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Lignocellulosic biomass resources are renewable materials that can be 
converted to fermentable sugars and subsequently into ethanol. Water 
hyacinth (Eichhornia crassipes) is a cellulosic aquatic plant that has high 
carbohydrates, low lignin content, and notable reducing sugars content in 
its structure. Based on the literature review in the case of water hyacinth, 
the most frequently used pretreatment methods were acid and alkali, while 
ionic liquid and microwave-assisted methods were used rarely. The 
dominant sugars were glucose, xylose, galactose, arabinose, and 
mannose. Based on the findings, cellulase and S. cerevisiae were mostly 
used for enzymatic hydrolysis and fermentation of water hyacinth to 
ethanol, respectively. This review presents the recent studies in 
pretreatment, hydrolysis, and fermentation of water hyacinth biomass into 
ethanol. 
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INTRODUCTION 
 

Concern about the greenhouse effect is an important reason for interest in 

renewable energy sources. Ethanol due to its potential as an alternative automotive fuel has 

attracted worldwide attention (Ganguly et al. 2012). Economic and environmental 

concerns about the depletion of fossil fuels have driven many countries to become 

interested in the use of biofuels as a source of renewable and cheap energy, replacing fossil 

fuels (Rezania et al. 2015a). Non-food lignocellulose-rich materials such as plant biomass 

are counted as a source of renewable energy (Saini et al. 2015). As stated by Noureddini 

and Byun (2010), agricultural residues, forest residues, wood, grass, waste paper, and 

municipal wastes are the biggest potential feedstock (lignocellulosic biomass) for ethanol 

production. Due to the abundance of lignocellulosic biomass, it can be considered as a 

suitable material for bioconversion to ethanol (Zabed et al. 2016). Many lignocellulosic 

biomasses, such as rice straw, sugarcane bagasse, wheat straw, cotton stalk, bamboo, and 

sugarcane tops are abundantly available as agro-residues (Sindhu et al. 2016). 

On the other hand, the reduction of CO2 in the atmosphere mitigates climate change, 

which depends on the usage of bioethanol instead of fossil fuels (Hosseini and Wahid 
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2013). The main advantages of producing second-generation rather than first-generation 

biofuels are the utilization of non-edible parts of biomass, which provides a better land use 

efficiency, higher contribution to the mitigation of CO2, and higher ethanol yield (Jambo 

et al. 2016). The main disadvantage of using lignocellulose rather than starch is its higher 

ethanol production cost. This is due to the two non-ecofriendly and high-energy steps, 

namely pretreatment and enzymatic hydrolysis (Phitsuwan et al. 2013). 

As Brown and Brown (2013) estimated, up to 25 million gallons of ethanol can be 

produced from cellulosic biomass-to-ethanol conversion technology annually. As reported 

by Naik et al. (2010), by 2022 the USA needs to provide 36 billion gallons of ethanol for 

its consumption, while they estimated that 21 billion can be obtained from cellulosic 

feedstock and 15 billion gallons from corn kernels. Researchers are trying to find suitable 

methods with lower cost to produce ethanol by optimization using different feedstocks, 

pretreatment technologies, and enzymatic hydrolysis/fermentation processes (Schell et al. 

2016). As mentioned by many studies, pretreatment, enzymatic hydrolysis, and microbial 

fermentation are the three main steps for conversion of lignocellulosic materials to 

bioethanol (Uday et al. 2016). 

 

 

COMPOSITION OF LIGNOCELLULOSIC BIOMASS 
 

Cellulose, hemicellulose, and lignin are three main constituents of lignocellulosic 

biomass. Cellulose and hemicellulose are composed of a mixture of carbohydrate polymers 

(Kumar and Murthy 2011). Lignocellulosic biomass, which has cellulose (30 to 35%), 

hemicellulose (20 to 30%), and lignin (10 to 20%), is an alternative feedstock for 

bioethanol production (Achinas and Euverink 2016). As reported by Barakat et al. (2013), 

80% of the total weight of lignocellulosic residues comes from carbohydrates and lignin, 

with some variation due to some factors such as type of spices, growth conditions, tissue, 

and cell wall maturity of plants. 

