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With the improvement of living standards, the human demand for 
antibacterial materials has increased. Cellulose, as the most abundant 
polymer in the world, is natural, biodegradable, and renewable, which 
makes it a promising raw material for the production of antibacterial 
materials. Silver nanoparticles (AgNPs)-cellulose antibacterial composites 
exhibit good biocompatibility and antimicrobial properties. These materials 
are easily degraded chemically and are environmentally friendly. 
Therefore, the AgNPs-cellulose antibacterial composites exhibit broad 
utilization prospects in environmental protection, medicine, chemical 
catalysis, and other fields. Several methods are used to manufacture such 
materials. This paper reviews three common techniques: the physical 
method, the in situ chemical reduction method, and the covalent bonding 
method. The differences and relationships are identified, and the 
advantages and disadvantages are compared among these three 
methods. Lastly, the present situation and the development potential of the 
AgNPs-cellulose antibacterial composites are discussed in this review. 
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INTRODUCTION 
 

With the improvement of environmental awareness, research for development of 

biodegradable materials from renewable sources is increasing. Biopolymers, which are less 

expensive and occur in abundance in nature, have become the focus. A representative of 

biopolymers presenting these advantages is cellulose (Cherian et al. 2011). However, 

similar to the great majority of biopolymers, the characteristics of cellulosic materials 

determine that they can undergo bacterial attachment (Pasmore et al. 2001). Since 

cellulosic materials are commonly used in biomedical fields, the spreading of infections 

within hospitals has motivated scientists to develop new and efficient antibacterial 

materials for fighting infections, more especially as components of wound dressings and 

antifouling coatings (Drogat et al. 2011; Tsai et al. 2017). Fortunately cellulose and its 

derivatives have been demonstrated to be good materials for functionalization, and it is a 

favorable base material to address the antibacterial problem (Shin et al. 2008; Díez et al. 

2011). 

Cellulosic antibacterial materials generally can be described as the combination of 

cellulose and antimicrobials. This combination endows new properties and expands the 
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applications of cellulosic materials (Bakumov et al. 2007; Li et al. 2009). Generally, there 

are three types of common antimicrobials: inorganic (Xu et al. 2016), organic (Roy et al. 

2008), and natural (Alonso et al. 2009). The main raw materials of organic antimicrobials 

are lipids, alcohols, and phenols, such as quaternary ammonium salts, ethanol, metformin, 

formaldehyde, organic halogen compounds, organic metal, pyridine, imidazole, haloalkane, 

and iodide. Although organic antimicrobials are widely used in all aspects of life, due to 

their bactericidal, antiseptic, and mildew-proof effects, their applications in the fields of 

textile, health, medicine, and some other areas are limited due to their intrinsic toxicity. 

Natural biological antimicrobials, which mainly come from plant extraction, include amino 

acids, natural peptides, and polysaccharides and are abundant and environmentally friendly. 

However, natural biological antimicrobials require a complex preparation process and have 

higher costs, which restricts the research and applications of these antimicrobials. 

Represented by silver, zinc, and copper, the inorganic antimicrobials, with high 

antimicrobial activity and low toxicity, have gained extensive attention (Jensen et al. 2000; 

Métraux and Mirkin 2005; Torres et al. 2007; Tao et al. 2008; Liu and Hurt 2010; Zhang 

et al. 2011; Henzie et al. 2012). Among these antimicrobials, silver nanoparticles (AgNPs), 

which has been demonstrated to possess excellent antibacterial activity through 

mechanisms involving the release of Ag+ ions that affect the replication of DNA (Marini 

et al. 2007) or the collapse of the proton-motive force across the cytoplasmic membrane 

(Holt and Bard 2005), have become a target of great interest for their relatively nontoxicity 

to human cells (Vimala et al. 2010). 

Cellulose, the most abundant renewable resource on earth, mainly comes from 

plants and bacteria. Multifarious cellulosic materials, such as nanofibrillated cellulose 

(NFC) or regenerated cellulose (RC), can be obtained via physical, chemical, or other 

methods. Hence, there is an enormous potential for the development of AgNPs-cellulose 

antibacterial composites. 

