Cellulose Isolation from Corn Stalk Treated by Alkaline Biochars in Solvent Systems

Le Liu, Shiqiu Zhang, Xue Yang, Meiting Ju*

Three kinds of biochars were prepared using corn stalk as the raw material. Corn stalk degradation was achieved in solvents by treatment with prepared biochars for 5 h at 170 °C. The solvent systems contained ionic liquid and water components, which presented synergistic effects on lignocellulosic degradation. The oxidized alkaline biochar (B₂) was most effective for the lignin degradation in corn stalk, which promoted corn stalk dissolution into the reaction system. For treated corn stalk, both the lignin and hemicellulose were degraded during the reaction under the combined effects of biochars and nucleophilic components in solvents, and cellulose dissolution was enhanced. Dissolved cellulose was regenerated by mixing ethyl acetate and water gradually.

Keywords: Cellulose; Alkaline biochar; Solvent system

Contact information: College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China; * Corresponding author (Meiting Ju): yingying0913@126.com

INTRODUCTION

Plants produce more than 100 billion tonnes of cellulose annually through photosynthesis; thus, cellulose is regarded as a renewable resource (Zhang *et al.* 2011; Andanson *et al.* 2014). Biomass conversion into materials has attracted increased attention in recent years. However, biomass materials are resistant to natural conversion, due to the chemical and physical factors including cellulose crystallinity and covalent linkages connecting hemicellulose to lignin (Tuck *et al.* 2012; Xu *et al.* 2013).

Various biomass waste treatments and extraction technologies have been analyzed for lignocellulosic biomass utilization. Many types of solid alkalis have been investigated in lignocellulosic materials treatment. Pang et al. (2012) introduced a novel method of cooking corn stalk with solid alkali and active oxygen for pulp production. Studies also reported that solid alkali was used as a catalyst for lignin degradation and polyurethane synthesis (Li et al. 2010). Ionic liquids, known as low-temperature molten salts or designable solvents, have been widely used in biomass extraction and separation, materials preparation, and other fields (Sun et al. 2010; Casas et al. 2013). In 2002, Swatloski and co-authors first reported the solubility of natural cellulose in a series of ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) (Swatloski et al. 2002). However, these techniques always result in environmental pollution. In the process of biomass treatments, some by-products will be produced. For example, the degradation of lignocellulose can produce benzene and the chelate pollutant. In addition, the improper use of catalyst can lead to the release of heavy metals and the discharge of some functional organics, resulting in pollution. In recent studies, biochar catalysts have attracted attention for biomass waste disposal (Sun et al. 2010; Casas et al. 2013; Wu et al. 2013). In particular, researchers have attempted to use magnesium (Mg)-based biochars to develop a novel delignification system (Sun et al. 2010; Casas et al. 2013; Olsson et al. 2014).

In this study, several biochars were prepared and characterized. Corn stalk degradation was achieved in the prepared solvents *via* treatment with biochars at 170 °C for 5 h. Furthermore, the effects of biochars dosage and solvent systems on the degradation of corn stalk were examined. To characterize corn stalk degradation products and regenerated cellulose, gas chromatography—mass spectrometry (Shimadzu Corporation, Tokyo, Japan) and X-ray diffraction (XRD) were applied. The findings of this study provide a necessary theoretical basis for biochars application and biomass feedstock utilization.

EXPERIMENTAL

Corn stalk was collected from the Experimental Forest Farm in Tianjin, in northern China. Corn stalk samples were dried at 60 °C for 16 h, and then ground to approximately 0.7 mm in size. According to the Van Soest method (Liu *et al.* 2014), lignocellulosic components in the corn stalk were analyzed using a fully automated fiber analysis system (Fibertec 2010, FOSS Company, Shanghai, China), which showed the following composition: cellulose 40.86%, lignin 13.87%, and hemicellulose 28.01%.

Methods

Preparation of alkaline biochars

The powdered corn stalk was placed in a reaction kettle under an N_2 atmosphere. The corn stalk pyrolysis temperature was set at 500 °C for 2 h. The biochar produced was denoted as B_0 . Likewise, magnesium oxide (MgO) powder and powdered corn stalk biomass were mixed in a aqueous solvent at a ratio of 1:10 (Liu *et al.* 2014). Subsequently, the mixture was dried at 105 °C for 5 h, and pyrolyzed under the abovementioned conditions. The alkaline biochar produced was denoted as B_1 . The obtained B_1 was oxidized using 30% hydrogen peroxide (H_2O_2) at 30 °C for 6 h at a solid/liquid ratio of 1:10 (w/v) and denoted as B_2 .

