite itself. 

Processes for fibre surface optimization and composite preparation (e.g., vacuum) are not 

often secured in developing countries. 

However, surface treatments of banana fibres can optimize the interaction with the 

polymeric materials, which create the matrices. Zaman and Beg (2016) described the 

modification of banana fibres with methylacrylate (MA) mixed with methanol (MeOH) 
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along with 2% benzyl peroxide under a thermal curing method at different temperatures 

(50 to 90 °C). This treatment increased the tensile strength. The surface treatment of fibres 

(alkali and acrylic acid) increases (Prasad et al. 2016), along with the water-resistance of 

the composite, except for increasing mechanical properties.  

The technologically demanding treatments of fibres described above are not 

available in developing countries, which is why this study aimed to define basic mechanical 

characteristics of the composite with non-treated fibre surfaces and commonly used 

reactoplastics. This alternative of the fibre utilization is financially undemanding, and the 

preparation is possible without special equipment. In addition to evaluating composite 

strength characteristics, scanning electron microscopy (SEM) was used to evaluate the 

interaction of fibres with the reactoplastics matrix. 

The aim of this experiment was to describe the mechanical behavior of the 

composite material reinforced with the fibres of the plant false banana Ensete ventricosum, 

including the tensile strength σm, strain at the break εb, modulus of the elasticity Et, and 

impact strength an. Geometrical aspects of the fibres were characterized by optical analysis.  

This paper aims to define basic mechanical characteristics of the composite 

exploitable in the developing countries without demands for modern machines and 

equipment. The nature of the epoxy resin enables good wetting of fibres also without their 

surface treatment; however, the main reason of the absence of surface treatments is a 

minimization of technological demands and costs. 

 
 
EXPERIMENTAL 
 

Materials and Methods 
Fibres of the plant Ensete ventricosum (the false banana) were used in the 

experiment. This plant grows in many developing countries. The experiment used fibres 

from the plants grown in plantations in Ethiopia (Fig. 1).  

 

 
 

Fig. 1. Stem of plant Ensete ventricosum with visible fibres, as harvested in Ethiopia  
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This plant is used to prepare traditional dishes in Ethiopia (Tsehaye and Kebebew 

2006; Yirmaga 2013). A secondary product from this plant is natural fibres. The material 

exploitation of these fibres is demanding owing to their economic evaluation. The fibre 

density was 0.71 ± 0.45 g·cm-3 (Mizera et al. 2016). Fibres had been dried at 105 °C for 

20 h before they were applied as a filler into the resins. 

The resin ChS Epoxy 1200/324 (hardener P 11 – Diethylentriamin; DCH-Sincolor, 

a.s., Pilsen, Czech Republic) used in the experiment is a structural two-component 

reactoplastics epoxy resin, which shows effective adhesion to a huge number of materials.  

The fibres were added into the matrix ChS Epoxy 1200/324 in the ratio of 0.5, 1.0, 

1.5, 2.0, 2.5, and 3.0 wt.%. Weight ratios were chosen with respect to a practical application 

when the filler was mixed mainly on the basis of weight ratios. The aforementioned weights 

correspond to 0.8, 1.6, 2.4, 3.1, 3.9, and 4.6 vol.%. The reinforcing fibres were prepared 

by cutting on a cutting machine from the firm Moraknife with the lengths 1 to 2 mm, 2 to 

3 mm, and 3 to 5 mm with a random arrangement of the fibres in the matrix. Appropriate 

lengths of fibres (a mean and a standard deviation) falling into presented intervals were 

measured by means of an electron microscope.  

The CSN EN ISO 527-1 (1997) standard was used for the evaluation of tensile 

characteristics. The tensile strength σm, strain at break εb, and modulus of elasticity Et were 

tested. The test specimens for tensile testing CSN EN ISO 527-1 (1997) were prepared 

according to standard CSN EN ISO 3167 (2015).  

The impact strength an was measured using the equipment Dynstat (Louis 

Schopper, Leipzig, Germany) for testing of plastics. The test specimen preparation and 

impact tests were performed according to the standard CSN 64 0611 (1968).  

The specified matrix-filler (fibres) phases ratio was mixed to make the composite, 

which was used for the preparation of test specimens according to the specified standards. 