This paper reviews three methods for the combination of cellulose and AgNPs, i.e., 

physical methods, the in situ chemical reduction method, and covalent bonding methods. 

The differences and relationships between these methods, as well as their advantages and 

disadvantages, are compared. Furthermore, the specific forms and applications of AgNPs-

cellulose antibacterial composites are discussed. This paper aims to promote the 

development of AgNPs-cellulose antibacterial composites.  

 

 
PHYSICAL METHODS FOR THE PREPARATION OF AgNPs-CELLULOSE 
COMPOSITES 
 

The physical methods can be classified as either wet or dry processes according to 

whether there is water medium during the production process. There is no morphology 

requirement for raw material in wet process; however, it is generally a block in the dry 

process. 

 
Wet Process 

The wet process includes the adsorption characteristics of natural cellulosic 

materials. The cellulosic materials and nano-silver colloid are prepared separately. The 

nano-silver colloid can be obtained by varied methods, such as chemical reduction (Chen  

et al. 2002; Hao et al. 2002; Anderson et al. 2014), photoinduction (Jin et al. 2001; 

Callegari et al. 2003; Jin et al. 2003; Basuny et al. 2015), or electrochemistry (Braun et al. 
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1998). Then AgNPs are blended with cellulosic materials, without chemical reactions. The 

cellulosic materials merely serve as a carrier or matrix. Figure 1 illustrates the basic 

principle of this method. AgNPs-cellulose antibacterial composites should be prepared 

according to the expected product types (such as membrane, fiber, or powder) and the 

categories of raw cellulosic material, as reviewed below. 

 

    
 
Fig. 1. The wet process 

 

Membrane type products 

 Cellulosic membranes are widely used in ultrafiltration, microfiltration, reverse 

osmosis, and forward osmosis processes (Shibata 2004). Due to the rapid development of 

novel cellulose solvents, regenerated cellulose (RC) membranes have captured extensive 

attention. Typically, there are two approaches to load AgNPs onto cellulose membrane 

materials.  

RC membranes can be prepared before the AgNPs are loaded (Ahamed et al. 2015). 

Benavente et al. (2017) fabricated RC membranes and nano-silver colloids. The AgNPs-

containing RC membrane products were obtained by dipping the RC membranes into the 

nano-silver colloid. However, the disadvantage of this approach is that the AgNPs cannot 

enter the interior of the RC membrane.  

The second method solves the above problem. The AgNPs and the cellulose 

solution are mixed before the casting of the membrane. For instance, AgNPs can be 

prepared using the modified Tollens' process and added into the cellulose-alkali/urea 

solution to obtain an approximately 0.5 mm-thick AgNPs-containing RC membrane 

(Chook et al. 2012). The AgNPs and cellulose are mixed uniformly in the homogenous 

cellulose solution. Thus, the AgNPs are incorporated into the interior of the RC membrane 

during the casting process. The final RC has antibacterial ability for a long period. 

Due to alternative solvent systems, cellulose derivatives are more favorable for 

fabricating membrane materials, such as the AgNPs-containing hydroxypropyl 

methylcellulose membrane (Lloret et al. 2012). In addition, Caloca et al. (2017) fabricated 

AgNPs-containing polyethylene glycol/cellulose acetate ultrafiltration membranes by 

filtering nano-silver colloid through the polymer membrane. Faria et al. (2017) proposed 

the fabrication of antimicrobial membranes through the incorporation of graphene oxide-

silver nanocomposites into a cellulose acetate polymeric matrix. The membranes presented 

strong antibacterial activity, being able to inactivate adhered bacteria at a rate of 90% 

compared to pristine cellulose acetate membranes. 
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Fiber type products 

In the field of health care, fibers characteristics play an important role in the final 

product performance. Medical cloth items, such as surgical gowns, will have antibacterial 

ability if the fibers are loaded with AgNPs. Several reports have focused on the AgNPs-

loading modification of cellulosic fibers. Raghavendra et al. (2013) fabricated a AgNPs-

containing mixed solution with arabic gum and guar gum as reducing agents. The cellulose-

Ag compound fibers were obtained by immersing cotton fibers in the mixed solution. 