Solvent system preparation

Two kinds of ionic liquids were added into water to prepare the solvent systems, which were used for corn stalk dissolution. The solvent system containing AMIMCl (1-allyl-3-methylimidazolium chloride, made in the authors' laboratory) was denoted as S_1 , while that containing AMIMOAc (1-allyl-3-methylimidazolium acetate, made in the authors' laboratory) was indicated as S_2 .

Corn stalk treatment

The sample was placed in a steel reactor. The reaction system contained 20 mL of the solvent. 5 g of corn stalk was treated by biochars at 170 °C for 5 h. Subsequently, the reaction products were filtered to collect the treated corn stalk. The corn stalk treated by different biochars were denoted as follows: C_1 (treated by biochar B_0 in solvent S_1), C_2 (treated by biochar B_1 in solvent S_1), C_3 (treated by B_2 in solvent S_1), C_4 (treated without biochar in solvent S_1), C_1 ° (treated by C_2), C_2 ° (treated by C_2), C_2 ° (treated by C_2), C_3 0 (treated by C_2 1), C_3 2 (treated by C_3 3), C_4 3 (treated by C_3 4), C_4 5 (treated by C_3 5), C_4 6 (treated by C_3 6), C_3 7 (treated by C_3 6), C_3 8 (treated by C_3 8), $C_$

 C_3 ' (treated by B_2 in solvent S_2), and C_4 ' (treated without biochar in solvent S_2). The residual rate was counted according to Eq. 1 (Liu *et al.* 2013),

$$R_{s,i} = \frac{M_{r,i}}{M_{o,i}} \tag{1}$$

where *i* represents the lignin, cellulose, or hemicellulose, $R_{s,i}$ is the residual rate, $M_{r,i}$ is the residual mass (g) of the above contents in corn stalk after treatment, $M_{o,i}$ is the mass (g) of above contents in the raw corn stalk samples.

Separated filtrate was used for cellulose regeneration. Corn stalk solubility in the solvent system was calculated according to Eq. 2 (Liu *et al.* 2013),

$$R_d = 1 - \frac{M_r}{M_o} \tag{2}$$

where R_d is the corn stalk solubility in the solvent, M_r is the mass of residual sample after treatment (g), and M_o is the original corn stalk mass (g).

Regeneration of cellulose

For the filtrate, the components were separated by adding ethyl acetate with continuous stirring. The separated components were the corn stalk degradation products, and denoted as following: DCS_1 (components from C_1), DCS_2 (components from C_2), DCS_3 (components from C_3), DCS_4 (components from C_4), DCS_1 ' (components from C_1 '), DCS_2 ' (components from C_2 '), DCS_3 ' (components from C_3 '), and DCS_4 ' (components from C_4 ').

After separation by adding ethyl acetate, this filtrate was mixed with water for cellulose regeneration. The rate of cellulose regeneration was calculated according to Eq. 3 (Liu *et al.* 2013),

$$R_r = \frac{M_{r-cel}}{M_{o-cel}} \tag{3}$$

where R_r is the rate of cellulose regeneration, $M_{r\text{-cel}}$ is the regenerated cellulose mass (g), and $M_{o\text{-cel}}$ is the cellulose mass in raw corn stalk (g).

Characterization

Elemental analyses were conducted using an elemental analyzer (Vario El Cube, Thermo Scientific, Boston, MA, USA). The oxygen content was examined using mass balance. The O/C atomic ratio was correlated with biochars aromaticity and polarity. Higher O/C atomic ratio means the higher biochars polarity, while lower O/C atomic ratio means the higher biochars aromaticity. The elemental analysis was operated using a scanning electron microscope with NiCrAl sputter coating (S-3500N, Hitachi, Ltd., Tokyo, Japan) and Energy Dispersive Spectrometer (1791-N-016-000, Thermo Scientific, Boston, USA) at the same surface locations. The specific surface area and porosity of the biochars were determined based on N₂ adsorption isotherms by the Brunauer-Emmett-Teller (BET) method using a surface area analyzer (Tristar 3000, Thermo Scientific, Boston, MA, USA). The regenerated cellulose structure was examined by a XRD analyzer (Rigaku D/max-III X-ray diffractometer, (Rigaka, Ltd., Tokyo, Japan). The Xray intensities were recorded at 2θ , which ranged between 3° and 60° . The surface structure of corn stalk was observed with an S-3700N SEM (Hitachi, Ltd., Tokyo, Japan). The DCS samples were determined by gas chromatography-mass spectrometry with a SHRXI-5 MS column (Shimadzu Corporation, Tokyo, Japan). The column temperature was set at 50 °C to 280 °C (10 °C/min, hold for 20 min) (Tuck et al. 2012; Xu et al. 2013).