In lignocellulosic biomass, a matrix of cellulose and lignin is surrounded by 

hemicellulose chains (Klein et al. 2016). Cellulose is a homopolymer of glucose, while 

hemicellulose is built from a variety of five- and six-carbon monomers. Lignin is a complex 

amorphous polymer with high molecular weight that is tightly bound to carbohydrates. 

Moreover, it plays the role of cement for the cross-linking between cellulose and 

hemicellulose to form a rigid three-dimensional structure of the cell wall (Sarkar et al. 

2012). In untreated biomass, cellulose, hemicelluloses, and lignin are linked to form a 

strong structure that is difficult to process for ethanol production (Harun et al. 2011). 

Difficult degradation of lignin is due to its rigid structure, which is one of the limitations 

of using lignocellulosic-biomass materials in fermentation (Taherzadeh and Karimi 2008). 

Lignin removal is a difficult process that requires some chemicals and enzymes. The choice 

of a suitable feedstock with lesser lignin can improve the economic potential of biofuel 

production compared with lignin-rich biomass (Bhatt and Shilpa 2014). Table 1 shows the 

composition of different lignocellulosic biomass. 

Based on Table 1, different types of lignocellulosic biomass have varying amounts 

of cellulose (10% to 51%), hemicellulose (17% to 43%), and lignin (17% to 40%). This 

amount of lignin is assumed as high for production of ethanol. Different biomass substrates 

consist of differently arranged lignin structures, which significantly influences the 

chemical and physical processing of biomass during pretreatment for cellulose exposure 

(Ke et al. 2013). Moreover, by increasing the availability of the cellulose, carbohydrates, 

http://www.sciencedirect.com/science/article/pii/S0960852416000365#b0015
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and biomass digestibility by different pretreatments, bioconversion into bio-products can 

be more feasible (Ghaffar et al. 2015). 

 

Table 1. Composition of Different Lignocellulosic Biomass (Untreated Form) 

Lignocellulosic 
biomass 

Cellulose Hemicellulose Lignin Reference 

Sugarcane top 29.85 18.85 25.69 (Sindhu et al. 2011) 

Cornstalk 34.45 27.55 21.81 (Ma et al. 2011) 

Bagasse 30 35 18 (Sarkar et al. 2012) 

Sugarcane 
bagasse 

44 27 24 (de Souza et al. 2013) 

Sweet sorghum 
bagasse 

36.9 17.8 19.5 (Umagiliyage et al. 2015) 

Wheat straw 38.7 19 17.3 
(Valdez-Vazquez et al. 
2015) 

Rice straw 35.8  21.5  24.4 (Imman et al. 2015) 

Rapeseed 51.3 17.3 44 (Pei et al. 2016) 

Corn stover 36.3  31.4 17.2 (Saha et al. 2016) 

 

 

CELL WALL COMPOSITION OF WATER HYACINTH (Eichhornia crassipes) 
 

Water hyacinth (Eichhornia crassipes) is a free-floating aquatic plant that 

originates from Brazil and Ecuador. It belongs to the Pontederiaceae family and is related 

to the lily family Liliaceae. It reproduces both asexually, through stolons, and sexually 

through seeds, which is difficult to control and the seed can remain dormant for up to 20 

years (Rezania et al. 2015b). Water hyacinth (WH) biomass has monosaccharide and 

polysaccharide structures that contain different types of sugars and starch. The polymeric 

carbohydrates in WH are primarily cellulose and hemicellulose. Interestingly, not much 

data on bioethanol production from aquatic plants is available, except for WH (Rezania et 

al. 2015a). As reported by Lara-Serrano et al. (2016), in WH, the lowest cellulose content 

is found in the stem, while the highest is in the roots. High contents of cellulose and 

hemicellulose with low lignin, impressive growth rate and no competition on land use has 

led WH to be regarded as a suitable lignocellulosic material for bioenergy generation 

(Rezania et al. 2016; Feng et al. 2017).   

The evaluation of WH composition is important due to the variation of 

carbohydrate and lignin content in different studies. As reported by Kumar et al. (2009), 

WH has a high percentage of cellulose and hemicellulose (44% to 66.9% of dry weight 

basis), and a low lignin content, from 3.5% to 9.5%, which is sufficient to extract 

fermentable sugars with various pretreatments. However, the presence of lignin can make 

it resistant to degradation due to the compact structure between cellulose and 

hemicellulose. Pretreatment should be performed to improve the digestibility of WH, as 

the hydrolysis process is difficult and expensive (Gao et al. 2013b). Many studies have 

reported on the composition of WH during the ethanol production process, as shown in 

Table 2. 
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Table 2. Composition of Water Hyacinth (Carbohydrates and Lignin)  

Component Ahn 
et al. 
2012 

Xia 
et al. 
2013 

Ganguly 
et al. 
2013 

Singh 
and 
Bishnoi 
2013 

Cheng 
et al. 
2014 

Yan 
et al. 
2015 

Lin 
et al. 
2015 

Zhang 
et al. 
2015 

Das 
et al. 
2016a 

Das 
et al. 
2016b 

Ruan 
et al. 
2016 

Cellulose 34.19 23.31 35 19.2 24.15 31.81  28.9 18.07 24.7 31.44 24.5 

Hemicellulose 17.66 22.11 33 40.0 27.23 25.64 30.8 28.21 32.2 44.68 34.1 

lignin 12.22 12.58 15.5 4.8 12.39 3.55 4.6 7.03 3.2 19.99 8.6 

*The component values are expressed in g per 100 g dry matter. 

 

Different studies obtained different amounts of carbohydrates and lignin from WH 

biomass. Biotic and abiotic factors such as differences in species, growth state, and time of 

harvesting have also influenced carbohydrate and lignin content. As Table 2 shows, the 

cellulose content ranged from 18% to 35%, hemicellulose content ranged from 17% to 

45%, and lignin content from 3% to 20%. Although the lignin content of WH shows some 

variation, the average is lower than other lignocellulosic materials, 17% to 40%, which 

makes it more suitable for ethanol production.  

 

 

PRETREATMENT METHODS 
 

For the separation of carbohydrates and lignin, a pretreatment step is necessary; 

however, due to the high cost and difficulty, the biochemical conversion of lignocellulosic 

biomass to ethanol is still limited. After the separation, the carbohydrate portion can be 

fermented into alcohols (Anca-Couce 2016). Selection of suitable pretreatment method can 

enhance the digestibility and reduce the limitations of enzymatic hydrolysis in a feasible 

and economical way (Sun et al. 2016).   

Pretreatment processes can also have a significant impact on configuration, 

efficiency, and cost of downstream operations (Zheng et al. 2014; Shirkavand et al. 2016). 

In addition, a fundamental understanding of various pretreatment technologies can help to 

match the best pretreatment method/combination for a specific biomass feedstock (Mood 

et al. 2013). According to Arenas-Cárdenas et al. (2016), biomass characteristics, biomass 

availability, financial resources, and low negative environmental impacts can be 

considered to select the best pretreatment method. 

Recently, Sindhu et al. (2016) showed that the advantages and effectiveness of 

combined pretreatments are greater than the chemical pretreatments methods. This is due 

to the improvement of enzymatic hydrolysis and biofuel production of combined 

pretreatments when compared with a single pretreatment process. Alkali pretreatment can 

be used in combination with acid, as it is a proper method for delignification (Mood et al. 

2013). Mishima et al. (2008), used 20 chemical pretreatments to improve the efficiency of 

enzymatic hydrolysis of WH. The results indicated that the most effective method for 

improving the enzymatic hydrolysis is alkaline/oxidative pretreatment. The pretreatment 

process also can increase enzyme accessibility to biomass and yields of fermentable sugars 

(Zheng et al. 2014). Yield of fermentable sugars can reach to 90% with some pretreatment 

methods which is less than 20% without any pretreatment (Alizadeh et al. 2005).  

Pretreatment of lignocellulosic biomass in a cost-effective way is a major challenge 

for bioethanol production (Singh et al. 2015). Different cost-effective pretreatment 

methods have been identified based on the types of lignocellulosic biomass and 



 

PEER-REVIEWED REVIEW ARTICLE  bioresources.com 

 

 

Rezania et al. (2017). “Ethanol from water hyacinth,” BioResources 12(1), 2108-2124      2112 

productivity (Srivastava et al. 2015). As demonstrated by Shafiei et al. (2015), in acid 

pretreatment, many types of acids such as sulfuric, nitric, or hydrochloric acids can be used. 

In this method the major parameters are particle size, retention time, acid concentration, 

liquid to solid ratio and temperature. However, the solubilization of hemicellulose and 

cellulose in alkali method is lesser than acid pretreatment (Bhatt and Shilpa 2014). 

In the case of WH, pretreatment is normally carried out using acid/alkali treatment. 

Enzymatic hydrolysis yields of glucose and total reducing sugars, as well as fermentation 

yields of ethanol are considered as measures of the effectiveness of these pretreatment 

methods (Guragain et al. 2011). In a study by Sukumaran et al. (2009), the reducing sugar 

concentration was two times higher than that found using acid pretreatment for WH 

biomass using alkali pretreatment,.  

 

Table 3. Advantages and Disadvantages of Selected Pretreatment Methods 

Type of 
pretreatment 

Advantage  Disadvantage 

Acid (H2SO4) Removal of Lignin and 
hemicellulose, 
High hemicellulose solubility,  
Widely usage of dilute acid 
pretreatment due to its  
effectiveness, high sugar recovery 
efficiency (> 90%) for both xylose 
and glucose, cellulose accessibility 
for enzymatic saccharification 

Concentrated-acid process is 
corrosive and dangerous, 
Specialized non-metallic 
constructions is needed,  
Formation of inhibitors at low 
pH, 
Losses of sugar content, 
Neutralization and salt disposal  
 

Alkali (NaOH) Major removal of lignin and a part of 
hemicellulose, 
Decrease in polymerization degree 
and crystallinity 

low digestibility in softwoods,  
Large amount of water is 
needed for washing, 
Long pretreatment resident time, 
High chemical recovery cost 

Ionic liquid (IL) Less crystallinity of regenerated 
cellulose and accessible external 
and internal surfaces of cellulose,  
Lignin recovery and reuse after 
removal,  
Disruption of lignin and 
hemicellulose network 

High cost of chemicals, 
Recovery of solubilized 
cellulose/hemicellulose  
Toxicity of some ionic liquids 
Sugar separation from ILs and 
recycling 

Combined methods  
(microwave-
assisted) 

Improved enzymatic hydrolysis, 
Effective removal of lignin and 
hemicellulose  
Maximum utilization of 
lignocellulosic components  

High energy demands,  
Special equipment is needed, 
Production of toxic waste which 
can limit further downstream 
processing, Inability to remove 
hemicelluloses and lignin 

Adopted from (Sarkar et al. 2012; Brandth et al. 2013; Mood et al. 2013; Baeyens et al. 2015; 
Elgharbawy et al. 2016; Singh et al. 2016; Sun et al. 2016)  

 

Due to the tough structure of lignin, more severe pretreatment conditions are 

required to dissolve these lignocellulosic materials in Ionic Liquids (ILs) (Sun et al. 2016). 

Moreover, the increased rate of cellulose hydrolysis via cellulase in ILs leads to more 

production of fermentable sugars that can be converted into fuels (Menon and Rao 2012). 

In addition, a higher fermentable sugar yield was obtained by aqueous ILs pretreatment 

than pure IL pretreatment under the same conditions (Fu and Mazza 2011). A study by 

Cheng et al. (2015) demonstrated that simultaneous processes of pretreatment and wet 
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storage conserved 70% carbohydrates and removed 40% lignin from WH. As found by Xu 

et al. (2016), initially, 38.9% to 63.6% of lignin was removed from pretreated WH with 

surfactant-free ILs, meanwhile cellulose was well protected and retained. Gao et al. 

(2013a) found that 27.9% and 49.2% of lignin was removed after pretreatment of WH by 

1-butyl-3-methylimidazolium chloride ([Bmim]Cl)/DMSO.  

Microwave-assisted pretreatments have also been used to improve the enzymatic 

hydrolysis of lignocellulosic materials (Klein et al. 2016). As demonstrated by Moretti et 

al. (2014), microwave-assisted chemical pretreatments are more effective than 

conventional heating chemical pretreatments. Generally, pretreatment methods are 

classified in four different categories including physical, chemical, physicochemical, and 

biological. Chemical methods are used widely due to higher yield efficiency, although 

these methods are harmful for the environment. Table 3 shows a few pretreatment 

processes with a yield of fermentable sugars that is suitable for ethanol production from 

any type of lignocellulosic biomass. 

 

 

SUGAR PRODUCTION FROM WATER HYACINTH  
 

Many studies have employed lignocellulosic biomass as a feedstock for 

fermentable sugar production, which is the key element in sustaining bio-products such as 

bioethanol. A popular way of sustaining bioethanol is using fermentable sugars for 

producing bio-productions taken from starch crops. The result has been able to help satisfy 

the huge demand for a cheap and sustainable source of feedstock for fermentable sugar 

production (Mood et al. 2013). Cheng et al. (2015) shows that the presence of 

carbohydrates in biomass after wet storage and pretreatment affects the process of 

enzymatic saccharification and has resulted in decreases in the sugar yield. The availability 

of different sugars is related to using various types of enzymes for the degradation of 

lignocellulosic structure (Uday et al. 2016). 

Enzymatic hydrolysis is necessary to make carbohydrates accessible for ethanol 

production. During enzymatic hydrolysis, WH produces more pentose sugars rather than 

hexose sugars. As reported by Aswathy et al. (2010), glucose and xylose are the major 

fermentable sugars in WH hydrolysate. They also found that the maximum reducing sugar 

yield obtained in hydrolysis of acid pretreated WH was only 136 mg/g and 639.42 mg/g in 

alkali pretreated WH. After acid pretreatment of WH by H2SO4 (2% (v/v) at 110 °C for 90 

min, the maximum yield of fermentable sugars was 0.54 g/g WH (Fileto-Pérez et al. 2013).  

In a study by Xia et al. (2013), microwave-acid pretreatment improved enzymatic 

saccharification of WH and 483 mg/g WH reducing sugars with 94.6% sugar yield was 

obtained.  Xu et al. (2016), obtained the reducing sugar yield of WH pretreated with IL 

microemulsions at 70 °C for 6 h at 563.7 mg/g, followed by a hydrolysis yield of 86.1%. 

Hence, at optimal hydrolysis conditions (T: 190 °C, time = 10 min and cellulase dosage = 

5 wt%), microwave pretreated WH produced 0.296 g/g total volatile solids reducing sugar 

yield (Lin et al. 2015). According to Mishima et al. (2008), the major WH sugar contents 

was found in the roots, except for arabinose, which was in the leaves. As found by 

Manivannan and Narendhirakannan (2015), the amounts of glucose, xylose, and total 

reducing sugars range from 0.07 to 0.41 g/g WH. Table 4 shows the characterization of 

different types of sugars in WH biomass. 
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Table 4. Characterization of Different Types of Sugars in WH 

Reference Glucose Xylose Galactose Arabinose Mannose Cellobiose Lactose 

(Mishima et al. 
2008) 

√ √ √ √ √   

(Mukhopadhyay, 
and Chatterjee 
2010) 

√ √ √ √ √   

(Ahn et al. 2012) √ √ √ √ √   

(Xia et al. 2013) √ √ √ √  √  

(Cheng et al. 
2014) 

√ √ √ √ √ √ √ 

(Das et al. 2014) √ √  √    

(Lin et al. 2015) √ √ √  √  √ 

 

 

FERMENTATION AND ETHANOL PRODUCTION 
 

In this section, various types of microorganisms and enzymes that frequently 

contribute to ethanol production from WH are discussed. In addition to the multitude of 

pretreatment methods, there are two types of enzymatic hydrolysis and fermentation 

methods, including Separate Hydrolysis and Fermentation (SHF) and Simultaneous 

Saccharification and Fermentation (SSF). The suitable fermentation method was based on 

the characteristics of the fermenting microorganism. Some parameters, such as type of 

biomass, type of pretreatment, inoculum size, moisture content, and pH are the main 

parameters that affect the SSF process (Mansour et al. 2016). The fermentation organism 

must have the potential to ferment with available saccharides present in hydrolysates, while 

being able to withstand inhibitors (Ganguly et al. 2012). For instance, Jayakody et al. 

(2016) found a novel inhibitor-tolerant S. cerevisiae strain that was able to overcome the 

barriers to industrialization of cellulosic ethanol production.  

Cellulase is composed of endoglucanases, exoglucanases, and β-glucosidases, 

which have the potential for enzymatic hydrolysis of cellulose. Cellulases are mostly 

produced by fungi, for instance Trichoderma reesei, Aspergillus, Schisophyllum, and 

Penicillium (Baeyens et al. 2015). In ethanol production, some native or wild-type 

microorganisms, used in fermentation, include Saccharomyces cerevisiae, Escherichia 

coli, Zymomonas mobilis, Pachysolen tannophilus, C. shehatae, Pichia stipitis, Candida 

brassicae, and Mucor indicus. Meanwhile, S. cerevisiae and Z. mobilis are the best known 

yeast and bacteria, respectively (Talebnia et al. 2010). Baeyens et al. (2015) showed that 

Candida shehatae and Pichia stipitis yeasts have a good potential at low pH levels, while 

they have a low tolerance for various inhibitors, including the ethanol product. 

The most common and traditional microorganism used in industrial bioethanol 

production is the yeast S. cerevisiae. Considerable efforts have been dedicated to 

engineering this microorganism to metabolize xylose (Dionisi et al. 2015). S. cerevisiae 

can ferment only hexoses, which probably accounts for the low ethanol production. 

However, it cannot apply for pentose sugars, which may constitute up to 40% of WH. To 

overcome this problem, recombinant DNA technology (genetic engineering) is 

recommended by Srivastava et al. (2015), 
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The advantages of Zymomonas mobilis over S. cerevisiae with respect to producing 

bio-ethanol are (1) higher sugar uptake and ethanol yield; (2) lower biomass production; 

(3) higher ethanol tolerance; and (4) amenability to genetic manipulations. Schell et al. 

(2016) showed that Z. mobilis has better performance in SHF because the microorganism 

does not perform well at the low glucose concentrations typically seen during SSF. The 

ability of ethanol production from WH has been investigated and reviewed in some studies 

(Ganguly et al. 2012; Rezania et al. 2015a). Table 5 shows recent studies regarding ethanol 

production from WH biomass.  

 

Table 5. Recent Studies of Ethanol Production from WH 

Reference Pretreatment 
method 

Fermentation 
mode 

Microorganism  
and enzyme 

Reducing 
sugar / finding 

Ethanol yield 

 
(Guragain et al. 
2011) 
 

 
1% (v/v) 
(H2SO4) 

 
SHF in flask 

 
S. cerevisiae and 
cellulase from 
Trichoderma 
reesei 
 

Glucose and 
total sugars 
yield of acid 
pretreatment 
were 445 and 
714 mg/g of 
WH. 

Ethanol 
concentration 
was 0.45 
mg/mg 
glucose. 

Using 
EMIMDP and 
BMIMA in IL 
pretreatment 

Glucose and 
total sugars 
yield of acid 
pretreatment 
were 332 and 
584 mg/g of 
WH. 

Ethanol 
concentration 
was 0.40 
mg/mg 
glucose 

 
(Ahn et al. 2012) 

 
Alkaline-
oxidative 
(A/O) 
pretreatment 

 
Batch and 
continuous 

 
S. cerevisiae 
(KCTC 7928) 

 
Final glucose 
concentration 
was 16.42 
(g/L). 

Ethanol 
productivity of 
continuous 
fermentation 
was 0.77 (g/l 
h), which was 
1.57 times 
higher than 
that of batch. 

 
(Singh and 
Bishnoi 2013) 

 
2.75% NaOH 
and 1-hour 
pretreatment 
time 

 
Solid state 

fermentation  
in bioreactor 

 
A. niger used for 
saccharification 
and S. cerevisiae, 
and P. stipitis 
used for 
fermentation 

Sugar 
consumption 
were 51, 65 
and 82% by S. 
cerevisiae, S. 
stipitis and co-
culture of both 
respectively. 

Ethanol 
produced 
from S. 
cerevisiae, S. 
stipitis and by 
co-culture of 
both, with 
4.3, 6.2 and 
9.8 g/L, 
respectively. 

 
(Das et al. 2014) 

Three different 
pretreatments: 
wet oxidation, 
phosphoric 
acid (H3PO4)-
acetone, and 
ammonia fiber 
explosion 
(AFEX) 

 
SSF in flask 

 
Using 
S. cerevisiae and 
Candida 
shehatae 
 

TRS was for 
wet oxidation 
equal to 1.1 
g/L and a yield 
of 0.107 (g /g 
WH), for 
phosphoric 
acid equal to 
1.30 g/L and a 

Highest 
ethanol titer 
of 1.52 g/L by 
AFEX as 
compared 
with wet 
oxidation 
(1.23 g/L) 
and 
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yield of 0.168 
(g/g) and for 
AFEX 
pretreated WH 
had 1.4 g/L 
and a yield of 
0.187 (g/g) 

phosphoric 
acid-acetone 
pretreatments 
(1.31 g/L). 

 
(Cheng et al. 
2014) 

 
Microwave 
with 1% dilute 
H2SO4 

 

 
SSF in 
beaker 

 
P. Stipitis and 
Pachysolen 
tannophilus and 
hydrolysis by 
Trichoderma 
reesei cellulase 

 
Highest TRS 
was 482.8 g/g 
WH 

Highest 
ethanol yields 
22 g/g (raw 
biomass of 
WH) with 
76.3% of the 
theoretical 
ethanol yield. 
Maximum 
production 
rate was 0.19 
(g/ L/h). 

 
(Manivannan and 
Narendhirakannan 
2015) 

 
Varying 
concentrations 
of H2SO4 (0.1, 
0.5, 1, 1.5 or 2 
%) at a ratio of 
1:8 

 
SHF 

 

 
C. intermedia,  
P. stipitis.  
P. tannophilus  
and S. cerevisiae 

 
1.96-3.79 g/L 
was yield of 
glucose and 
xylose, 3.79-
5.27 g/L of 
total reducing 
sugars.  

Ethanol 
production 
by:  
P. 
tannophilus 
(0.043), 
P. stipitis. 
(0.037),  
C. intermedia 
(0.021), S. 
cerevisiae 
(0.015 g/g) 

 
(Yan et al. 2015)  

 
Pretreatment 
by 1.5% (v/v) 
H2 O2 and 
3% (w/v) 
NaOH 
 
 

 
SHF and 

SSF in flask 

  
Enzymatic 
hydrolysis by 
cellulase  
using newly 
isolated 
Kluyveromyces 
marxianu K213 
and control S. 
cerevisiae 

 
Reducing 
sugars were 
(223.53 mg/g 
dry) compared 
to 48.67 mg/g 
dry in the 
untreated 
sample. 

Maximum 
ethanol  
(7.34 g/L) 
obtained in 
SHF using K. 
marxianu 
K213 that 
was 1.78-fold 
greater than 
angel yeast 
S. cerevisiae 
(4.94 g/L).   
 

 
(Zhang et al. 
2015) 

(1% H2SO4 at 
100 °C for 
30min 
(0.5% 
NaOH at 40 
°C for 30min 
and 
microwave-
alkaline (150 
W microwave 
combined with 
0.5% NaOH 
for 0.5 min) 

 
SSF 

 
Using cellulase 
and S. cerevisiae 

 In optimized 
condition, 
402.93mg/g 
and 
(197.60mg/g in 
hydrolysates, 
and 205.33 mg 
by residue 
hydrolysis) 
reducing sugar 
was produced. 

The 
optimized 
condition was 
at 38.87 °C in 
81.87h when 
inoculated 
with 6.11mL 
yeast and 
1.291g/L 
bioethanol 
was 
produced. 
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(Das et al. 2015) 

Sodium 
hydroxide with 
a biomass 
loading of 
10% (w/v), 5% 
(w/v) 
concentration 
of NAOH, 
soaked for 
1 hour and 
treatment time 
of 10 minutes 
at 130 °C. 

 
SHF in flask 

Cellulase from 
Trichoderma 
reesei and 
xylanase from 
Trametes 
versicolor for 
saccharification 
and Pichia stipitis, 
Candida 
shehatae and S. 
cerevisiae for 
fermentation 

 
Maximum TRS 
(0.5672 g/g) 
was obtained 
using 9.92 (% 
w/w) substrate 
concentrations. 
 

Maximum 
ethanol was 
10.44 g/L 
using Pichia 
stipitis, 
followed by 
8.24 and 6.76 
g/L for C. 
shehatae and 
S. cerevisiae. 

 
(Das et al. 2016a) 

(10 %, w/v) 
WH with dilute 
H2SO4 (2 %, 
v/v) 

 
SHF 

Mixture of S. 
cerevisiae (MTCC 
173) and Z. 
mobilis (MTCC 
2428) 

The maximum 
sugar yield 
was 
(425.6 mg/g)  

Ethanol 
production 
was 
13.6 mg/mL 

 
(Das et al. 2016b) 

 
Microwave-
assisted alkali 
and 
organosolv 

 
SSF in flask 

and 
bioreactor 

GH5 isolated 
from C. 
thermocellum + 
recombinant 
hemicellulase 
GH43 + S. 
cerevisiae + C. 
shehatae 

In optimized 
condition TRS 
yield was 
12.35 ± 0.07 
g/L and 16.12 
± 0.09 g L−1, in 
flask and 
bioreactor, 
respectively. 

Optimized 
shake flask 
and 
bioreactor 
SSF yielded 
ethanol titer 
of 9.78 and 
13.7 g/L, 
respectively. 

 

As shown in Table 5, although most studies used combined pretreatment methods, 

there has been no published study regarding ethanol production from IL pretreated WH. 

For IL pretreatment, researchers mostly have focused on the evaluation of reducing sugars 

and lignin removal. The reason might be due to the reaction of water molecules with IL 

solvents during fermentation, which is related to the higher moisture content of WH  (25%) 

in comparison to wheat straw (10%) as reported by Li et al. (2016) and rice straw (10%) 

as reported by de Assis Castro et al. (2016). Similarly, microwave-assisted pretreatments 

were not very favorable for pretreatment of WH. The reason could be the negative effect 

of irradiation on the WH structure. For instance, irradiation can disrupt the cell wall 

structure that may reduce the amount of reducing sugars in WH biomass.  

  

 

CONCLUSIONS  
 

This review shows that WH is a competent cellulosic biomass. Because it has a 

high carbohydrate and low lignin content in comparison to other biomass types, it can be 

regarded as highly suitable for the production of ethanol as a second generation biofuel. 

Based on the literature, for conversion of WH to ethanol, S. cerevisiae is used frequently 

rather than C. shehatae, Pichia stipites, and Z. mobilis. Moreover, for enzymatic hydrolysis 

of WH a wide range of cellulase types are used. Meanwhile, in light of the three major 

steps in ethanol production from biomass are pretreatment, enzymatic hydrolysis, and 

fermentation, the commercialization of ethanol production has encountered a major 

limitation due to the high cost of pretreatment. Comprehensive development and 

optimization are therefore required to make production of ethanol from lignocellulosic 
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biomass in a cost effective manner. As earlier reported by (Sukumaran et al. 2009), the 

costs of enzyme for hydrolysis and saccharification are key barriers for commercialization 

of ethanol production from biomass. In addition, due to low cost and high availability, 

lignocellulosic biomass can be used as long term alternative source for ethanol production 

(Baeyens et al. 2015).  Furthermore, the usage of cost-effective raw materials such as 

lignocellulosic residuals in effective fermentation methods (e.g. SSF), the economic 

aspects of ethanol production can be improved. Recently Sindhu et al. (2016) found that 

the reduction of pretreatment cost and enzyme saccharification with proper reactor design 

can improved the cost of ethanol production. 

For commercialization of ethanol production from WH, in addition to the technical 

mentioned barriers considered in this article, harvesting and transportation costs also 

should be considered and minimized. Hence, the yield of ethanol production from water 

hyacinth is 0.12 g/g ethanol, which is lower than rice straw 0.18 g/g ethanol and wheat 

straw 0.2 g/g ethanol.  
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