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A non-destructive method for measurement of the modulus of elasticity 
(MOE) was compared with the static method on beams of Cupressus 
lusitanica and Populus x canadensis. The dynamic method is based on 
the principle of the resonance frequency, using longitudinal vibrations 
(Timber Grader MTG, accelerometer) and the static method for 
measurement of the flexural modulus of elasticity is according to EN 408 
(2012). The differences between the ascertained dynamic and static 
MOE values were 1.1% to 2.4% for the Populus x canadensis sample 
and 12.7% to 15.5% for the Cupressus lusitanica sample. Furthermore, 
the correlation dependence of the applied methods was determined and 
the regression equations are shown. Experimental measurement showed 
the effect of the knot clusters, which appeared primarily in Cupressus 
lusitanica samples and considerably impacted the resultant values. 
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INTRODUCTION 
 

The non-destructive testing of wood and investigation of its properties is a 

dynamically developing field that is being applied primarily in structures, where it is not 

possible to disrupt the investigated element by destructive testing, or in many cases even 

to remove them from the existing structures. For better effectiveness, various methods for 

non-destructive testing have been developed. The advantages consist in measuring 

without damaging the component and also in measuring components incorporated in 

structures (Kasal and Anthony 2004). For construction purposes, coniferous species are 

primarily used (80% to 90%) (www.fao.org). Coniferous softwoods are more commonly 

used in construction applications because coniferous forests cover most of the woodland 

areas in North America and Europe and are easier to process in comparison with harder, 

broadleaved wood. 

The mechanical properties of wood, such as bending strength and modulus of 

elasticity in bending, depend on the wood species and their growing characteristics and 

defects. For the purposes of this study, the wood species Cupressus lusitanica and 

Populus x canadensis were selected. The former is a species introduced to Portugal from 
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Central America in the 17th century. Since then, it has spread in Portugal and become one 

of the most commonly found species in the inland intensively mountainous areas. C. 

lusitanica trees rise up to 35 m and have a straight stem. They are thus potentially 

suitable for sawn timber processing. These trees may also grow in unfavourable 

conditions and are widely used to re-forest degraded locations (Farjon 1993, 2005; 

Fernández-Pérez et al. 2013). For C. lusitanica Mill. (hereinafter CL), many studies have 

been conducted on its mechanical properties. Haslett (1986) describes the options for 

processing CL grown in New Zealand. In that research, it was established that this 

species is relatively easy to work with. Additionally, some other properties of CL include 

the interesting pattern of the wood, medium to low density, low shrinkage values, and 

significant natural durability of the wood. Shukla and Sangal (1986) tested samples to 

determine the mechanical properties of exotic species from Northern and North-Western 

India, which included CL. In their study, CL was evaluated as mechanically weak in 

comparison with teak wood (Tectona grandis) with a specific density of 430 kg/m3, 

modulus of elasticity of 8.6 GPa, and bending strength of 74.8 MPa. Ng’ang’a (1992) 

evaluated the mechanical properties of CL green wood obtained in Kenya. The density 

was 390 kg/m3, the modulus of elasticity was 6.3 GPa, and bending strength was 

44.6 MPa. Kothiyal et al. (1998) ascertained the characteristics of 18-year-old CL wood 

from the Mahabaleshwar area (Western India). The wood had a large ratio of knots and a 

frequent presence of reaction wood. These samples had an average density of 440 kg/m3, 

static bending modulus of elasticity of 4.3 GPa, and bending strength of 53.9 MPa. Moya 

and Muñoz (2010) tested the selected properties of CL and a further seven species from 

Central America (Costa Rica).  

Apart from other physical and growth characteristics, researchers also measured 

the modulus of elasticity and bending strength at 12% moisture content. Eighteen test 

specimens were used, for which the following data were found: average modulus of 

elasticity of 7.6 GPa and bending strength 57.6 MPa for CL wood, with an average 

density of 430 kg/m3. Elzaki and Khider (2013) recently presented a study of a 20-year-

old sample of CL wood grown in Western Sudan. This sample had an average density of 

446 kg/m3. The measured average modulus of elasticity for a three-point bending test was 

1.427 GPa, and the bending strength was 69.3 MPa. As is evident, the given studies 

substantially differ in terms of the values obtained during the mechanical tests, primarily 

because of the different origins of the samples. 