RESULTS AND DISCUSSION

Characteristics of the Biochars

As shown in Fig. 1A, the structure of the biochars was almost a fibrous tube of 1 micron. The composition and structural characteristics of the biochars are shown in Table 1. The C and O contents of the biochars were within 55.32% to 63.21% and 19.15% to 29.35%, respectively. The O/C ratio of B₂ was higher, illustrating that a large amount of oxygen-containing groups were located on B₂ with its surface remaining hydrophilic, which are beneficial for the sorption of lignin degradation products (Liu *et al.* 2013). The surface area of all the materials examined in the present study ranged from 10.38 m²/g to 11.22 m²/g. The pore diameters of all the materials were almost 2 nm. Meanwhile, the surface area of B₀ was larger, which indicated that abundant MgO may have been located on the surface of B₁ and B₂. The load of MgO will occupy the pore structure on biochar surface, making a smaller surface area. In addition, both B₁ and B₂ presented a higher amount of alkaline components (Mg²⁺ ions), approximately 10 times higher than that noted in B₀, and exhibited higher alkalinity.

Α

В

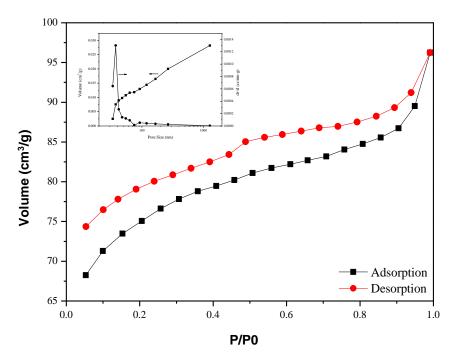


Fig. 1. Structures of original biochars (A), and N₂ adsorption-desorption curve of biochar B₂ (B)

Table 1. Biochars Composition and Structural Characteristics

Sample	Component (%)			Ratio	SA	PD	Concentration		ion	
	- , ,				O/C	(Surface	(Pore	(mg/g)		
	С	Н	Ν	0		Area)	Diameter	Ca ²⁺	Mg ²⁺	Na⁺
						(m²/g)	(nm)		_	
Bo	63.21	3.53	1.02	19.15	0.30	11.22	1.82	5.62	5.21	3.11
B ₁	61.56	3.32	0.93	21.23	0.34	10.38	1.79	5.12	52.35	3.08
B ₂	55.32	3.03	0.96	29.35	0.53	10.85	1.80	5.09	51.21	3.00

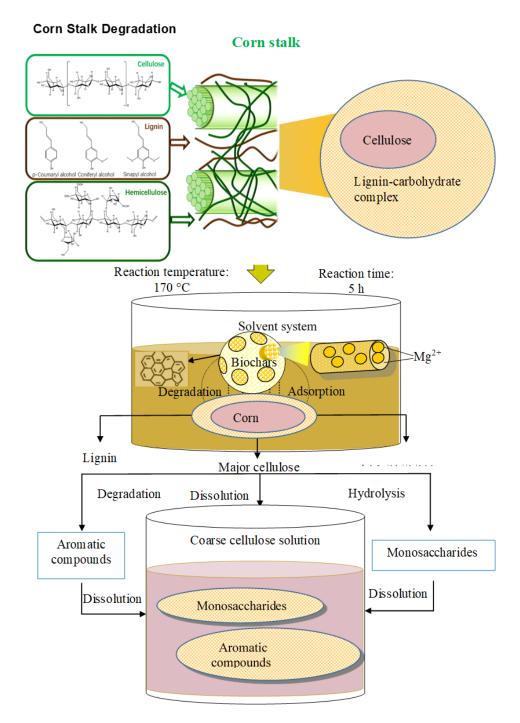


Fig. 2. Mechanism of corn stalk degradation by biochar catalysis in solvent systems

The corn stalk structures were observed under SEM to analyze the process of corn stalk degradation. Figure 3 shows that the corn stalk was destroyed after treatment by biochars, which resulted in a rougher surface. Furthermore, the treated corn stalk exhibited higher pore volume compared with the original corn stalk. Moreover, the pretreatment of corn stalk with biochars loosened lignocellulosic organization.

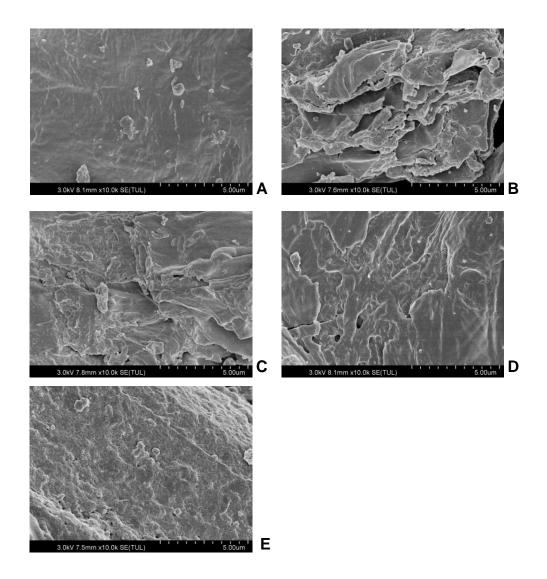


Fig. 3. Structures of original corn stalk (A), treated sample C_1 (B), treated sample C_2 (C), treated sample C_3 (D), and treated sample C_4 (E)

As shown in Table 2, C₃ and C₂ presented lower cellulose, hemicellulose, and lignin residual rates. It must be noted that different biochars have varied effects on corn stalk degradation, resulting in various lignocellulose degradation degrees during the process (Clements 2003). The alkaline biochars B₂ and B₁ possessed appropriate alkaline components (Mg²⁺ ions), which can effectively promote the degradation of lignin macromolecules (Gadenne *et al.* 2004; Zhang and Lynd 2004). Due to complete lignin degradation, the corn stalk was efficiently dissolved into the prepared solvent system in the treatment (Leclercq *et al.* 2001).

All of the cellulose contents of treated corn stalk were less than 18%. With the increasing amount of applied alkaline biochars, the alkalinity of the treatment system increased (Ebiura *et al.* 2005; Zhang *et al.* 2011). The cellulose content in the treated samples was not remarkably reduced, suggesting that an alkalinity increase was not a key factor on cellulose degradation (Li *et al.* 2010).

Table 2. Cellulose Residual Rate, Hemicellulose Residual Rate, and Lignin Residual Rate in Corn Stalk Cooked with Different Dosage of Biochars at 170 °C for 5 h in a Stainless Reactor Charged with Solvent System S₁

Samples	Biochars	Cellulose	Hemicellulose	Lignin Residual
·	Dosage	Residual Rate	Residual Rate	Rate (%)
	(%)	(%)	(%)	
C ₃	2	14.3 ± 0.7	21.1 ± 0.4	16.53 ± 0.5
C ₃	4	14.6 ± 0.7	20.9 ± 0.2	15.60 ± 0.3
C ₃	6	14.0 ± 0.7	20.0 ± 0.2	15.50 ± 0.2
C ₃	8	13.9 ± 0.7	19.6 ± 0.2	14.25 ± 0.2
C ₃	10	13.1 ± 0.7	18.8 ± 0.1	13.25 ± 0.2
C ₃	12	13.6 ± 0.7	16.5 ± 0.1	12.10 ± 0.1
C ₃	14	13.1 ± 0.7	15.0 ± 0.1	10.30 ± 0.1
C ₂	2	15.5 ± 0.8	22.3 ± 0.4	21.99 ± 0.5
C ₂	4	15.6 ± 0.8	21.8 ± 0.3	21.03 ± 0.4
C ₂	6	15.1 ± 0.8	22.2 ± 0.3	20.62 ± 0.3
C_2	8	14.2 ± 0.8	20.9 ± 0.2	19.20 ± 0.2
C ₂	10	14.1 ± 0.7	20.8 ± 0.2	18.10 ± 0.2
C ₂	12	14.2 ± 0.7	19.9 ± 0.1	17.81 ± 0.2
C ₂	14	14.7 ± 0.7	19.3 ± 0.1	16.58 ± 0.2
C ₁	2	17.9 ± 0.8	25.2 ± 0.4	25.55 ± 0.5
C ₁	4	17.5 ± 0.8	24.5 ± 0.3	25.21 ± 0.4
C ₁	6	16.5 ± 0.8	24.2 ± 0.3	22.21 ± 0.3
C ₁	8	15.1 ± 0.8	23.1 ± 0.2	21.53 ± 0.2
C ₁	10	15.7 ± 0.7	22.8 ± 0.2	20.11 ± 0.2
C ₁	12	16.2 ± 0.7	21.9 ± 0.1	17.12 ± 0.2
C ₁	14	15.0 ± 0.7	20.9 ± 0.1	16.72 ± 0.2

The comparison of treatment by various biochars revealed that the lignin residual rate of C₃ was barely lower than that of C₂. With increased biochar dosages, the lignin content in the corn stalk gradually decreased and finally reached a stable level. In addition, the hemicellulose content in the corn stalk maintained a low level. It must be noted that lignin and hemicellulose are connected by glucosidic bonds (Ebiura *et al.* 2005; Sun *et al.* 2010), and hence, the bonds between hemicellulose and lignin were hydrolyzed with the increased dosages of biochars, resulting in decreased lignin content and affecting the hemicellulose hydrolysis (Zhang *et al.* 2011). The result demonstrated that the treatment on corn stalk with biochars made lignocellulose degrade effectively.

As shown in Table 3, the corn stalk treated in S₁ presented a lower cellulose residual rate than that treated in S₂, and this could be due to the different property of these two applied ionic liquids. With regard to AMIMCl, the anions and cations are involved in corn stalk dissolution (Fu and Mazza 2011), which particularly affects cellulose dissolution from corn stalk. The hydrogen and oxygen atoms in cellulose could form electron acceptor and electron donor complexes with the above ionic liquids. The AMIMCl cations could bind to oxygen *via* intramolecular and intermolecular linkages in cellulose chains. Similarly, chloride anions could also bind to hydrogen atoms in cellulose. For AMIMOAc, comprising of a huge amount of acetate anion, it presented greater steric hindrance, which is not efficient for the contact to the hydrogen atoms, resulting in lower solubility of cellulose into AMIMOAc (Liu *et al.* 2012).

Table 3. Cellulose Residual Rate, Hemicellulose Residual Rate, and Lignin Residual Rate in Corn Stalk Cooked at 170°C for 5 h in a Stainless Reactor Charged with Different Solvent Systems

Samples	Solvent	Ionic Liquids	Cellulose	Hemicellulose	Lignin Residual
	Systems	Ratio	Residual Rate	Residual Rate	Rate
	-	(%)	(%)	(%)	(%)
C ₃	S ₁	80	12.3 ± 0.5	18.06 ± 0.3	7.55 ± 0.1
C ₃ '	S ₂	80	17.6 ± 0.7	23.89 ± 0.3	13.36 ± 0.2
C ₄	S ₁	80	21.1 ± 0.5	31.98 ± 0.4	23.57 ± 0.2
C ₄ '	S ₂	80	23.9 ± 0.6	35.61 ± 0.3	26.15 ± 0.3
Сз	S ₁	70	13.6 ± 0.1	20.79 ± 0.2	12.03 ± 0.2
Сз	S ₁	75	13.1 ± 0.1	19.20 ± 0.3	9.62 ± 0.1
Сз	S ₁	85	13.5 ± 0.2	19.83 ± 0.2	10.10 ± 0.1
Сз	S ₁	90	14.1 ± 0.1	20.38 ± 0.2	12.81 ± 0.1
C ₃	S ₁	95	14.4 ± 0.1	20.82 ± 0.2	20.58 ± 0.2
C ₃	S ₁	100	15.9 ± 0.2	21.23 ± 0.3	23.55 ± 0.2

The presence of alkaline biochars in the solvents enhanced the nucleophilic reaction capacity, improving the hydrolytic and solvolytic effect on lignin degradation (Zhu *et al.* 2006; Li *et al.* 2010; Zhang *et al.* 2011). As shown in Table 3, C₃ presented a lower lignin residual rate, because the addition of alkaline biochar into the solvents considerably accelerated lignin degradation, while the reaction system without biochars did not exhibit complete lignin degradation and required a higher amount of water to achieve total corn stalk degradation.

The water in the solvents had a key function in lignocellulosic degradation (Sun *et al.* 2010), which was effective for promoting the polar reactions and free-radical reactions (Gadenne *et al.* 2004; Zhang and Lynd 2004). As presented in Table 3, when the ionic liquid ratio reached 80%, the lignin residual rate of C₃ decreased to 7.55%, which suggested the synergistic effects of water and ionic liquid on corn stalk degradation. It has been reported that the use of an appropriate water–ionic liquid ratio could enhance the delignification capacity of the solvent system, retaining the solubility of the biomass (Wang *et al.* 2011; Zhang *et al.* 2011). For biomass degradation, the reaction system should have nucleophilic components to enhance lignin degradation, as well as dissolution ability for lignocellulosic degradation products (Cantrell *et al.* 2005; Xie *et al.* 2006).

Characterization of the DCS Samples

As illustrated in Fig. 4A, for DCS₃ treated by biochar, the major identified products were aromatic compounds, including 2-methoxy-4-methyl-phenol, 2,4-bis(1,1-dimethyl-ethyl)-phenol, and 2,6-dimethoxy-phenol. The products primarily resulted from the cleavage of the α -O-4 and β -O-4 linkages in corn stalk lignin (Tang *et al.* 2005; Pinkert *et al.* 2009). While for DCS₄, the main constituents were degraded carbohydrate, including acetic acid and formic acid.

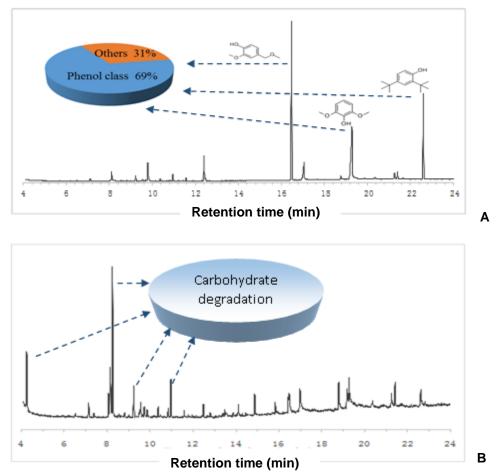


Fig. 4. Major compounds detected from corn stalk degradation products DCS₃ (A) and DCS₄ (B)

These results showed that alkaline biochars had noticeable effects on lignin degradation in corn stalk. The oxygen atom in MgO, as a key content of alkaline biochars, has a lone electron pair, which can form chemical bonds with other atoms in the biomass degradation reaction (Liu *et al.* 2014). With an appropriate increase of solid alkali, the reaction system alkalinity could be enhanced, facilitating the ether cleavage in lignin structure (Lee *et al.* 2009; Fu and Mazza 2011). Moreover, trace amounts of cellulose-degraded products were found, including levulinic acid and 5-hydroxymethylfurfural.

Cellulose can be regenerated from these reaction systems by treatment using biochars. Analyses were employed to compare the structure of regenerated cellulose and microcrystalline cellulose. As shown in Fig. 5, the intensity of microcrystalline cellulose at the 2θ value was higher compared with regenerated cellulose. The peaks of regenerated cellulose at 15.1°, 16.3°, 20.8°, and 35.1° nearly disappeared, which could be due to the crystallinity reduction in this reaction (Zhang *et al.* 2005; Li *et al.* 2010; Liu et al. 2015).

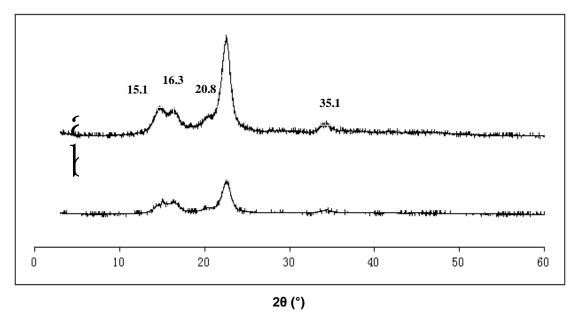


Fig. 5. XRD curves of microcrystalline cellulose (a), and cellulose regenerated from corn stalk (b)

Degradation Mechanisms

As shown in Fig. 2, the chemical linkages of the lignocellulosic components in corn stalk were gradually cracked due to the combined effects of biochars and nucleophilic contents in the solvents, which resulted in the reduced molecular weights (Lee et al. 2009; Fu and Mazza 2011). The lignin degradation products were dissolved in the solvent system, and a large amount of degraded lignin fragments were adsorbed onto the biochar surface, forming strong surface complexes with oxygen-containing groups through polar bonds. Furthermore, the glucosidic bonds connecting lignin to hemicellulose were disrupted during the treatment process, and the original hemicellulose was degraded to smaller monosaccharides (Li et al. 2010). Moreover, the lignin–carbohydrate complexes were degraded, which were the protective layer wrapped around cellulose, directly exposing cellulose into the reaction solvent. Cellulose swelling disrupted its crystalline state (Gadenne et al. 2004), and macromolecular cellulose was hydrolyzed to smaller molecules, which could dissolve in the solvent system (Swatloski et al. 2002; Ren et al. 2003; Oh et al. 2005).

CONCLUSIONS

Corn stalk degradation was achieved in solvents by treatment with prepared biochars for 5 h at 170 °C. Three kinds of biochars were prepared using corn stalk as the raw material. The solvent systems contained ionic liquid and water components, which presented synergistic effects on lignocellulosic degradation. The oxidized alkaline biochar (B₂) was most effective for the lignin degradation in corn stalk, which promoted corn stalk dissolution into the reaction system. For treated corn stalk, both the lignin and hemicellulose were degraded during the reaction under the combined effects of biochars and nucleophilic components in solvents, and cellulose dissolution was effectively enhanced.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (51708301), Natural Science Foundation of Tianjin, China (17JCZDJC39500), 2017 Science and Technology Demonstration Project of Industrial Integration and Development, Tianjin, China — Demonstration of Organic Fertilizer Production technology based on straw carbonization, and 2017 Jinnan District Science and Technology Project of Tianjin, China — Research on Malodorous Gas Pollution Treatment with Microorganism deodorant.

REFERENCES CITED

- Andanson, J. M., Bordes, E., Devémy, J., Leroux, F., Pádua, A. A. H., and Gomes, M. F. C. (2014). "Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids," *Green Chemistry* 16(5), 2528-2538. DOI: 10.1039/C3GC42244E
- Cantrell, D. G., Gillie, L. J., Lee, A. F., and Wilson, K. (2005). "Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis," *Applied Catalysis A: General* 287(2), 183-190. DOI: 10.1016/j.apcata.2005.03.027
- Casas, A., Alonso, M. V., Oliet, M., Santos, T. M., and Rodriguez, F. (2013). "Characterization of cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride," *Carbohydrate Polymers* 92(2), 1946-1952. DOI: 10.1016/j.carbpol.2012.11.057
- Clements, J. H. (2003). "Reactive applications of cyclic alkylene carbonates," *Industrial & Engineering Chemistry Research* 42(4), 663-674. DOI: 10.1021/ie020678i
- Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., and Baba, T. (2005). "Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst," *Applied Catalysis A: General* 283(1-2), 111-116. DOI: 10.1016/j.apcata.2004.12.041
- Fu, D., and Mazza, G. (2011). "Aqueous ionic liquid pretreatment of straw," *Bioresource Technology* 102(15), 7008-7011. DOI: 10.1016/j.biortech.2011.04.049
- Gadenne, B., Hesemann, P., and Moreau, J. J. E. (2004). "Supported ionic liquids: Ordered mesoporous silicas containing covalently linked ionic species," *Chemical Communications* (15), 1768-1769. DOI: 10.1039/B405036C
- Leclercq, E., Finiels, A., and Moreau, C. (2001). "Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts," *Journal of the American Oil Chemists' Society* 78(11), 1161-1165. DOI: 10.1007/s11746-001-0406-9
- Lee, S. H., Doherty, T. V., Linhardt, R. J., and Dordick, J. S. (2009). "Ionic liquid mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis," *Biotechnology and Bioengineering* 102(5), 1368-1376. DOI: 10.1002/bit.22179
- Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., and Singh, S. (2010). "Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification," *Bioresource Technology* 101(3), 4900-4906. DOI: 10.1016/j.biortech.2009.10.066

- Liu, D. T., Xia, K. F., Cai, W. H., Yang, R. D., Wang, L. Q., and Wang, B. (2012). "Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids," *Carbohydrate Polymers* 87(7), 1058-1064. DOI: 10.1016/j.carbpol.2011.08.026
- Liu, L., Ju, M., Li, W., and Hou, Q. (2013). "Dissolution of cellulose from AFEX-pretreated *Zoysia japonica* in AMIMCl with ultrasonic vibration," *Carbohydrate Polymers* 98(1), 412-420. DOI: 10.1016/j.carbpol.2013.06.030
- Liu, L., Ju, M., Li, W., and Jiang, Y. (2014). "Cellulose extraction from *Zoysia japonica* pretreated byalumina-doped MgO in AMIMCl," *Carbohydrate Polymers* 113, 1-8. DOI: 10.1016/j.carbpol.2014.06.067
- Liu, L., Ju, M., Li, W., Liu, Y., and Huang X. (2015). "Influence of solid alkali application on corn stalk dissolution and degradation in solvent systems," *Polymer Degradation and Stability*, 120, 98-106. DOI: 10.1016/j.polymdegradstab.2015.06.010
- Olsson, C., Hedlund, A., Idström, A., and Westman, G. (2014). "Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom," *Journal of Materials Science* 49(9), 3423-3433. DOI: 10.1007/s10853-014-8052-3
- Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H., and Youk, J. H. (2005). "Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy," *Carbohydrate Research* 340(15), 2376-2391. DOI: 10.1016/j.carres.2005.08.007
- Pinkert, A., Marsh, K. N., Pang, S., and Staiger, M. P. (2009). "Ionic liquids and their interaction with cellulose," *Chemical Reviews* 109(12), 6712-6728. DOI: 10.1021/cr9001947
- Ren, Q., Wu, J., Zhang, J., He, J., and Guo, M. (2003). "Synthesis of 1-allyl, 3-methylimidazolium-based room temperature ionic liquid and preliminary study of its dissolving cellulose," *Acta Polymerica Sinica* (3), 448-451.
- Sun, H., Ding, Y., Duan, J., Zhang, Q., Wang, Z., Lou, H., and Zheng, X. (2010). "Transesterification of sunflower oil to biodiesel on ZrO₂ supported La₂O₃ catalyst," *Bioresource Technology* 101(11), 953-958. DOI: 10.1016/j.biortech.2009.08.089
- Swatloski, R. P., Spear, S. K., Holbrey, J. D., and Rogers, R. D. (2002). "Dissolution of cellulose with ionic liquids," *Journal of the American Chemical Society* 124(18), 4974–4975. DOI: 10.1021/ja025790m
- Tang, A., Zhang, H., Chen, G., Xie, G., and Liang, W. (2005). "Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose," *Ultrasonics Sonochemistry* 12(6), 467-472. DOI: 10.1016/j.ultsonch.2004.07.003
- Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., and Poliakoff, M. (2012). "Valorization of biomass: Deriving more value from waste," *Science* 337(6095), 695-699. DOI: 10.1126/science.1218930
- Wang, X., Li, H., Cao, Y., and Tang, Q. (2011). "Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl)," *Bioresource Technology* 102(3), 7959-7965. DOI: 10.1016/j.biortech.2011.05.064
- Wu, L., Lee, S. H., and Endo, T. (2013). "Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of *eucalyptus* wood for enzymatic hydrolysis," *Bioresource Technology* 140, 90-96. DOI: 10.1016/j.biortech.2013.04.072

- Xie, W., Peng, H., and Chen, L. (2006). "Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil," *Journal of Molecular Catalysis A: Chemical* 246 (1-2), 24-32. DOI: 10.1016/j.molcata.2005.10.008
- Xu, A., Zhang, Y., Zhao, Y., and Wang, J. (2013). "Cellulose dissolution at ambient temperature: Role of preferential solvation of cations of ionic liquids by a cosolvent," *Carbohydrate Polymers* 92(1), 540-544. DOI: 10.1016/j.carbpol.2012.09.028
- Zhang, H., Wu, J., Zhang, J., and He, J. (2005). "1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose," *Macromolecules* 38(20), 8272–8277. DOI: 10.1021/ma0505676
- Zhang, J. M., Lv, Y. X., and Luo, N. (2011). "Application research progress of ionic liquids in cellulose chemistry," *Polymer Bulletin* (10), 138-153.
- Zhang, Y. H. P., and Lynd, L. R. (2004). "Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems," *Biotechnology and Bioengineering* 88(1), 797-824. DOI: 10.1002/bit.20282
- Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., and Wu, G. (2006). "Dissolution of cellulose with ionic liquids and its application: A mini-review," *Green Chemistry* 8(12), 325-327. DOI: 10.1039/B601395C

Article submitted: July 21, 2017; Peer review completed: October 1, 2017; Revised version received and accepted: November 24, 2017; Published: November 29, 2017. DOI: 10.15376/biores.13.1.691-703

Erratum (January 27, 2020): 1.) Figure 3 has been corrected with different corn stalk images. The correction does not affect the original discussion of corn stalk structure, which shows that the corn stalk was destroyed after treatment by biochars, resulting in a rougher surface. 2.) In the third paragraph of 'Characterization of the DCS Samples', some viewpoints of another paper were cited to explain the structure difference between microcrystalline cellulose and cellulose in corn stalk. Therefore, the following reference has been added:

Liu, L., Ju, M., Li, W., Liu, Y., and Huang X. (2015). "Influence of solid alkali application on corn stalk dissolution and degradation in solvent systems," *Polymer Degradation and Stability*, 120, 98-106. DOI: 10.1016/j.polymdegradstab.2015.06.010