The moulds for casting were made from Lukopren N material (Lučební závody, a.s., Kolín, 

Czech Republic) using models. The form and the size of moulds met the corresponding 

standards. The test samples of matrix and composite materials were maintained at 22 ± 

2 °C for 48 h. 

The tensile properties were evaluated using a LABTest 5.50ST universal tensile 

strength testing machine (Labortech, s.r.o., Opava, Czech Republic) with an AST type 

KAF 50 kN sensing unit and Test & Motion software (DOLI Elektronik GmbH, Munich, 

Germany). The speed of the deformation corresponded to 2 mm·min-1. 

The optical analysis of fracture surfaces and the adhesive bond cut was examined 

with SEM using a MIRA 3 TESCAN microscope (Tescan Orsay Holding, Brno, Czech 

Republic). The fracture surfaces were dusted with gold.     

The effect of the fibre dispersion on the composite failure was studied with SEM 

images. The effect of the particle size of fibres, the wettability, and the porosity on the 

interfacial crack was investigated also with SEM. The shape and the dimension were 

evaluated using the Gwiddion program (Software Foundation, Inc., Boston, USA). The 

results of measuring were statistically analysed. Statistical hypotheses were also tested at 

measured sets of data by STATISTICA software (StatSoft Inc., Tulsa, USA). A validity of 

the zero hypothesis (H0) showed that there was no statistically significant difference (p > 

0.05) among tested sets of data. In contrast, the hypothesis H1 denied the zero hypothesis 

and showed that there was a statistically significant difference among tested sets of data or 

a dependence among variables (p < 0.05).   
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RESULTS AND DISCUSSION 
 

The length and the thickness of the fibres were evaluated by microscopy, as shown 

in Table 1 and Fig. 2. The fibre morphology was an essential factor influencing subsequent 

interfacial interaction with the matrix. It was obvious from the ratio results of the length 

and the mean of tested fibres that they were short-fibre composite systems, i.e., the ratio 

between the length and the mean of fibres was smaller than 100. Tested composite systems 

belonged to the group with discontinuous reinforcement. The ratio between the length and 

the mean of the filler was presented in Table 1. With this ratio, the anisotropic filler had an 

effect similar to the particle filler (Debnath et al. 2004).  

 

Table 1. Basic Characteristics of Tested Fibres 

Stated Length of 
Fibre (mm) 

Measured Length of 
Fibre (mm) 

Mean of Tested 
Fibres (mm) 

Ratio - Length: 
Mean 

Ratio - Length: 
Mean ˂ 100 

1 to 2 1.49 ± 0.21 0.175 ± 0.018 8.48 YES 

2 to 3 2.59 ± 0.20 0.198 ± 0.023 13.09 YES 

3 to 5 4.14 ± 0.33 0.185 ± 0.009 22.30 YES 

 

 
 

Fig. 2. Measurement of fibre width 
 

The modulus of elasticity of unfilled resin was 1292.09 ± 92.93 MPa (Fig. 3). The 

inclusion of any fibre length increased these values; however, it did not cause a statistically 

significant increase, as shown by ANOVA in Fig. 3 (p > 0.10). Thus, the hypothesis H0 

was confirmed, i.e., there was no difference in the modulus of elasticity Et at the 

significance level of 0.05 among single length of the fibres from Ensete ventricosum. 

The variation coefficient increased with the inclusion of short fibres (up to 16.2%). 

This increase was observed for all set tensile characteristics of the filled material. The 

dispersion of measured data showed possible imperfect wetting of the fibres with the 

matrix, and it also could have been caused by a presence of air bubbles. The highest 



 

 bioresources.com 

 

 

Müller et al. (2017). “Short-fibre composites,” BioResources 12(1), 255-269.  260 

measured modulus of elasticity was 1503.73 ± 126.87 MPa, measured in the resin filled 

with the fibres with the length 3 to 5 mm and 2.5 wt.%.  

The strain at break εb was decreased with the inclusion of the fibres of Ensete 

ventricosum. This decrease was statistically verifiable compared with the unfiled resin (Fig. 

4, p = 0.00).The hypothesis H0 was not certified, i.e., there was a difference in the strain at 

break in the significance level of 0.05 among single concentrations of the fibres of Ensete 

ventricosum. The strain at break of the unfilled resin corresponded to 3.86 ± 0.16%. 

