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Wood is a material widely used in various sectors of construction, such as 
in structures and building components. The volume of wood extracted from 
tropical forests has reached a considerable amount, and this wood is 
marketed with popular names without prior characterization. Wood density 
is an easy property to measure, and its use as an estimator of other 
properties is very common in this sector. This study investigated the 
possibility of the estimation of important quantities in dimensional stability 
of Brazilian tropical woods by using the density at 12% moisture content, 
anhydrous density, and basic density. Testing the ability to estimate radial, 
axial, tangential, and volumetric shrinkage, anisotropy coefficient, 
coefficient of volumetric rate of volumetric shrinkage, as well as the rate of 
volumetric swelling using the densities above, with linear, exponential, 
geometric, and logarithmic models, the best determination coefficient was: 
R2 = 19.58%. The results were, in summary, that the variable density was 
not a good estimator of the dimensional stability of the wood. 
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INTRODUCTION 
 

Wood is appreciated in building construction and many other industries. The 

required lumber production to meet demand makes this sector one of the leading employers 

and drives the economy in Brazil (Fiorelli and Dias 2003; Almeida et al. 2015; Christoforo 

et al. 2015). Wood is used either directly in the structure of the building or as a component 

of other subsystems (De Araujo et al. 2016). In environmental terms, wood is great for 

atmospheric carbon sequestration, because during photosynthesis atmospheric carbon 

dioxide is used to facilitate the tree formation (Hellmeister 1973; Calil et al. 2003; Carreira 

et al. 2012). 

Wood from Brazilian rainforests has a high commercial value due to its physical, 

mechanical, and organoleptic properties. According to IMAFLORA (2003), at least 

400,000 m3 of tropical wood is extracted from forest management areas every year, which 

is approximately 15% of the total (adding unscreened volume). 
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Lumber extracted from tropical wood is largely used without characterization, yet 

it is marketed with popular names; therefore wood from many species is being misused 

due to the lack of measurement of its properties (Almeida et al. 2014; Molina et al. 2016). 

In this context, the characterization is prescribed by the standard document ABNT NBR 

7190 (1997), conducted in specialized laboratories, and has favored the best application of 

these essences. 

To facilitate the characterization procedures, it is common to adopt relationships 

between properties, using one of them (the more easily obtained) to estimate the other. 

Undoubtedly, apparent density (ratio between mass and volume of a specimen at known 

moisture content) is the more easily obtained property (Dias and Lahr 2004; Abruzzi et al. 

2013; Sales and Lahr 2014). 

With regard to wood dimensional stability, properties such as density, specific 

gravity, density at 0% moisture, moisture content, total shrinkage, saturation point of fibers, 

and coefficient of anisotropy are important parameters. Thus, the best use of the material 

also depends on these values (Usta and Guray 1998; Logsdon 1999; Boldin et al. 2008; 

Lubas et al. 2008; Quartaroli et al. 2010; Chowdhury et al. 2012; Moore et al. 2015; 

Kotlarewski et al. 2016). 

Several authors have studied related themes, but not for tropical essences. 

Kärki (2001) studied the variations of density and shrinkage of Populus tremula, 

quantifying them along the tree height and the distance between pith and bark. In these 

conditions the results could not be generalized. 

Kord et al. (2010) evaluated the shrinkage parameters and related them to density 

for Populus euroamericana. Twenty-two-year-old trees were considered, and it was 

possible to conclude there is a slight trend to satisfactory correlation among the studied 

variables. The number of samples used in the research makes it impossible to generalize 

the results. 

Sadegh et al. (2012) studied trees among the ages of forty-eight to fifty-two years. 

In the case of Tamarix aphylla, one of the main species from the dunes region (Iranian 

Desert), it was concluded that coefficients of determination are low when one tries to relate 

density with shrinkage percentages in the radial and tangential directions in wood. 

Pliura et al. (2005) sought to determine some correlations between density and 

shrinkage percentages in the three main directions of wood in three clones: Populus 

deltoides × P. nigra, P. trichocarpa × P. deltoids, and P. maximowiczii × P. balsamifer. At 

ten years old, these trees came from regions that provided significant variations in their 

growth rate. The results obtained did not show dependence among these variables. 

Sotelo Montes et al. (2007) examined the variation of physical properties of wood 

from young trees of Calycophyllum spruceanum, species from the Peruvian Amazon, 

widely used for various applications. In the age group considered, the correlation 

parameters did not reach consistent values to ensure the dependence between density and 

shrinkage percentages. 

Leonardon et al. (2010) studied different anatomical and chemical factors of the 

wood and their influence on shrinkage in the main directions of wood, concluding that 

anatomical complexity, architecture of the constituent cells, and chemical composition of 

species can explain more precisely wood shrinkage than just the density of samples. 

Considering the influence of heat treatment in pieces of Araucaria angustifolia, 

Oliveira et al. (2010) concluded that the sapwood showed better dimensional stability when 

heated compared to the heartwood, at temperatures ranging from 120 °C to 200 °C. The 

point noted by authors could not be extrapolated to tropical dicotyledons. 
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Schulgasser and Witstum (2015) confirmed that the rate between density and 

volumetric shrinkage, such as adopted by Kollmann and Côté (1968), does not consider 

topics related to the anatomic complexity of essences. Based on a mechanical analysis of a 

cell model, wherein the implications of the wall microstructure are taken into account, the 

authors show that the nature of its microstructure is crucial for explaining the shrinkage 

behavior of wood, with respect to its density. 

Abruzzi et al. (2013) tried to relate density and anatomical characters for poles 

installed in the electrical network, of three Eucalyptus wood species. Image analysis 

showed that the mean lumen diameter of fibers varied expressively among the three species 

studied, in line with the wood density obtained in a laboratory, for poles with several years 

in service, as well as for unused poles. No references to poles of other species were used 

in the paper. 

Zeidler (2013), researched the quality of wood (Corylus colurna) originating in 

Turkey and introduced in the Czech Republic, and recorded, among other things, that the 

shrinkage of Turkish hazel wood was minimally correlated with the wood density. 

In an attempt to facilitate the characterization of Brazilian tropical woods available 

for sale, as well as to provide subsidies to their best use as building components and in the 

furniture industry, it is necessary to investigate the possibility of estimation of dimensional 

stability parameters cited using density as reference. In literature, papers by Dias and Lahr 

(2004), Hernández (2007), Zeidler (2013), Almeida (2015), Simsek and Baysal (2015) and 

Almeida et al. (2017) can be regarded as references, although not conclusive on the subject. 

Therefore, in this context, the present study aims to evaluate, for Brazilian tropical 

wood species, the possibility of estimating basic density, density at 0% moisture content, 

shrinkage in axial, radial, tangential directions, anisotropy coefficient, rate of volumetric 

shrinkage, and rate of volumetric swelling from density at 12% moisture content, through 

the study of correlation between these parameters. It is fitting to emphasize that the 

approach to these wood species is not a theme found widespread in the literature, attesting 

to the originality of this work. 

 

 
EXPERIMENTAL 
 

Materials 
The density at 12% moisture content (ρ12), density at 0% moisture content or 

anhydrous density (ρs), basic density (ρbas), radial (βr), tangential (βt), axial (βl), and 

volumetric shrinkage (βv), fiber saturation point (FSP), anisotropy coefficient (AC), 

coefficient of volumetric rate of volumetric shrinkage (βv/PSF), as well as the rate of 

volumetric swelling (αv/PSF) for Brazilian tropical essences studied were obtained based 

on to the recommendations of items B5, B6, and B7 from Annex B "Determination of the 

wood properties for structural design," NBR7190 (1997). They were made for each listed 

wood species, 12 specimens, totaling 180 samples and 1,980 determinations (11 properties 

for each sample), as already adopted by Dias and Lahr (2004). 

The species used in this study are listed in Table 1. The sampling was based on 

strength classes or classes of resistances (CR) with three species for each class, according 

to NBR7190 (1997), to obtain representative results, given the existing wide range of 

densities, as it has been emphasized by several authors, such as Almeida et al. (2016). 
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Table 1. Brazilian Tropical Wood Species Used in this Study 

Brazilian Popular 
Name 

Scientific Name Origin in Brazil (City/State) CR 
ρ12,m 

(kg/m³) 

Cedro-doce Pachira quinata Bonfim do Sul/Roraima 

C20 650 Cedro-amargo Cedrela sp. Caracaraí/Roraima 

Cambará Erisma sp. Cláudia/Mato Grosso 

Canafístula Cassia ferruginea Naviraí/Mato Grosso do Sul 

C30 800 Catanudo Calophyllum sp. Vera/Mato Grosso 

Casca grossa Ocotea odorifera Bonfim do Sul/Roraima 

Angelim araroba Vataieropsis araroba Caracaraí/Roraima 

C40 950 Cupiúba Goupia glabra Alta Floresta/Mato Grosso 

Angelim amargoso Vatairea fusca Caracaraí/Roraima 

Mandioqueira Qualea albiflora Bonfim do Sul/Roraima 

C50 975 Castelo 
Gossypiospermun 

praecox 
Cláudia/Mato Grosso 

Tatajuba Bagassa guianensis Juína/Mato Grosso 

Angelim vermelho Dinizia excelsa Juína/Mato Grosso 

C60 1000 Champanhe Dipteryx sp. Cláudia/Mato Grosso 

Itaúba Mezilaurus itauba Vera/Mato Grosso 

 
Methods 

Based on Almeida et al. (2016), the regression models used to estimate the 

properties through the density at 12% moisture content (ρ12), anhydrous density (ρs), and 

basic density (ρbas) are shown in Eqs. 1 through 4, where X is the independent variable (ρbas, 

ρ12, ρs), Y the dependent variable (ρbas, ρs, βr, βt, βl, βv, AC, αv/PSF, βv/PSF), and “a” and 

“b” are two parameters of the adjusted functions (Eqs. 1, 2, 3, and 4), by the least squares 

method. All relationships investigated in this research are set out in Table 2, resulting in 

the generation of 92 regression models. 

Y = a + b • X      [Linear – Lin]      (1) 

Y = a • eb•X      [Exponential – Exp]      (2) 

Y = a + b • ln(X)      [Logarithmic – Log]     (3) 

Y = a • Xb      [Geometric – Geo]      (4) 

The relations tested were evaluated via an analysis of variance (ANOVA) of the 

regression models, considered at a 5% significance level (α). Insignificance of the tested 

models was assumed to be a null hypothesis (H0: β = 0) and representativeness as an 

alternative hypothesis (H1: β ≠ 0). P-values higher than the significance level considered 

implies accepting H0 (the model tested is not representative, X variations are unable to 

explain the variations in Y), refuting it otherwise (the tested model is representative), as 

pointed out by Montgomery (2005). 

In addition to using an ANOVA, which allows for choice in the acceptance of the 

representation of the tested models, the values of coefficient of determination (R2) were 

obtained to assess the ability of the independent variable’s fluctuation effect to explain the 
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dependent variable. Thus, it became possible to choose from among the models considered 

significant, and the best fit tested by relationship. 

 

Table 2. Relationship Investigated in this Research 

Dependent Variable Independent Variable Relation 

ρbas ρ12 ρbas = f(ρ12) 

ρs ρ12 ρs = f(ρ12) 

βr ρbas; ρ12; ρs βr = f(ρbas); βr = f(ρ12); βr = f(ρs) 

βt ρbas; ρ12; ρs βt = f(ρbas); βt = f(ρ12); βt = f(ρs) 

βl ρbas; ρ12; ρs βl = f(ρbas); βl = f(ρ12); βl = f(ρs) 

βv ρbas; ρ12; ρs βv = f(ρbas); βv = f(ρ12); βv = f(ρs) 

CA ρbas; ρ12; ρs CA = f(ρbas); CA = f(ρ12); CA = f(ρs) 

αv/PSF 
ρbas; ρ12; ρs αv/PSF = f(ρbas); αv/PSF = f(ρ12); αv/PSF = 

f(ρs) 

βv/PSF 
ρbas; ρ12; ρs βv/PSF = f(ρbas); βv/PSF = f(ρ12); βv/PSF = 

f(ρs) 

 

 
RESULTS AND DISCUSSION 
 

Initially, the decision was not to record individual values of the parameters obtained 

in the tests performed, given the large volume of digital data. Thus, Figs. 1, 2, and 3 showed 

graphs summarizing the results for each property.  
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Fig. 1. Boxplots in classes of resistance (CR) for: (a) ρ12, (b) ρ0, (c) ρbas, and (d) PSF 
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The graphs are in the form of boxplots subdivided in classes of resistance, with the 

mean and percentiles shown for each (0%, 25%, 75%, and 100%). 
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Fig. 2. Boxplots in classes of resistance (CR) for: (a) βr, (b) βt, (c) βl, and (d) βv 
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Fig. 3. Boxplots in classes of resistance (CR) for: (a) CA, (b) [βv/PSF], and (c) [αv/PSF] 
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The results contained in Figs. 1 through 3 follow the same trend found in related 

literature, as presented by Usta and Guray (1998), Logsdon (1999), Boldin et al. (2008), 

Lubas et al. (2008), and Quartaroli et al. (2010). The strength characteristic value could be 

non-directly proportional to the density due to variations of anatomical parameters between 

species. This explains the higher density values found for the C30 class related to the C40 

class, as researched by Almeida et al. (2016). 

Table 3 presents the best fit obtained by the investigation of the relations of 

different groups (showing the best fit with ρ12 as an estimator), determination coefficient 

(R2), and P-values of the models, which were all considered significant by ANOVA (P-

value < 0.05). No one regression model tested with ρs and ρbas as estimator showed 

significance. 

 

Table 3. Adjustments of Models for Groups 

Relation Best Fit P-value a b R2 (%) 

ρbas = f(ρ12) Geo 0.0000 0.7472 0.8366 72.92 

ρs = f(ρ12) Geo 0.0000 0.9855 1.0712 99.69 

βr = f(ρ12) Log 0.0012 4.6888 1.0669 5.70 

βt = f(ρ12) Geo 0.0000 8.2556 0.4802 19.58 

βl = f(ρ12) Geo 0.0003 0.7392 0.4524 7.14 

βv = f(ρ12) Geo 0.0000 13.164 0.3806 17.01 

CA = f(ρ12) Geo 0.0001 1.8114 0.2382 6.83 

αv/PSF = f(ρ12) Geo 0.0000 0.7099 0.4080 9.57 

βv/PSF = f(ρ12) Geo 0.0001 0.6136 0.3552 8.68 

 

Table 3 shows that all relations between ρ12 were considered significant by an 

ANOVA test and showed the best quality setting. Values of 72.9% and 99.7% were 

displayed for the coefficient of determination in the estimation of densities, with ρ12 as an 

estimator of ρbas and ρs in the geometric model, respectively. Figure 4 shows the graphs 

with the best adjustments in the estimation values of densities. 

 

  
(a) (b) 

 
Fig. 4. (a) ρ12 as an estimator of ρbas; and (b) ρ12 as an estimator of ρs 

 

For ρ12 as an estimator of the shrinkages of the studied essences, ρ12 as an estimator 

of βr was the only setting in which the logarithmic model was the most representative. It 

can be concluded that the best settings were in the estimation of βv (R² = 17.01%) and βt 

(R² = 19.58%). Figure 5 shows the graphs with the best settings in the estimation of 

shrinkages by density. 

In rate estimations, the best adjusted value obtained for R2 was 8.68% for the rate 

of volumetric shrinkage. Figure 6 contains the graphics with the optimal settings. 
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(a) (c) 

  
(b) (d) 

 
Fig. 5. (a) ρ12 as an estimator of βr; (b) ρ12 as an estimator of βt; (c) ρ12 as an estimator of βl; and 
(d) ρ12 as an estimator of βv 

 

  
(a) (b) 

 
(c) 

 
Fig. 6. (a) ρ12 as an estimator of CA; (b) ρ12 as an estimator of βv/PSF; and (c) ρ12 as estimator of 
αv/PSF 

 

Even though the regression models were considered significant by the analysis of 

variance (P-values<0.05 – Table 3), most of the coefficients of determination were less 

than 20%, except for the relations ρbas = f(ρ12) (72.92%) and ρs = f(ρ12) (99.69%), which 

implies low precision of the models obtained in the cases of interest. 
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Moreover, density as an estimator of dimensional stability parameters showed great 

dispersion, as evidenced by the lower values obtained from the determination coefficients 

(R2). Anatomical characteristics of Brazilian tropical wood species should be studied, 

similarly to Toong et al. (2014). This cited work considered the anatomical characteristics 

and mechanical and physical properties of the 50 commercial wood species from Malaysia, 

which were divided into heavy, medium and light hardwoods according their densities. 

Linear correlations and multiple regression equations proposed between wood properties 

and anatomical characteristics were realized by these authors; for all species, correlations 

between density and fiber thickness index presented Pearson-correlation equal to 0.619. 

However, tangential and radial shrinkages presented non-significant Pearson-correlation 

with elements number per square millimeter. For multiple regression equation models to 

heavy hardwoods, radial shrinkage was estimated with fiber thickness index as parameter 

and showed adjusted coefficient of determination (R²Adj) of 0.898. To medium and light 

hardwoods, the density presented R²Adj values of 0.993 and 0.980, respectively. 

The proposed regression models in this paper are important to support to other 

studies concerned with correlation among anatomical characteristics and properties of 

Brazilian tropical wood species, especially from Amazon Forest, where Steege et al. (2016) 

have estimated that there are approximately 16,000 tree species. 

 
 
CONCLUSIONS 
 

1. Number of species used and the sampling based on classes of resistance (according to 

NBR7190 1997) did show the appropriate representation of the results achieved. 

2. The best adjustments reached in this study refer to density as an estimator of the basic 

and anhydrous densities, which was evidenced by the values obtained for the 

coefficient of determination. 

3. In the case of density as an estimator of dimensional stability parameters, the highest 

value reached was R2 = 19.58%, which illustrated that the density could be a bad 

indicator of the dimensional stability of Brazilian tropical woods. 
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