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To compare the properties of different plant fiber/soybean protein 
adhesive composites, six types of plant fibers (rice straw, wheat straw, 
peanut straw, rice husk, wheat husk, and peanut shell) were selected as 
reinforced materials, and soybean protein adhesive was used as the 
adhesive. Six types of different bio-composites were prepared by the 
compression molding process. The Fourier transform infrared (FTIR) 
spectra, mechanical properties, moisture absorption, and thermal stability 
of the composites were measured. The tensile cross-section 
microstructure of the composites was examined. Results showed that the 
peanut straw/soybean protein adhesive composite contained more 
hydrophilic groups. The wheat fiber-based composites possessed more 
hydrogen bonds, leading to the best binding interface compatibility and 
mechanical properties. The wheat straw/soybean protein adhesive 
composite had the highest tensile strength, flexural strength, and impact 
strength, which were 337.7%, 638.6%, and 483.4%, compared to those of 
the rice husk/soybean protein adhesive composite, respectively. The 
peanut shell/soybean protein adhesive composite’s equilibrium moisture 
content was the lowest (8.70%). The rice husk/soybean protein adhesive 
composite had the highest equilibrium moisture content (14.23%), and the 
best thermal stability as the initial temperature of pyrolysis was 283.4 °C 
and the residual mass was 34.45%. 
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INTRODUCTION 
 

As a bio-based adhesive that has been used as wood adhesives for more than a 

century, soybean protein-based adhesives have become popular again in making 

environmentally friendly materials (He 2017). The use of renewable resources and 

biodegradable polymers to produce environmentally friendly materials is of great interest 

(Mantia and Morreale 2011; Zhang and Peng 2015; Torres-Tello et al. 2017). In this field, 

the study of bio-composites has become a very popular research direction due to its 

increasing application in building materials, interior decoration, and transportation (Pan et 

al. 2014). A bio-composite is a kind of composite material made from reinforced material 

with some accessories or adhesives, and the reinforced material can be carbonaceous 

materials (from animals, plants, or microorganisms) or biodegradable products and waste 

residue from agriculture or industry (Mohanty et al. 2002; European Parliament 2009; Liu 

et al. 2015). Bio-composites can effectively reduce the consumption of non-renewable 
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resources and are of great importance in environmental protection.  

As a natural polymer material, plant fiber is a pollution-free and renewable natural 

resource. Under certain natural conditions, it can be completely decomposed into CO2, 

H2O, and other substances (Satyanarayana 2015), but the value of the materials has not 

received sufficient attention. Though they have been used for feed, activated carbon, 

building materials, and gas by chemical or biological methods, most are abandoned or 

burnt, exacerbating pollution (Sun et al. 2009). However, due to a great similarity in 

chemical composition with wood, other plant material can be used as a substitute for wood 

raw material (Xu et al. 2016). The main chemical components of plant fiber include 

cellulose, hemicellulose, lignin, and organic solvent extracts (Yan et al. 2014). Compared 

with carbon fiber and glass fiber, the presence of hydroxyl groups makes the surface of 

plant fiber polar and hydrophilic (Faruk et al. 2012; Liu et al. 2016). Due to a higher 

cellulose content, plant fibers generally have a low density, a high modulus ratio, high 

strength, and good toughness (Zhou et al. 2014; Wang et al. 2017a; Yao et al. 2017). An 

appropriate amount of hemicellulose acts as an adhesive during molding, which prevents 

the composite material from producing large deformations when used (Fu et al. 2010). 

Traces of lignin also can be used as an effective binder in improving the strength of the 

material in high pressure and high temperature processes (Li and Sarkanen 2017). The 

above studies illustrate the utility of the preparation of plant fiber composite materials. 