Figure 4 shows a quick decline in the strain at break at low concentrations of short fibres 

in the matrix and then a consequent settling of this decline. The smallest value 2.65 ± 0.52% 

was measured at 2.5 wt.% fibres with the length 2 to 3 mm. 

 

 
Fig. 3. Modulus of elasticity Et of composites with various lengths of fibres 

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0

wt.%

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

ε b
 (

%
)

 length 1-2 mm
 length 2-3 mm
 length 3-5 mm

 
Fig. 4. Strain at break εb of composites with various lengths of fibres 
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The tensile strength σm of composites filled with short fibres of the false banana 

was decreased compared with the unfilled resin (39.06 ± 3.21 MPa). The hypothesis H0 

was not certified, i.e., there was a difference in the tensile strength in the significance level 

of 0.05 among single concentrations of the fibres from Ensete ventricosum. The inclusion 

of the fibres of 2 to 3 mm decreased the tensile strength to 28.90 ± 4.71 MPa (Fig. 5). 

Standard deviations – scattering of measured data – reflect a fact that this is material with 

low demands on a technological preparation determined for developing areas. This fact 

influenced mutual interactions of phases.  

Longer fibres gave smaller strain at break and tensile strength. This is caused due 

to an agglomeration among the longer fibres. These agglomerates were not fully wetted by 

the polymer resin. Bad wetting caused weak areas within the composite. This bad wetting 

showed itself by a gap of 0.12 ± 0.04 µm between the fibre and the resin. 
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Fig. 5. Tensile strength σm of composites with various lengths of fibres 
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Fig. 6. Impact strength an of composites with various lengths of fibres 
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Figure 6 shows the impact strength an values. Ensete ventricosum fibres had a 

positive effect on the filler. The reactoplastics matrix based on the two-component epoxy 

adhesive was relatively brittle, with an impact strength of 1.57 ± 0.14 kJ·m-2. 

The addition of Ensete ventricosum fibres increased the impact strength, which was 

higher than that of the pure epoxy. The fibres increased the impact strength an by 420%. 

The optimum concentration (i.e., 1 to 2 g of the filler) was determined from the results. 

The maximum values of the impact strength were found at these concentrations. The best 

results were gained with the fibres of 1 to 2 mm in length. The hypothesis H0 was not 

certified, i.e., there was a difference in the impact strength in the significance level of 0.05 

among single concentrations of the fibres from Ensete ventricosum. 

Electron microscopy was used to evaluate the interfacial interaction between 

untreated fibres of Ensete ventricosum and the epoxy resin. The fractured sample showed 

randomly oriented banana Ensete ventricosum fibres in the composite (Fig. 7). The transfer 

of the loading mechanism in the short-fibre composite via the fibre ends was visible. The 

ends of the fibres were greatly deformed after the destruction. The transfer of the stress 

was mediated near the end of the fibres. This mechanism has been observed in the short-

fibre composite systems. 

The research on the fibres drenched in the epoxy matrix did not prove its ingress 

into the hollow section of tested fibres (Fig. 8). Single hollow sections had a mean diameter 

of 10.14 ± 1.77 μm. 

 

 

 
 

Fig. 7. Interaction of matrix and fibres. Micrograph of banana fibre composite (Ensete ventricosum) 
with untreated fibres (secondary electrons) 
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Fig. 8. SEM: hollow section of Ensete ventricosum fibre (secondary electrons) 
 

Table 2 shows the statistical comparison (ANOVA, α = 0.05) of the influence of 

increasing filler concentration on the mechanical properties of the composite material.  
 

Table 2. Statistical Comparison of Influence of Filler Content on Mechanical 
Properties of Composite Material 

Tested Parameter Fibre Length (mm) ANOVA Parameter p Hypothesis 

Et 1 to 2 0.1253 H0 

Et 2 to 3 0.1978 H0 

Et 3 to 5 0.1033 H0 

εb 1 to 2 0.0407 H1 

εb 2 to 3 0.0007 H1 

εb 3 to 5 0.0000 H1 

σm 1 to 2 0.0411 H1 

σm 2 to 3 0.0057 H1 

σm 3 to 5 0.0003 H1 

an 1 to 2 0.0000 H1 

an 2 to 3 0.0000 H1 

an 3 to 5 0.0000 H1 

 