The second wood species, P. x canadensis, initially originates from Central and 

Southern Europe, America, and some parts of Asia, but today it is broadly grown on 

almost all continents (Sheat 1948). The wood is widely used in the production of 

plywood, for carpentry, and also as packaging material (Kohli et al. 2009). Poplar wood 

has been used in structures for centuries, particularly in rural areas. In Italy from the 17th 

to the 19th centuries, poplar was the standard for use in structures in these rural areas 

because of an abundance of poplar in and around these areas, as well as its low density 

and dimensional stability (Castro 2007).  

Studies have been conducted on the suitability of the use of poplar wood in 

structures, especially in the form of laminated veneer lumber (Castro and Paganini 2003; 

Castro and Zanuttini 2004; Castro and Fragnelli 2006) and oriented strand board (Zhou 

1990), which have substantially broadened the use of poplar wood. Poplar wood also has 

the capability to bind a large volume of CO2 (one hectare of poplar woodland binds up to 

10 to 15 tons per year), and in combination with its wide availability on almost all 

continents, it is a species whose growth and processing is environmental friendly 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Hodoušek et al. (2017). “Measuring wood’s MOE,” BioResources 12(1), 270-282.  272 

(Basterra et al. 2012). P. x canadensis (PC) wood, according to literature, has a density of 

approximately 320 to 400 kg/m3 and relatively good mechanical properties, particularly 

bending strength, approximately 40 to 70 MPa, and bending modulus of elasticity, 

approximately 7 to 10 GPa (Green et al. 1999).  

When measuring the dynamic modulus of elasticity using frequency waves, 

several factors that impact the result come into play. One of them consists of the 

dimensions of the tested element. Casado et al. (2010) described the impact of the 

dimensions on the resonance properties of Populus x euramericana. According to the 

study’s conclusions, size demonstrably has an impact on the resonance frequency: as the 

dimensions grow larger, the resonance frequency decreases. Seco and Barra (1996) 

monitored and described the dependence of the mechanical properties on the density and 

growth rate. Their observations were that the growth rate, as compared with the density, 

is a very weak predictor of mechanical properties. Researchers tested, among the others, 

P. x euramericana, and Eucalyptus globulus. The poplar sample was 12 years old and 

had an average density of approximately 383 kg/m3, bending strength of 38 MPa, and 

bending modulus of elasticity of 7.8 GPa. 

The method of measurement of the actual frequency is also known as the 

resonance method. It is a method used to ascertain the dynamic modulus of elasticity, 

which is a significant indicator of the mechanical properties of wood (Yang et al 2002; 

Ilic 2003). Measurement is done most often using a contact piezoelectric accelerometer 

or contactless microphone. The signal comprises mechanical excitation by hammer 

impact, subsequently picked up by a sensor and transformed into an electric signal. From 

the data of the excitation force and response of the material, a transmission function is set 

(the frequency response function – FRF; ASTM E1876 (2006)). It is used to create the 

resonance frequency, which is used together with the dimensions of the element, mass, 

and density to calculate the dynamic modulus.  

For measurement of the longitudinal wave frequencies, the measuring and 

excitation devices are located at the end of the tested element. The similarity of the 

results of the static and dynamic modulus of elasticity (MOE) is the basis for successful 

use of these methods in practice. Some studies show a very close dependence (with the 

correlation coefficient of up to 0.96) of the static and dynamic MOE (Tanaka et al. 1991; 

Perstorper 1994; Ilic and Ozarska 1996; Kliger et al. 1998; Ilic 2001), although the values 

of the dynamic measurements themselves are often somewhat higher than in the case of 

static tests (Cho 2007; Hassan et al. 2013). 

The objective of this study was non-destructive measurement of dynamic MOE in 

two samples, measurement of MOE and the modulus of rupture (MOR) using the static 

test in these samples, and subsequent comparison of the results. The major objective was 

comparison of dynamic MOE with static MOE to be able to determine the mechanical 

properties of PC and CL in practice using the non-destructive resonance method. 

Additionally, by mutual comparison of the results of the two devices used, it was desired 

to determine which one of them gives more precise results. Furthermore, the content of 

the knots was quantified and their impact on the measured values of MOE and MOR 

values was assessed. For comparison of the results, the correlation dependence of the data 

was monitored, and single factor analysis of the distribution and statistical linear 

regression were applied. 
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EXPERIMENTAL 
 

Test Specimens 
For measurement of the modulus of elasticity, PC and CL wood species were 

selected. Measurement was done on 60 test specimens of PC and 50 test specimens of 

CL, both with nominal dimensions of 80 x 80 mm (cross-section). The test specimens 

with the given dimensions were dried to an average moisture content of 12% and placed 

into an air-conditioned room with an air humidity of 65% ± 5% and temperature of 20 ± 

2 °C. Both samples were taken from forest area in Portugal, namely from the Buçaco area 

in the case of CL and from the Soure Region for PC. Buçaco is a historically significant 

forest for experimental cultivation of forest species. The trees used to make the samples 

were solitarily planted. The following table shows the characteristics of the samples, 

including the knot content, which is quantified using the dimensions of the biggest knot, 

average size of the knot, and average number of knots per meter of the test specimen. 

Furthermore, the occurrence of knot clusters was also monitored. The knots clusters were 

detected in less than 10% of all PC specimens and in 100% of CL specimens. 

 

Table 1. General Sample Information 

Sample N0 of beams Age (yr) Diameter (cm)* 
Biggest knot 

(average) (mm) 
Knots 
in 1 m Dimensions (mm) 

CL 50 
15 to 20 35 to 40 

53 (29) 14 78 x 78 x 2917 

PC 60 64 (29) 2.6 78 x 77 x 2494 

*Diameter at breast height 

 

Method for Determination of MOE and MOR 
The applied method determined the dynamic modulus of elasticity using the 

resonance frequency. The first measurement device was a piezoelectric accelerometer 

with a magnetic sensor (National Instruments Corporation, Austin, Texas-USA). A signal 

sensor was placed on the face of the test sample, and hammer impact on the opposite end 

was used as the source of the wave signal. Using Acquisition device hardware: NI-USB 

4431 (National Instruments Corporation, Austin, Texas-USA) and the Signal Express 

program (National Instruments Corporation, Austin, Texas-USA), the signal was 

transferred to a computer and evaluated using the fast Fourier transform (FFT) principle, 

which is a method used on a standard basis to determine the frequency characteristics of 

materials (Cooley and Tukey 1965). 

The second device used was the Timber Grader MTG (Brookhuis Applied 

Technologies WOOD, Enschede, Netherlands). It also operates by measurement of 

resonance frequency. Unlike the first method, only access to one end of the tested 

element is necessary. The Stress Wave Activator and Stress Wave Detector are integrated 

in the Timber Grader MTG. The device thus sends a stress wave, which reverberates 

from the opposite end and returns; the device detects it as a wave frequency, and using 

the defined dimensions, moisture content and mass, it calculates the MOE and sends the 

values to the computer via a Bluetooth interface. The test specimens were placed on 

rubber mats to ensure minimal attenuation of passing waves. Both methods work with the 

measured stress wave frequency, from which dynamic MOE is calculated using the 

formula, 

𝐸𝐷 = 4𝜌𝐿2(
𝑓𝐿,𝑛

𝑛
)2                                                          (1) 
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where ρ is the density of the element (kg/m3); 𝑓𝐿,𝑛 is the measured frequency of the 

longitudinal stress waves (Hz); L is the length (m), and n (= 1) is the coefficient for the 

longitudinal measurement method (Bucur 2006). 

To compare the precision of measurement using dynamic methods, a bending test 

was done according to EN 408 (2012) and the static MOE was determined. During the 

test, the distances between the supports were 480 mm in the upper part and 1440 mm in 

the lower part of the test device. The bending strength was also determined including the 

rupture causes of the material. The knots were the most frequent cause of rupture. For the 

PC sample, rupture caused by knots occurred in 60% of the test samples; for CL, this 

percentage was up to 90%. Knots were analyzed according to EN 1310 and Portuguese 

NP 4305. The factor of knots was simplified to the biggest knot and the content of knots 

in one meter. Each knot was recorded as its visible area on the edge or face of the beam 

in square millimeters. 

When processing the results, the statistical analysis of variance (ANOVA) was 

used, and regression analysis was done to describe the relationship between dynamic and 

static MOE. The significant differences between methods for MOE determination were 

assessed by Levene’s and Tukey’s tests. The STATISTICA 10 software was used. 

 

 
RESULTS AND DISCUSSION 
 

The results were subjected to statistical analysis. Normality was analyzed with the 

lowest p-value of Shapiro-Wilk test of 0.076 for CL-MOEACC data. The Grubbs’ test did 

not show any extreme values (the lowest p-value was 0.293 for PC-MOESTAT data). Table 

2 shows the results of the descriptive statistics of the static and dynamic MOE 

measurements and the density for both samples. 

 

Table 2. Modulus of Elasticity and Density 

  Mean Min. Max. COV (%)* 

P
C

 

MOEMTG (N/mm2) 10366 7189 13571 14.2 

MOEAC (N/mm2) 10002 6502 13713 17.8 

MOESTAT (N/mm2) 10113 7339 14310 15.2 

Density (kg/m3) 405.6 291.4 501.9 12.2 

C
L

 

MOEMTG (N/mm2) 6180 3650 9130 22.0 

MOEAC (N/mm2) 6331 3846 9276 21.7 

MOESTAT (N/mm2) 7135 4268 11018 23.9 

Density (kg/m3) 456.4 379.2 515.8 6.7 

*COV – coefficient of variation 
PC – Populus x canadensis 
CL – Cupressus lusitanica 
MOEMTG – dynamic MOE measured by MTG Timber grader (longitudinal vibration method) 
MOEAC – dynamic MOE measured by accelerometer (longitudinal vibration method) 
MOESTAT – static MOE measured according to EN 408 

 

For the PC sample, the MTG measurement results showed higher MOE values 

than the static tests and the data from accelerometer showed lower values. Granted, these 

differences were very small. For the CL sample, the dynamic MOE values for both 
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devices used were lower than those from the static test. The natural vibration frequency 

of the sample is highly related to its dimensions, namely to the length, so that longer 

beam has lower natural frequency (Bucur 1984). The lower frequency causes the 

decrease of dynamic MOE (Ouis 2002). Therefore, the measured data of dynamic MOE 

are mostly lower than static MOE. The longer sample (CL) shows lower results of 

dynamic MOE in relation to static MOE because of its lower natural frequency. The aim 

of MOE measurement study was to obtain the analogical correlation coefficients between 

the static and the dynamic methods for the sample of different effective length. In 

general, with the increasing specimen size the resonance frequency decreases and also the 

difference between dynamic and static MOE decreases (Casado et al. 2010). Some 

studies state the differences between the static and dynamic MOE measurements. Yang et 

al. (2002) report 36% to 39% higher dynamic MOE measured using the horizontal stress 

wave method and static MOE. Hassan et al. (2013) ascertained the same difference and 

the deviation was 22.3%. Cheng and Hu (2011) using various methods ascertained MOE 

for poplar wood, and the deviation from MOE as ascertained using longitudinal waves 

and static MOE was 10.4%. 

The CL sample was substantially more knotty. Apart from the larger number of 

knots, the CL sample also had a presence of so-called knot clusters. These clusters of two 

or three knots do not influence the resonance frequency so much, but in bending tests 

they have a greater influence on the results (Riberholt and Madsen 1979; Hanhijärvi et al. 

2005). The clusters cause substantial deviation of fibres in their vicinity, which had a 

negative influence on the results of mechanical properties (Dinwoodie 2002; Koman et 

al. 2013). 

The monitored correlation of dependence between the individual methods for 

determination of the MOE between themselves and between each of these methods and 

bending strengths is recorded below for both samples and all measured variables. Table 3 

shows the correlation coefficients for dependence between the individual methods of 

measurement. In the case of CL, the highest correlation dependence (0.993) was found 

between the results of the accelerometer and MTG. The smallest (0.633) was the 

correlation between MOEMTG and bending strength. On average, lower correlations of 

dependence were found between MOE and static bending strength. For the CL samples, a 

low dependence was found between the MOE and bending strength. For the PC sample, a 

similar tendency was observed. The highest correlation of dependence was also found 

between MOEMTG and MOEAC (0.979). 

 

Table 3. Table of Correlation Dependence of the Applied Methods 

  
  MOEMTG MOEAC MOESTAT 

C
L

 

MOEMTG 1 0.993 0.931 

MOEAC 0.993 1 0.937 

MOESTAT 0.931 0.937 1 

P
C

 

MOEMTG 1 0.979 0.898 

MOEAC 0.979 1 0.906 

MOESTAT 0.898 0.906 1 

 

For comparison of the results of the three methods for determination of the MOE, 

a graph of the analysis of the distribution is given. The given graph in Fig. 1 shows the 
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confidence intervals for MOE using all three methods for both species. The MOE values 

for PC, at approximately 10 GPa, comply with the previous studies investigating MOE in 

poplar wood (Green et al. 1999; Koman et al. 2013). Furthermore, significant differences 

between the measured data were found according to the individual methods and 

separately for CL and PC. The Levene’s test of equality of variances demonstrated 

insignificant differences between the methods of measurement for CL (p = 0.186) and the 

same also applied to the PC sample (p = 0.22). The subsequent Tukey’s test of variance 

of mean values demonstrated significant differences in the CL sample. The difference can 

be caused by a greater amount of knots and knot clusters and also by greater length 

comparing to PC sample. As is also clear from Fig. 1, there were significant variances 

between the values of the modulus of elasticity measured by MTG and by static MOE (p 

= 0.0039) and between the values from the accelerometer and by static MOE (p = 0.019). 

The difference between the two dynamic methods was not significant. In the PC sample, 

no statistically significant differences in the mean values were registered between the 

individual measurement methods. The stated differences are statistically significant at the 

confidence level of 0.05. 
 

Method

M
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P

a
]
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10000
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Fig. 1. The output of the analysis of the distribution of the modulus of elasticity values according 
to the applied methods for C. lusitanica (CL) and P. x canadensis (PC) 

 

On the basis of the above-stated correlations and results of the dynamic and static 

tests, a dependence analysis was done using the linear regression method, the results of 

which are presented in the following graph and given regression equations. Table 4 

contains the regression equations for CL and PC. The coefficient of determination (R2) 

shows the degree of description given by the dependence or degree of reliability of MOE 

calculated according to the given equation. Dynamic MOE generally shows a lower 

correlation of dependence with bending strength than applies to the dependence of 

dynamic MOE and static MOE (Bodig and Jayne 1982; Larsson et al. 1998; Guntekin et 

al. 2013; Baar et al. 2015). For samples with a lower defect content (especially knots), 

these dependencies increase and the prediction of mechanical properties by dynamic 

testing is more accurate (Ayarkwa et al. 2000).  
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Fig. 2. Linear regression of the dynamic and static modulus of elasticity for the CL sample 
 

 
Fig. 3. Linear regression of the dynamic and static modulus of elasticity for the PC sample 
 

Table 4. Regression Equation and Coefficient of Determination for the Applied 
Method 

Method  
(x vs. y) 

Regression equation Coefficient of 
determination 

CL 
MTG. vs. MOESTAT MOESTAT =1.17· MOEMTG -103.22 0.87 

Acc. vs. MOESTAT MOESTAT =1.17· MOEAC -242.38 0.88 

PC 
MTG. vs. MOESTAT MOESTAT =0.94· MOEMTG +397.77 0.81 

Acc. vs. MOESTAT MOESTAT =0.78· MOEAC +2277.57 0.82 
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Nevertheless, some coefficients of determination between dynamic MOE 

measured by longitudinal vibration method and static MOE are published. Baar el al. 

(2015) tested three tropical species and achieved coefficients of 0.74, 0.72 and 0.23. 

Casado et al. (2010) tested Populus x euramericana with the same coefficient varying 

from 0.28 to 0.59. Comparing these data, the poplar dynamic and static methods 

presented are more accurate. Cupressus lusitanica is not as well-known regarding 

dynamic mechanical properties but linear regression analyses showed an even better 

relation between dynamic and static values of MOE than the PC sample (Table 4). It 

provides a prerequisite for possible construction use of this species. 

For the purposes of measurement, samples with a content of knots were used as 

described above to allow for assessment of the real possibilities of MOE measurement in 

practice and to validate the possibility to use the dynamic methods for derivation of static 

MOE. For the PC sample, it was demonstrated that both measuring devices used (MTG 

and accelerometer) returned similar results, and these results may be used for credible 

determination of the static MOE. In the case of CL, on the contrary, a significant 

statistical deviation was registered between static MOE and both dynamic methods 

(15.5% for MTG and 12.7% for accelerometer). The difference between the results of the 

dynamic and static tests of solid wood may be caused by the viscoelastic properties of 

wood, which play a role in the static bending test; additionally, the duration of the load on 

the tested element, which causes creeping and distorts real MOE, is important (Bodig and 

Jayne 1982; Larsson et al. 1998). If the creeping effect were eliminated, the deviations 

between the static and dynamic values would decrease (Teranishi et al. 2008). 

 
 
CONCLUSIONS 
 

1. Dynamic MOE was measured by longitudinal vibration test method on P. x 

canadensis (PC) and C. lusitanica (CL) samples. When comparing the results with 

static 4-point bending test data, the deviations were 2.4% and 1.1% for PC and for CL 

sample 15.5% and 12.7%. Greater deviation between static and dynamic MOE of CL 

sample was caused by the higher content of knots and greater sample length. 

2. Linear regression analysis gave high coefficients of determination for PC comparing 

to the literature (R2 0.82) and even higher for CL sample (R2 0.88). 

3. Cupressus lusitanica may have a good prerequisites for the estimation of its 

mechanical properties by nondestructive methods based on longitudinal vibrations 

and by reducing some growth defects, especially the knots, even better correlation can 

be obtained. 
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