With increasing environmental consciousness and the refinement of national 

environmental protection laws, many manufacturers have begun to consider natural 

biological adhesives, such as soybean protein adhesive, to replace synthetic adhesives (Liu 

2013). Soybean protein adhesive is an environmentally friendly adhesive composed of 

defatted soybean powder and soybean isolated protein (Liu et al. 2017). It provides strong 

tensile, cohesive, and osmotic forces (Wang et al. 2016). The adhesive is prepared using 

defatted soybean powder as base material (Johnson et al. 1984). In the study of wood 

particleboard cemented by soybean-based adhesive, when the moisture content of surface 

wood core layer was less than 1%, the core layer adhesive dosage was 6% to 8%, and the 

water proofing agent dosage was 1% (Li et al. 2017). As a result, the density of 

particleboard was 0.65 g/cm3 to 0.75 g/cm3 (Li et al. 2017). The main physical and 

mechanical properties of soybean-based wood particleboard can meet the requirements of 

the national particleboard (GB/T 4897 2015) used in different conditions (Li et al. 2017). 

In the study of wet strength compared with soybean protein adhesive, the wet strength of 

the WPU-SPI adhesive, which was made by dispersing soy-oil-based waterborne 

polyurethane (WPU) into soy protein isolate (SPI) slurry, increased by 65%. The increase 

was mainly due to the interaction of small molecules with the proteins in the WPU (Liu et 

al. 2016). Additionally, -CH and -OH groups produced by the reaction between melamine 

and glyoxal may react with soybean-based adhesives. Therefore, the water resistance of 

soybean-based adhesives obtained by the preparation of the nontoxic melamine-glyoxal 

resin as the crosslinking agent is obviously improved (Wu et al. 2016). Inspired by the 

strong adhesion ability of mussel proteins, renewable and robust soy-based composite films 

were prepared from two soybean-derived industrial materials: soluble soybean 

polysaccharide (SSPS) and catechol-functionalized soy protein isolate (SPI-CH). The bio-

mimetic adherent catechol moieties were successfully bonded in the polymeric network 

based on catechol cross-linking chemistry. Consequently, the films exhibited favorable 

water resistance and gas (water vapor) barrier performance (Wang et al. 2017b). In a 

comparative study of the properties of composites prepared by four types of biological 

glues and wheat straw, the mechanical properties of wheat straw composites that were 
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prepared with a soybean protein adhesive were obviously higher than those prepared by 

other biological adhesives, including those of plastic matrix composites. Additionally, they 

exhibited a low moisture absorption rate (Wang et al. 2016). 

Plant fibers and soybean protein adhesive are both environmental friendly 

materials. They can be used to produce plant fiber/soybean protein adhesive composites, 

and their wastes can decompose completely into carbon dioxide, water, and plant amino 

acids under certain conditions. In this paper, six types of plant materials (rice straw, wheat 

straw, peanut straw, rice husk, wheat husk, and peanut shell) were selected to produce 

composites with soybean protein adhesive. The properties of the six types of plant 

fiber/soybean protein adhesive biomass composites were compared and analyzed.  

 

 

EXPERIMENTAL 
 
Materials 

The soybean protein adhesive was supplied by TianTi KuangYe Co. (Henan, 

China). It had been mechanically crushed and dehydrated as a white and opaque powder 

with non-crystalline beads. Six types of plant fragments (rice straw, wheat straw, peanut 

straw, rice husk, wheat husk, and peanut shell) were collected from Lianyungang, China. 

The straw size was between 5 mm and 15 mm. The husk size was more than 1 mm. Plant 

fragments that were too long or too short were removed to reduce its random effects on the 

properties of the bio-composites. And the size distributions were similar between different 

straws and different husks, respectively. Analytically pure glycerin was purchased from 

Nanjing Jinling Chemical Co., Ltd. (Nanjing, China). 

 
Preparation of Plant Fiber/soybean Protein Adhesive Composites 

The crops had been washed and dried before they were disintegrated, and the soil 

sticking on the surface of the crops had been removed. The impurities (sand, soil, and dust) 

from six types of plant fragments were removed by oscillatory separation and sieving. The 

materials were oven-dried at 100 °C for 5 h. Oven-dried plant fragments, dried soybean 

protein adhesive, and waterproofing agent (glycerin) were mixed at the mass ratio of 

50:10:1, respectively, and stirred to uniformity at room temperature. The pattern die was 

filled with mixed material uniformly. A plate vulcanization machine (XLB-0; Shunli 

Rubber Machinery Co., Huzhou, China) was used to compress the material at 160 °C and 

6 MPa for 6 min until cooling to ambient temperature. The size of the bio-composites was 

120 mm × 100 mm × 5 mm.  