Csóka et al. (2012) prepared a AgNPs colloid by a modified Tollens method using D-

glucose as the reduction agent. The silver colloid solution was added to a water suspension 

of cellulose fibers to prepare fiber sheets. 

Cellulose acetate (CA) is a thermoplastic resin derived from natural fibers. Based 

on the wide utilization of CA in varied areas such as the pharmaceutical and textile 

industries, it seems necessary to prepare AgNPs-containing CA fibers. Kendouli et al. 

(2014) prepared a AgNPs colloid via polyhydric alcohols reduction, and the AgNPs colloid 

was further blended with a CA solution to obtain AgNPs-containing CA fibers by 

electrospinning. They also proposed another approach where prepared CA fibers are 

immersed into a AgNPs colloid.  

 

Powdery type products 

Powdery material is usually employed to fill the other main component, i.e. a 

mobile matrix. Accordingly, the antibacterial properties of compound materials can be 

achieved by loading AgNPs into the powdery material. Martins et al. (2012) prepared a 

nano-silver colloid via glucose reduction. The surface modified NFC was mixed with the 

AgNPs colloid, and the obtained powdery compounds were used as fillers in starch-based 

coating formulations to produce antimicrobial paper products. 

 
Dry Process 

Wet treatments can cause environmental concerns and high water and energy 

consumption. Dry routes including sputtering are considered ecofriendly processes and 

offer the advantage of modifying only the material surface. 

Recently, a novel technique for incorporating AgNPs into paper surface using a 

flame pyrolysis procedure has been proposed by Brobbey et al (2017). The technique is 

known as Liquid Flame Spray. This method demonstrates a dry synthesis approach for 

depositing AgNPs directly onto paper surface in a process which produces no effluents. 

The production technique is scalable for industrial production of antibacterial paper. Irfan 

et al. (2017) also employed the dry process but to prepare antimicrobial functionalized 

cotton fabric. They deposited antimicrobial silver nanoclusters/silica composite on cotton 

fabric by radio frequency co-sputtering method. The study is expected to be applied to 

surgeon gowns in the future. 

 
Summary 

In general, the advantages of the physical method, i.e., its convenient operation 

process and relatively high silver loading ratio, are remarkable. However, due to the 

relatively weak bonding of adsorption, the AgNPs adsorbed on the surface of cellulosic 

materials may be partially lost during the utilization process. In other words, the products 

prepared by this method have poor laundering durability (Ilić et al. 2009). Thus, the 

antibacterial potential may be restricted to a certain degree. Separately, in wet process an 

obvious disadvantage of this method is that the use of reducing agents can be toxic and 
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undesirable. In addition, there is heavy water consumption and waste water production with 

hazardous chemicals. On the contrary, dry routes avoid these problems perfectly. It is an 

environmentally friendly method and conforms to the needs of industrial production. 

 

 

IN SITU CHEMICAL REDUCTION METHOD FOR THE PREPARATION OF 
AgNPs-CELLULOSE COMPOSITES 
 

 In situ chemical reduction has been widely used to overcome the inefficiency of 

physical adsorption. Compared with physical adsorption, in situ chemical reduction 

involves the slow growth of AgNPs in cellulosic materials. In other words, having an ionic 

radius of about 0.1 nm, the silver ions can pass into the interior of cellulosic materials. 

After the AgNPs have increased in size, they were wrapped by the skeleton of cellulosic 

materials and could not drop out. Thus the AgNPs can grow in situ in the interior of 

materials. 

 Based on whether the cellulosic materials participate in a redox reaction, the in situ 

chemical reduction method can be divided into two branches. First, cellulosic materials can 

serve as a matrix for the growth of AgNPs. In this case, there is no chemical reaction 

between the cellulosic materials and the silver precursor. Second, chemical reactions occur 

between cellulose (or its derivatives) and a silver precursor. In that case, the cellulosic 

materials play a dual role of reducing agent and matrix. 

 

Cellulosic Materials as a Matrix  
Because the cellulosic materials do not participate in a chemical reaction in this 

approach, an additional reducing agent must be added to reduce the silver ions.  

A one-step method can be used to prepare powder/fibers from cellulosic materials, 

such as microcrystalline cellulose (MCC) powder (Vivekanandhan et al. 2012). 

Nanocrystalline cellulose (NCC) can serve as the matrix, allowing glucose to reduce 

Tollen’s reagent to produce AgNPs at room temperature (Wang et al. 2016). Pinto et al. 

(2009) prepared cellulose nanocomposites by adding a solution of AgNO3 drop-wise into 

an ice-cold NaBH4 solution containing the cellulose and stirring vigorously over 2 h. 

Gaminian and Montazer (2017) decorated AgNPs on electrospun cellulose nanofibers 

(CNFs) through a facile method. The CNFs were treated with silver nitrate, ammonia, and 

sodium hydroxide and subsequently with dopamine as reducing and adhesive agent. Ag 

ions on the CNF surface were photo-reduced to AgNPs using UVA irradiation to produce 

a dense layer of AgNPs on the nanofibers. This approach has been employed widely due 

to its convenient operation (Son et al. 2006; Li et al. 2011a; Li et al. 2011b; Liu et al. 2011; 

Jang et al. 2014; Li et al. 2016; Prema et al. 2017). However, the silver ions and reducing 

agent are added in a system, which partially hinders the in situ synthesis of AgNPs in 

cellulosic materials. This potential hindrance is the main disadvantage of this method. 

Some bulk form AgNPs-containing cellulosic materials, such as membrane, paper, 

or gel, and can be prepared by a relatively complex two-step method. Figure 2 shows the 

general operation, which includes the following two steps: i) cellulosic material is 

immersed in a silver precursor solution to adsorb adequate Ag ions, and the loose Ag ions 

on the surface of the cellulosic material are washed away by deionized water; and ii) the 

cellulosic material containing Ag ions is added into a reducing agent solution to form 

AgNPs. In most cases, silver nitrate is selected as a silver precursor, whereas the reducing 

agent can be chosen from varied substances, such as sodium borohydride (He et al. 2003; 
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He et al. 2005; Luong et al. 2008; Maneerung et al. 2008; Zhu et al. 2009; Ahmad et al. 

2016; Yan et al. 2016), sodium citrate (Tankhiwale and Bajpai 2009; Hebeish et al. 2013), 

triethanolamine (Barud et al. 2008; Barud et al. 2011), glucose (Chook et al. 2017), 

chitosan sulfate (Breitwieser et al. 2013), Cassia alata leaf extract (Sivaranjana et al. 2017), 

bioflocculant (Muthulakshmi et al. 2017), UV-irradiation (Rehan et al. 2017), hydrazine, 

hydroxylamine, or ascorbic acid (Maria et al. 2009). In this method, silver ions are 

adsorbed inside the cellulosic materials when the materials are soaked in silver nitrate 

solution. The silver ions are further in situ reduced to AgNPs, and the AgNPs grow up in 

the reductive solution. During in situ reduction, the particle size of the AgNPs is controlled 

by adjusting the soak time in the reducing agent solution. 

 

  
 
Fig. 2. The two-step method 
 

Cellulosic Materials Serve as Both a Matrix and a Reducing Agent 
A remarkable characteristic of this method is that it has no reducing agents other 

than the cellulosic material. Thus, an advantage of this method is that it reduces the 

consumption of chemicals. This approach is illustrated in Fig. 3. 

 

   
 
Fig. 3. In situ chemical reduction method, in which cellulosic materials serve as both a matrix and 
a reducing agent 

 

Due to the intrinsic reducibility of cellulose, either natural cellulose, RC, or some 

of cellulose derivatives can be employed as a reducing agent without any processing. For 

example, the AgNPs embedded cellulose films or microspheres were fabricated by 

immersing the materials in an aqueous AgNO3 solution at 80 °C for 24 h (Wu et al. 2012). 

Wu et al. (2014a) developed a similar method to synthesize and impregnate AgNPs onto 
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bacterial cellulose (BC) nanofibers via immersing the BC nanofibers into a silver ammonia 

solution at 80 °C for 10 min. Kolarova et al. (2017) prepared AgNPs-cellulose composite 

film by reduction of silver nitrate by methyl cellulose. