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This study investigated the efficiency of peanut hull (PBC), bush branch 
(BBC), Spartina alterniflora (SBC), and rape straw (RBC) in removing 2,4-
dichlorophen (2,4-DCP) from an aqueous solution. The 2,4-DCP removal 
efficiency of the four kinds of biochars (BCs) increased in the order BBC > 
PBC > SBC > RBC. The adsorption process was affected by the pH, 
contact time, temperature, BC’s particle size, and dosage. Based on the 
results of Fourier transform infrared spectrometry (FTIR) and scanning 
electron microscope (SEM), the adsorption mechanism of 2,4-DCP was 
associated with the functional groups and the microtissue and structure of 
BCs. Furthermore, the organic components of the BCs played an essential 
role during the adsorption process of the 2,4-DCP. The remediation of 
organic pollutants by BCs is a complicated process that is characterized 
by the physical-chemical reaction between the two components (organic 
pollutants and BCs). 
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INTRODUCTION 
 

Chlorophenols (e.g. 4-chlorophenol, 2,4-dichlorophen, 2,4,6-trichlorophenol) are 

organochlorides of phenol that contain an aromatic structure bonded with one or more 

chlorine atoms. They are widely used as intermediates in manufacturing insecticides, 

papers, print-dyes, and pharmaceuticals (Rashid et al. 2014). Among chlorophenols, the 

2,4-dichlorophen (2,4-DCP) is considered a priority pollutant (Li et al. 2011). It is 

extensively used to control insects and weeds globally (Peng et al. 2016). The excessive 

use of chlorophenols leads to the pollution of surface water, underground water, air, and 

agricultural fields (Shih et al. 2012; Xiao et al. 2016). Vlastos et al. (2016) reported that 

2-chlorophenol (only one Cl element) with the concentrations up to 1 μg mL-1 could cause 

chronic toxicity to microbes and fish. Chlorophenols also produce unpleasant and excitant 

odors; they are potentially carcinogenic and mutagenic that induce a negative impact on 

the human health (Wang et al. 2014).   
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 Due to its toxic effects, which harm public health and the environment, various 

technologies have been reported for the degradation of chlorophenols in soil or removal 

from the effluent, such as adsorption  (Devi and Saroha 2014), membrane filtration (Du et 

al. 2013), and bioremediation (Dos Reis et al. 2013). Among the remediation technologies, 

adsorption is an efficient, cost-effective, and simple process for the removal of the organic 

pollutants from the wastewater (Devi and Saroha 2014).  

Biochar (BC) is a stable and environmentally friendly carbonaceous material that 

has attracted broad attention in recent years for its adsorption properties to remediate 

various contaminants (Lehmann 2007; Ahmad et al. 2014). Biochar prepared from 

agricultural wastes through pyrolysis is a potentially attractive adsorbent for the organic 

pollution control because of its high sorptivity, rich carbon source, small ecological risk, 

and minimal secondary contamination (Lehmann et al. 2011; Lou et al. 2011). The BC 

contains various functional groups and microcellular structures, which enhances its 

efficiency to remove and remediate various organic and inorganic pollutants (Lou et al. 

2012; Cui et al. 2016). Many studies have reported that biochar is an efficient adsorbent 

for the remediation of various organic pollutants, such as phenol (Liu and Zhang 2011), 4-

chlorophenol (Shih et al. 2012), and polycyclic aromatic hydrocarbons (Oleszczuk et al. 

2012). Devi and Saroha (2015) reported that modified biochar was efficient to adsorb 

pentachlorophenol (PCP) from water. The modified biochar simultaneously degraded PCP 

by dechlorination (Devi and Saroha 2015). Oh and Seo (2016) reported that bio-solid 

derived biochar had maximum adsorption capacity (34.4 mg g−1) for 2,4-DCP in an 

aqueous solution compared to other biochars (rice straw, oak tree leaves, corn stalks, and 

coffee grounds). However, very limited knowledge is available regarding the potential of 

plant biomass derived biochars with varying physico-chemical properties to remove the 

2,4-DCP from an aqueous solution. Hence, this study was conducted to confirm the 

mechanism of different plant biomass derived biochars on the adsorption of 2,4-DCP in an 

aqueous solution. The variation in the surface and chemical characteristics of different 

biochars was also evaluated after the 2,4-DCP adsorption at different temperatures. 

Moreover, the impact of different factors (pH, temperature, biochar dosage, and reaction 

time) on the adsorption of 2,4-DCP onto biochar was estimated with different models.  

 

 

EXPERIMENTAL 
 

Materials 
Four kinds of BCs were produced in the laboratory by pyrolyzing the raw materials 

peanut hull (PBC), bush branch along the road side (BBC), Spartina alterniflora from the 

sea coast of Yancheng, Country (SBC), and rape straw (RBC) at 450 °C in a vacuum tube 

furnace (NBD-O1200, Nobody Materials Science and Technology CO., LTD, Zhengzhou, 

China). The BCs were ground and separated into different particle sizes (0.15 mm to 2 mm) 

through a mesh sieve. The organic matter content, CEC, total N and P were determined 

according to procedures described by Lu (2000). The pH of each mixture of biochar and 

distilled water (1:10, W:V) was measured with the electrode method (Jindo et al. 2014). 

The specific surface area was determined using N2 sorption isotherms (Zhang et al. 2011). 

The biochar materials were digested with HF, HNO3, and HClO4 (2:1:1, V:V:V) and K, 

Ca, Mg determined by using flame atomic absorption spectrophotometer (FAAS, TAS-986, 

Persee, China). The basic properties of BCs are presented in Table 1. The functional groups 

(e.g. –OH, C=O) were identified using a Fourier transform infrared spectrometer (Nexus-
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670, Thermo Nicolet Corporation, Waltham, USA). The morphological structure and 

relative elemental composition of the BCs were observed by scanning electron microscopy 

and energy dispersive spectroscopy (SEM- EDS) (Quanta200, Field Electron and Ion Co., 

Hillsboro, USA). The degradation matter of 2,4-DCP was detected by Thermo Trace DSQ 

II Gas Chromatography-Mass Spectrometer (GC-MS) (TRACE 1310- ISQ, Thermo Fisher 

Scientific, Waltham, USA). 

 

Table 1. Basic Properties of BCs 

 
pH 

(H2O) 

Organic 
 Carbon 
(g kg-1) 

Surface 
Area 

(m2 g-1) 

CEC 
(cmol 
kg-1) 

Total 
 N 

(g kg-1) 

Total 
P 

(g kg-1) 

Total 
 K 

(g kg-1) 

Total 
Ca 

(g kg-1) 

Total 
Mg 

(g kg-1) 

PBC 9.16 558.2 9.54 9.54 10.52 44.73 15.51 4.25 1.52 

BBC 9.51 671.5 18.01 14.63 8.96 33.25 18.06 10.38 6.49 

SBC 10.13 699.1 6.41 6.70 10.35 55.63 15.87 8.65 4.56 

RBC 10.35 574.3 7.52 9.86 6.32 20.53 19.65 20.31 5.83 

 

The 2,4-DCP was purchased from Sigma–Aldrich (Shanghai, China) with 

analytical purity ≥ 99%. The stock solution of 2,4-DCP (1000 mg L−1) was prepared daily 

with pure water and its pH was adjusted with 0.1 mol L-1 HCl or NaOH. The stock solution 

was kept in a refrigerator to prevent the degradation. The 2,4-DCP stock solution was 

further diluted to achieve the target concentration.  

 

Methods 
Sorption experiments  

A series of batch experiments was performed in triplicates to evaluate the 2,4-DCP 

adsorption capacity of BCs. The 2,4-DCP adsorption concentrations were prepared from 

the stock solution with a range from 5 mg L-1 to 160 mg L-1. The biochar (0.1, 0.2, 0.4, 0.8 

g 50 mL-1) to solution ratios were adjusted to obtain 30% to 70% 2,4-DCP adsorption after 

reaching equilibrium. The BCs and 2,4-DCP solution were mixed in a 250-mL glass flask, 

and sealed with tape and shaken at 180 rpm for 0, 10, 30, 60, 120, 240, 480 min in a water 

bath at 25 °C, 35 °C, and 45 °C. The background electrolyte of the mixed solution was 0.01 

mol L-1 CaCl2, and the pH (1, 3, 6, 8, and 10) was adjusted with 0.1 M NaOH and HCl (Lou 

et al. 2013). After reaching the equilibrium during the sorption experiment, the solution 

was filtered through a 0.22-μm nylon membrane. The 2,4-DCP concentrations were 

analyzed by high performance liquid chromatography (HPLC, Perkin Elmer Flexar-15, 

PerkinElmer Inc., Waltham, USA) with a UV detector equipped with a reverse phase 

column, 4.6 mm × 150 mm XDB-C18 column (Agilent Technologies Inc., Santa Clara, 

USA) (Shih et al. 2012; Lou et al. 2013).  

In the desorption experiments, the 2,4-DCP loaded BCs were washed with distilled 

water three times to remove the surface 2,4-DCP. Then, 50 mL 0.01 mol L-1 CaCl2 was 

added to the 2,4-DCP loaded BCs and shaken for 16 h at 25 °C. After shaking the solution 

was filtered, and the 2,4-DCP concentration in the filtrate was measured as described 

above. 

To evaluate the adsorption capacities of 2,4-DCP by the BCs, the Langmuir model 

was used to fit the experimental data. The Langmuir model was expressed as,  

Qe = Ce × K × Xmax / (1 + Ce × K)       (1) 
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where Qe is the 2,4-DCP adsorption capacity (mg g-1), Ce is the 2,4-DCP concentration 

after the equilibrium (mg L-1), Xmax is the maximum adsorption capacity (mg g-1), and K is 

the adsorption equilibrium coefficient (Cui et al. 2013; Peng et al. 2016).  

 

 

RESULTS AND DISCUSSION 
 
FTIR of BCs 

Fourier transform infrared spectrometry (FTIR) was employed to identify the 

functional groups that BCs contained before and after the 2,4-DCP adsorption (Fig. 1). The 

FTIR spectrum of BCs showed the various functional groups, such as −OH (3425 cm-1 to 

3431 cm-1), C-H (2924 cm-1 to 2922 cm-1), aromatic rings C=C (1615 cm-1 to 1630 cm-1), 

aliphatic C−O−C (1258 cm-1 to 1261 cm-1), and C−OH (1418 cm-1 to 1439 cm-1). Li et al. 

(2016) showed that the abundant functional groups on the surface of biochar were due to 

the carbonation process. The peaks changed slightly after the 2,4-DCP adsorption onto the 

BCs, which formed organic C−Cl stretching (704 cm-1 to 762 cm-1). Similarly, the peak 

that appeared at 1383 cm-1 to 1449 cm-1 was a methylene stretching that linked to the C−C 

groups in the BCs. The FTIR results revealed that the different BCs had different functional 

groups, which could be attributed to the biochar species (Xiao et al. 2016). The biochar 

properties considerably affect the interactions between 2,4-DCP and the functional groups 

during the sorption process (Cui et al. 2016). Fang et al. (2015) found that the persistent 

free radicals (-OH) could be activated on carbonaceous materials, such as biochar, and that 

the oxygenated functional groups were key factors in the formation of persistent free 

radicals. Part of molecular substance in the biochar formed extra functional groups (as 

shown in the FTIR results) during the adsorption process, which provided more sites and 

improved the adsorption capacity of BCs (Lou et al. 2013).  

 

 
 

Fig. 1. FTIR spectra of BCs before (A) and after 2,4-DCP adsorption (B) 

 

SEM-EDS of BCs 
Map A is the SEM image of the BBC that shows the exterior surface containing 

various vessels. The EDS analysis further indicated that BBC contained relatively more C 

than Si element. Map B showed that the surface of peanut biochar was irregular and 

element distribution was like that of BBC. Moreover, the SBC map indicated relatively 
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abundant Si particles on its surface (high Si element peak) than other elements (Map D). 

The SEM-EDS analysis indicated that the BCs adsorption capacity was associated with the 

high percentage of C, O, and Si elements, which formed the micritic carbon structure and 

small nanopores (Bian et al. 2014).   

 

  
 

Fig. 2. SEM images of four kinds of BCs and the EDS elemental maps of the main elements in 
the red boxed area; (A, BBC; B, PBC; C, SBC; and D, RBC) 

 

Effects of Solution’s pH and BCs Dose/Particle Size 
The 2,4-DCP adsorption was affected by various factors, such as the solution pH, 

BC’s dosage, and BC’s particle size. The solution pH was a key factor affecting the 2,4-

DCP state and BC’s surface and inner structure, such as electrostatic effects and π–π 

interactions (Peng et al. 2016). Wang et al. (2007) found that activated carbon was most 

efficient in removing the 2,4-DCP from water at pH 3 and concluded that an increase of 

electrostatic repulsion exists between activated carbon and dichlorophenate anions in 

solution at high pH. Kalderis et al. (2017) used different biochars materials for the removal 

of 2,4-DCP from aqueous media and found that the maximum adsorption percentage was 

achieved at pH 2. Similarly, in our study, all BCs were efficient in removing the 2,4-DCP, 

especially at the initial pH of 1 (Fig. 3 A). When the solution pH was higher than 6, the 

adsorption capacity decreased by 36.6% to 58.6% (BBC), 53.1% to 73.0% (PBC), 29.0% 

to 66.3% (SBC), and 38.5% to 93.7% (RBC) at pH of 6, 8, and 10 compared with pH 1 
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(Fig. 3 A). Overall, the 2,4-DCP adsorption capacity of BBC increased 31.3% to 94.0% 

compared to the other BCs. This negative correlation between 2,4-DCP adsorption and 

solution pH could be due to the reason that at very low pH, H3O
+ ions surround the biochar 

surface, which promotes the interactions between the ionizable chlorophenols and the 

biochar surface (Wang et al. 2007). At elevated pH (> 7), it is possible that the negative 

charge of 2,4-DCP increases due to loses of H+ and therefore reducing the adsorption due 

to repulsion phenomena of the anionic dichlorophenate (Müller et al. 1998; Cui et al. 2013). 

Moreover, the functional groups and adsorption sites of the BCs might have changed with 

increased solution pH and thus could have resulted in the decrease adsorption of BCs (Lou 

et al. 2011). At the same time, the water solubility of 2,4-DCP increases with high pH (pH > 

7), which could exert a great environmental toxic effect (Vlastos et al. 2016). 

 

 

 
Fig. 3. Effect of pH (A), biochar dosage (B), and particle size (C) on 2,4-DCP adsorption 
capacities by four kinds of BCs (All data is shown as the mean ± standard deviation (SD)) 

 

The removal rate of 2,4-DCP increased by 37.8% to 92.5% with the increase in BCs 

dosage (except SBC and RBC) (Fig. 3B). Similar to our results, Ma et al. (2010) found that 

at adsorption equilibrium, 2,4-DCP removal (95.5% to 99.5%) increased with doses of 

bamboo charcoal. The increase in adsorption with the BCs dosage can be due to increased 

surface area and the availability of more adsorption sites. However, the decrease in 
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adsorption capacity of SBC and RBC with increased dosage could be due to the decrease 

number of 2,4-DCP molecules per adsorption site (Nguyen and Lee 2015). Moreover, once 

the dose of SBC and RBC exceeded 0.4 g 50 mL-1, the pH of the mixed solution remarkably 

increased even at the low initial pH.  

The BC’s particle size was also found to be an important factor that affected the 

2,4-DCP adsorption (Fig. 3 C). The adsorption capacity increased with the smaller BCs 

particle size. The 2,4-DCP adsorption increased by 10.7% to 90.1% with the particle size > 

2 mm compared with the size < 0.15 mm for the four kinds of biochars. At the same particle 

size, the adsorption capacity of BBC and PBC was > 50% higher than SBC and RBC. The 

removal rate of 2,4-DCP increased with smaller biochar size particles, which provided the 

higher specific surface area and more adsorption sites (Lin et al. 2009). 

 

Effects of Contact Time 
The effects of the contact time on 2,4-DCP adsorption by four BCs are shown in 

Fig. 4.  

 

 

 
 
Fig. 4. Effect of contact time on 2,4-DCP adsorption capacities by BBC (A), PBC (B), SBC (C), 
and RBC (D) 
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The 2,4-DCP adsorption capacities of BCs increased with the passage of time. Ma 

et al. (2010) reported that activated charcoal removed about 90% of 2,4-DCP from the 

solution within the first 5 min. As time increased above 5 min the adsorption capacity of 

the adsorbent increased slowly with the contact time and eventually reached equilibrium 

in less than 100 min. However, in the present study, the removal rate of 2,4-DCP was the 

fastest with BBC, and over 80% of 2,4-DCP was removed from solution within 10 min. 

The other three BCs showed a slower adsorption rate and nearly achieved equilibrium 

during the first 120 min. This is simply due to the reduction of driving force after a longer 

period of operation. 
 

Adsorption Isotherms 
The effect of four BCs on the adsorption isotherms of 2,4-DCP is shown in Fig. 5. 

The Langmuir model was employed to estimate the maximum adsorption capacity with the 

initial concentration in the range from 10 mg L-1 to 160 mg L-1. The results showed that 

the maximum adsorption capacity was 24.48 mg g-1 (BBC), 23.42 mg g-1 (PBC), 18.46 mg 

g-1 (SBC), and 11.84 mg g-1 (RBC) at 45 °C. 