It is desirable to integrate renewable resources into material engineering. The 

performed experiment described the interaction of the short surface-untreated fibres of the 

plant Ensete ventricosum. The composite were prepared based on the local renewable 

resources, which were readily availability at low price. Hidayat et al. (2014) used 

secondary products from the agricultural plants in their study. They described the use of 

biological-based secondary raw materials (cakes from the plant Jatropha curcas L.) to form 

boards, which had properties very similar to similar products made of particleboard.  
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Described materials – composites – can serve as the alternative to traditional 

products based on wood. Natural fibres could be combined with various waste materials 

(Saxena et al. 2010). These materials can be widely applied e.g., as transoms, floor tiles, 

etc. However, untreated fibres have irremovable disadvantages, including lower interaction 

with the matrix, a high tendency to get wet, and biological degradation. Nevertheless, the 

results described in this experiment could apply to other natural fibres cultivated in 

developing countries. 

Electron micrographs of the interface between the fibres and matrix revealed that 

the surface of the fibres was not wet entirely optimally, which led to decreased strength. 

The hollow section did not decrease the mechanical properties, as has been 

demonstrated by others, e.g., at the flight chicken feather (Cheung et al. 2009). This 

conclusion about the hollow section was verified for the composite systems filled with the 

reinforcing phases in the form of hollow fibres at the impact strength and the modulus of 

elasticity. Silva et al. (2008) showed that the hollow structure inside sisal fibre ultimately 

weakened the strength of its composites as the net cross-sectional area decreased, and thus, 

the stress taken by the fibre was then increased. 

Short-fibre composites were used in all of the above applications, where it could 

not be exactly determined in advance the effects of the stress or the stress was 

approximately the same in all directions (Mueller et al. 2007). Further, the short-fibre 

composites have been applied in cases where there were requirements for easy 

processability and good mechanical properties (De and White 1996; Mallick 2000).  

The addition of fillers to epoxy adhesive does not produce a definite improvement 

or deterioration in the impact strength (Dadfar and Ghadami 2013; Kejval and Müller 2013; 

Müller 2015). Rahman et al. (2014) stated that the tensile strength was decreased, whereas 

the modulus of elasticity and the Charpy impact strength were increased with increasing 

content of jute fibres. 

The fibres play an important role in the impact strength; they resist crack 

propagation and act as a load transfer medium. The improvement in the impact strength of 

the composites is due to increased fibre content (Amuthakkannan et al. 2013). The impact 

strength is increased also by adding of the natural fibres from kenaf, coir, sisal, hemp, and 

jute into the epoxy matrix of the composite material (Wambua et al. 2003). This quality 

was also confirmed with the fibres of the false banana Ensete Ventricosum (Fig. 6).    

The adhesive bonding technology was limited by the dynamic loading, namely in 

the area of bonding, i.e., using reactoplastics-based adhesives (two-component epoxy 

resins) (Debnath et al. 2004; Adamvalli and Parameswaran 2008; Hayashida et al. 2015). 

The reason was low resistance of the two-component epoxy system to the dynamic loading. 

The conclusions of the research proved the increase of the impact strength of the composite 

system which decreased the brittleness.  

The conclusions of various authors were certified that adding the filler into the 

reactoplastics epoxy-based matrix affected the mechanical properties of the resulting 

composite (Kim and Khamis 2001; Galusek et al. 2007; Müller and Valášek 2012; Valášek 

and Müller 2012). These results agreed with the conclusions of Ge et al. (2004), who 

mentioned the use of biocomposites (bamboo with PVC) in the area of materials for the 

surface treatment of materials used at wood constructions. In terms of mechanical 

properties, the considered material could be a wood substitute in some applications.  
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CONCLUSIONS 
 
1. Isotropic composites can be advantageous in situations where it is not possible to 

determine the direction of prevailing loading in advance. Composites reinforced with 

casually oriented short fibres fulfill this requirement. 

2. The strength characteristics described in the experiment were influenced by the 

inclusion of the fibres of the plant Ensete ventricosum of different lengths 1 to 2 mm, 

2 to 3 mm, and 3 to 5 mm and of the concentration until 3 wt. % in the epoxy resin. 

3. The strength values were decreased by 26% (i.e., of 10.2 MPa). 

4. The modulus of elasticity was increased by 5% (i.e., of 207.4 MPa). 

5. The strain at break was decreased by 31.9% (i.e., of 1.2%). 

6. The impact strength was increased by 420% compared to the matrix.  
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