 
Performance Measure and Characterization of Plant Fiber/Soybean Protein 
Composites 
FTIR analyses 

The infrared spectrum analysis was conducted with a Nicolet iS-10 (ThermoFisher 

Scientific, Waltham, MA, USA). The 0.002 g sample powder was ground and dispersed 

with 0.2 g KBr, followed by compression to form average sections. The FT-IR spectra was 

recorded in a range from 4000 cm-1 to 400 cm-1, at a resolution of 4 cm-1 with 32 scans. 

 

Moisture absorption 

Specimens were measured with a constant temperature and constant humidity box 

(HPX-160BSH-III; Xin Miao Medical Equipment Co., Shanghai, China) to determine the 
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equilibrium moisture of the bio-composites according to the GB/T 20312 (2006). The 

specimens that had been processed and dried were placed on the container baffle until the 

weight was constant. The temperature and relative humidity were set to 23 ± 0.5 °C and 

90%, respectively. The specimens were weighed after 0 h, 6 h, 18 h, 42 h, 66 h, 90 h, 114 

h, and 138 h. The maximum water absorption was reached when the qualities of the 

specimens no longer changed notably. Finally, the equilibrium moisture was obtained by 

averaging the results from three trials. 

 

Mechanical properties measurement 

The measure was carried out using an electronic universal testing machine (SANS 

CMT6104; MTS, Shanghai, China). Both tensile strength and tensile modulus of the 

composites were measured according to GB/T 1040.1 (2006). Flexural strength and 

flexural modulus were measured following GB/T9341 (2008). Finally, impact strength was 

measured in accordance with GB/T1043.1 (2008). The final results of each group were 

identified by averaging the results from three trials. 

 

Micromorphology analysis 

The microstructure of the material tensile section was examined with a laser 

microscope (OLS4100; DaoJin Enterprise Management Co., Ltd., Shanghai, China). 

 

Thermal stability analysis 

Thermogravimetric analysis (TG) and derivative thermogravimetric analysis 

(DTG) curves of six types of plant fiber/soybean protein adhesive composites were 

conducted using a simultaneous thermal analyzer (NETZSCH STA 449 Jupiter; NaiChi 

Science Instrument Business Co., Shanghai, China) at a heating rate of 20 °C/min from 30 

°C to 600 °C. Argon was selected as protecting gas with the flow rate of 10 mL/min. 

 
 
RESULTS AND DISCUSSION 
 
FTIR Spectra of Plant Fiber/Soybean Protein Adhesive Composites 

The FTIR curves of the six types of plant fiber/soybean protein adhesive 

composites are shown in Fig. 1. The main absorption peaks of the six types of composites 

were similar. The fibers of straw and husk were chosen in this experiment. The absorption 

peak of the composites prepared with the same type of fiber had a much closer position 

and more similar intensity. The wide absorption peak located at 3425 cm-1 represents the 

stretching vibration of the -OH group of cellulose, hemicellulose, or lignin and the -NH2, -

NH, and -OH groups of soybean protein adhesive. The absorption peak at 2930 cm-1 

represents the absorption region of methylic -CH2 groups. The absorption peaks located at 

1646 cm-1, 1549 cm-1, and 1244 cm-1 represent the absorption band of proteinic Amide I, 

Amide II, and Amide III (containing the absorption region of the C=O groups’ stretching 

vibration) (Meng and Ma 2001). The absorption peak located at 1040 cm-1 represents the 

absorption region of C-O in the lignin (Wang and Xu 2005). 

The bio-composites included mainly hydrophilic groups such as -NH2, -NH, -OH, 

and C=O. Comparing the intensity of each absorption peak, there were noticeable 

differences in the wave intensity at 3425 cm-1 and 1646 cm-1. This result showed that straw 

fiber composite, especially the peanut straw/soybean protein adhesive composite, 

contained more hydrophilic groups. Particularly, -OH and -NH2 groups had stronger 
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polarity. Hydrogen bonds could be combined by -OH and -NH2 to enhance the interfacial 

binding force of composites, which could affect the mechanical properties and moisture 

absorption property of composites (Wu and Xie 2011). 
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(b) Husk fiber composites 

Fig. 1. FTIR spectra of plant fiber/soybean protein adhesive composites 

 
Moisture Absorption of Plant Fiber/Soybean Protein Adhesive Composites 

Figure 2 shows the moisture absorption property of the six types of plant 

fiber/soybean protein adhesive composites. The hygroscopicity curves of all composites 

were almost the same in Fig. 2(a). The moisture absorption amount between 0 h to 6 h 

increased quickly. Later, the moisture absorption rate decreased, and the curves tended to 

plateau from 18 h to 90 h. After 90 h, the moisture absorption remained largely consistent 

and reached saturation point. The equilibrium moisture contents of the six types of bio-

composites were generally high. The rice husk/soybean protein adhesive composites had 

the largest equilibrium moisture content (14.23%). The peanut shell/soybean protein 

adhesive composites had the lowest equilibrium moisture content (8.70%). The bio-

http://202.195.243.110:3110/dict_result.aspx?searchword=%e7%95%8c%e9%9d%a2%e7%bb%93%e5%90%88%e5%8a%9b&tjType=sentence&style=&t=interfacial+binding+force
http://202.195.243.110:3110/dict_result.aspx?searchword=%e7%95%8c%e9%9d%a2%e7%bb%93%e5%90%88%e5%8a%9b&tjType=sentence&style=&t=interfacial+binding+force
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composites have more hydrophilic groups than the traditional medium density fiberboard, 

but greater interface bonding force leading to the similar equilibrium moisture content in 

the same relative humidity (Yu et al. 1995). 
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(b) Equilibrium moisture content 

 
Fig. 2. Moisture absorption of plant fiber/soybean protein adhesive composites 

 

Compared with the husk fiber composites, the straw fiber composites generally had 

a larger equilibrium moisture content. This could be due to the fact that the straw plant 

fiber contained a capillary or more porous structure, which leads to capillary phenomena, 

accelerating the absorption of water molecules (Gong et al. 2017). Wheat straw/soybean 

protein adhesive composites had a much lower equilibrium moisture content and moisture 

absorption rate than the other two straw fiber composites, though the three types of straw 

fiber composites had similar amounts of hydrophilic groups. This was due to the strength 

of the hydrogen bond formed in the wheat straw/soybean protein adhesive composites, 

which improved its interface compatibility. There were fewer pores in the composites, and 

the water was not able to penetrate easily. The crystallinity of cellulose and hemicellulose 

in plant fiber was higher (Zhang et al. 2013), and there were fewer exposed hydrophilic 
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groups. Thus, the equilibrium moisture content was low. The rice husk/soybean protein 

adhesive composites had less hydrogen bonding and more interfacial pores, so the 

equilibrium moisture content and moisture absorption rate were higher. These results 

suggest that the main factors determining the moisture absorption property were the 

structure of the plant fibers, the interfacial compatibility of composites, and the quantity of 

hydrophilic groups. 

 
Mechanical Properties of Plant Fiber/Soybean Protein Adhesive 
Composites 

Figure 3 shows the tensile strength, tensile modulus, flexural strength, flexural 

modulus, and impact strength of the plant fiber/soybean protein adhesive composites. All 

of the mechanical properties of the wheat straw/soybean protein adhesive composites were 

better than in the other bio-composites. The tensile strength and tensile modulus were 465 

MPa and 248.7 MPa, respectively. The flexural strength and flexural modulus were 16.05 

MPa and 3.549 GPa, respectively. The impact strength was 2.442 kJ·m-2. Among the three 

types of husk plant fiber composites, the wheat husk/soybean protein adhesive composite 

had the best mechanical properties. The tensile strength, tensile modulus, flexural strength, 

flexural modulus, and impact strength were 1.887 MPa, 137.6 MPa, 4.868 MPa, 0.616 GPa, 

and 1.062 kJ·m-2, respectively. The tensile properties of the composites made from the 

similar plant fibers of rice and peanut crops were similar to each other. The mechanical 

properties of rice husk/soybean protein adhesive composite were the worst. Consequently, 

the mechanical properties of straw fiber composites were higher than those of husk fiber 

composites. The mechanical properties of the composites made of straw fiber were 

obviously higher than those made of the husk fiber from the same type of crops. The 

mechanical properties of the wheat fiber-based composites were better than those of the 

other two types of crop fiber/soybean protein adhesive composites. Compared with the 

traditional medium density fiberboard, the bio-composites have more hydrophilic groups 

and are more fragile, but the lower density results in higher specific strength (Huang and 

Pan 2014). 

The mechanical properties of plant fiber/soybean protein adhesive composites 

mainly depend on the morphology of the plant fiber, the content of main components of 

plant fiber (cellulose, hemicellulose, and lignin), and interfacial adhesion between plant 

fiber and protein adhesive. The position and orientation of the plant fiber in the composites 

was random. Plant fibers were randomly connected to form a three-dimensional network 

structure so that a composite formed by being adhered to by the protein adhesive. However, 

the shape and length of the different plant fibers affected the mechanical properties of the 

composites. For the same type of crop, its straw fiber is usually longer than its husk fiber, 

and the both straws and husks have similar components of the plant fibers, so the 

mechanical property of the straw fiber composite was better than that of the husk fiber 

composite. Similarly, because of the long fiber of wheat, the mechanical properties of the 

wheat fiber-based composites were quite good. The hydrogen bonding between the protein 

and the fiber was strong, which caused better interface compatibility. Cellulose acts as a 

skeleton in plant fibers and was bound together by hemicellulose and lignin to form plant 

fibers. The wheat plant contained more cellulose and hemicellulose, and the degree of 

binding was higher. As such, the strength of the fiber was higher. Because of poor 

interfacial compatibility and low interfacial binding force, the rice husk/soybean protein 

adhesive composite had the weakest mechanical properties. 

 

http://202.195.243.110:3110/dict_result.aspx?searchword=%e7%95%8c%e9%9d%a2%e7%bb%93%e5%90%88%e5%8a%9b&tjType=sentence&style=&t=interfacial+binding+force
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Fig. 3. Mechanical properties of plant fiber/soybean protein adhesive composites 

 
Microstructure Surface of Plant Fiber/Soybean Protein Adhesive 
Composites 

Figure 4 shows a microcosmic cross-section of the six types of plant fiber/soybean 

protein adhesive composites. The interfacial density of rice straw/soybean protein adhesive 

composite had an unfavorable appearance, and a lot of pores were found on the surface. 

However, the three-dimensional network structure formed well due to the slenderness of 

the fiber; the overall section was even (Fig. 4a). There were fewer pores on the surface of 

the wheat straw/soybean protein adhesive composites and the plant fiber was strong and 

long. In addition, the less exposed plant fiber at the fracture showed that the interface 

bonding force was larger (Fig. 4b). Due to the small interface bonding force of peanut 

straw/soybean protein adhesive composites, most of the fracture sites were located at the 

interface between peanut straw and protein adhesive and the material had pores (Fig. 4c). 

The surface of the rice husk/soybean protein adhesive composites had more pores. This 

showed that the plant fiber was relatively slender and stout. However, the interfacial 

binding force was small, and the fracture surface was very uneven (Fig. 4d). The wheat 

husk/soybean protein adhesive composites had a relatively flat cross-section, and their 

plant fiber was slender, sturdy, and had a good three-dimensional network structure (Fig. 

4e). The interfacial compatibility of peanut shell/soybean protein adhesive composites was 

bad because the fiber was stout but short (Fig. 4f). In conclusion, compared with the 

composites prepared with the husk, the fiber in the composites prepared with the straw was 

longer and formed a better three-dimensional network structure. 
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(a) Rice straw/soybean protein adhesive          (b) Wheat straw/soybean protein adhesive 

   

(c) Peanut straw/soybean protein adhesive      (d) Rice husk/soybean protein adhesive 

   
(e) Wheat husk/soybean protein adhesive        (f) Peanut shell/soybean protein adhesive 

 

Fig. 4. Microstructure surface of plant fiber/soybean protein adhesive composites 

 
Thermal Stability of Plant Fiber/Soybean Protein Adhesive Composites 

Figure 5 (parts a and b) displays the thermogravimetric analysis (TG) and derivative 

thermogravimetric analysis (DTG) curves for the six types of plant fiber/soybean protein 

adhesive composites. Table 1 shows the thermal stability of the six types of plant 

fiber/soybean protein adhesive composites. The TG/DTG curves of each of the six bio-

composites were similar. In the range of 30 °C to 120 °C, there was a small amount of 

weight loss due to the large change in the TG curve of the rice husk/soybean protein 

adhesive composite, which had a high equilibrium moisture content. These results suggest 

that water evaporation resulted in the observed weight loss. Between 120 °C and 180 °C, 

the curved lines remain relatively unchanged with the increasing temperature. The 

pyrolysis stage of the six types of bio-composites was between 180 °C and 400 °C. The 
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pyrolysis of plant fiber main components began at unique temperatures. More specifically, 

cellulose began from 230 °C to 310 °C, hemicellulose began from 180 °C to 240 °C, and 

lignin began from 300 °C to 400 °C (Zeriouh and Belkbir 1995). The pyrolysis of protein 

was distributed between 300 °C and 600 °C (Shen et al. 2016). More precisely, the curved 

line indicated that the pyrolysis of the soybean protein adhesive peaked between 180 °C to 

400 °C. Lastly, from 400 °C to 600 °C, the curved lines of DTG approached 0%·min-1, and 

the residue was charred in the high temperature. 
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Fig. 5. TG and DTG curves of plant fiber/soybean protein adhesive composites 
 

Table 1 indicates that the residual mass, initial decomposition temperature, and 

final thermal decomposition temperature of each of the six bio-composites were relatively 

similar, yet there were a few differences that may have been caused by the different 

proportions of main components in plant fiber. More specifically, as the pyrolysis of 

hemicellulose started at a low temperature, so did the pyrolysis of the composites that 
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contained more hemicelluloses. After pyrolysis, the residual mass of cellulose was lower 

than that of the other components, so the composites with more cellulose were lighter than 

other composites after pyrolysis. Finally, comprehensively comparing the initial pyrolysis 

temperature of six bio-composites, the thermal stability of the rice husk/soybean protein 

adhesive composite was the best of all, and the peanut straw/soybean protein adhesive 

composite was the worst. 

 

Table 1. Thermal Stability of Plant Fiber/Soybean Protein Adhesive Composites 

Plant Fiber 
Temperature (°C) Residual Mass 

(%) Onset Termination 

Rice Straw 278.3 350.6 31.12 

Wheat Straw 281.9 344.6 32.49 

Peanut Straw 271.8 345.7 38.81 

Rice Husk 283.4 360.8 34.45 

Wheat Husk 274 354.3 38.19 

Peanut Shell 282.6 367.5 35.22 

 

 

CONCLUSIONS 
 
1. The basic functional groups of the six types of plant fiber/soybean protein adhesive 

composites (rice straw, wheat straw, peanut straw, rice husk, wheat husk, and peanut 

shell) were quite similar. The peanut straw/soybean protein adhesive composite 

contained more hydrophilic groups, such as -NH2, -NH, -OH, and C=O. The wheat 

fiber-based composites possessed more hydrogen bonds, leading to the best binding 

interface compatibility.  

2. The properties of the wheat fiber-based composites were better than those of the others. 

Wheat straw/soybean protein adhesive composite had the best mechanical properties 

with a tensile strength, flexural strength, and impact strength of 69.3%, 10.8%, and 

10.78% higher, respectively, than that of the rice straw/soybean protein adhesive 

composite. The properties of tensile strength, flexural strength, and impact strength of 

the wheat straw/soybean protein adhesive composite were 337.7%, 638.6%, and 

483.4%, compared to those of the rice husk/soybean protein adhesive composite, 

respectively. 

3. The equilibrium moisture content of the peanut shell/soybean protein adhesive 

composite was the lowest (8.70%). The rice husk/soybean protein adhesive composite 

had the highest equilibrium moisture content (14.23%) and the best thermal stability. 

Its initial temperature of pyrolysis was 283.4 °C, and the residual mass was 34.45%. 
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