 

 

 
 

Fig. 5. Sorption isotherms of 2,4-DCP adsorption capacities by BBC (A), PBC (B), SBC (C), and 
RBC (D) 
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The K value from the equation (1) was substantially increased from 7.0% to 388.0% 

with the increase in temperature. The K values of BBC and PBC were much higher than 

RBC and SBC at 45 °C, which showed that the BBC and PBC had larger adsorption ability 

compared with RBC and SBC, and the surface area also proved this point (Table 1). 

Kalderis et al. (2017) found that the 2,4-DCP adsorption capacity at equilibrium (9.28 mg 

g−1) of paper sludge/wheat husk biochar was highest compared with that of other biochars 

derived from different materials such wood chip, hog fuel/demolition wastes, and sewage 

sludge (1.57−2.96 mg g−1). They concluded that π-electron donor-acceptor (non-covalent) 

and electrostatic interactions (pH-dependent) were primary mechanisms that played the 

most significant roles in the adsorption of 2,4-DCP onto biochars. BBC, which had the 

highest surface area, exhibited the maximum adsorption capacity for the 2,4-DCP. The 

surface area is closely linked to average pore size, and the very small size (0.482 nm) of 

2,4-DCP molecule promoted the pore-filling process in the microporous biochar and 

resulted in the highest adsorption (Yang et al. 2016). 

The organic components in the solution were analyzed by GC/MS after the biochar 

adsorption experiment (Fig. 6). The pyrograms of the GC-MS fingerprint of BCs 

adsorption was mainly attributable to that portion of 2,4-DCP that was not adsorbed. The 

other dominant components were of the mixture of benzene derivatives and low molecular 

weight organic matter, which came from the biochar or were produced from the interaction 

of 2,4-DCP and biochar. The different kinds of organic compound except the 2,4-DCP 

appeared in the solution, which could have been attributed to the enhanced effects of BCs 

(Ghidotti et al. 2017). Several low molecular weight organic compounds produced during 

the pyrolysis could also have been responsible for 2,4-DCP sorption by BCs (Buss et al. 

2015). 
 

 
Fig. 6. GC/MS total ion chromatograms of solution after BCs adsorption; peak attribution: 1: 2,4-
DCP; 2: 2, 6-Di-tert-butyl-4-methylphenol; 3: Dibutyl phthalate; and 4: 2, 2`-methylenebis (6-tert-
butyl-4-methylphenol) 
 

  Thermodynamic Studies 
The solution temperature was another important factor affecting the 2,4-DCP 

adsorption onto BCs. The BCs adsorption capacity of 2,4-DCP increased with increasing 

temperature, which provided enough energy for adsorption onto the BCs’ interior structure 

and increased the reaction rate. The 2,4-DCP adsorption on the BCs was a spontaneous and 

endothermic reaction, which accelerated with increased temperature during the isotherm 

process (Cui et al. 2015). At the same time, the solution temperature affected the 2,4-DCP 

activity and heterogeneous BC’s properties including the physico-chemical adsorption, 

rearrangement of the microcellular structure, and the interaction between the carbonized 

inorganic structural and non-carbonized organic functional groups (Zheng et al. 2010). 
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Fig. 7. Desorption of 2,4-DCP capacities by BBC (A), PBC (B), SBC (C), and RBC (D) 

 
Effects of 2,4-DCP Desorption  

The 2,4-DCP desorption rate is shown in Fig. 7. The 2,4-DCP desorption rate 

ranged from 13.0% to 27.8%. The desorption concentration of 2,4-DCP from biochar 

increased with high adsorption solution temperature. The more 2,4-DCP adsorption on BC, 

and more 2,4-DCP probability were easy elution down from BC. Over two-thirds 

proportion 2,4-DCP was firmly adsorbed on the BC and difficult to remove. 

 
 
CONCLUSIONS 
 

1. The 2,4-DCP was efficiently adsorbed by four kinds of BCs in the solution. The process 

of the adsorption was influenced by solution pH, contact time, temperature, BC’s dose, 

and BC’s particle size. 

2. The adsorptions were mainly attributed to the physical-chemical interaction between 

2,4-DCP and biochar. 
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3. The mechanism of 2,4-DCP adsorption on BCs involved the functional groups, 

amorphous carbon, silicon microcrystallite, and the complex microcellular 

nanostructure. 

4. The biochar could be produced by various raw materials, which have a great potential 

for the remediation of organic pollutants. 
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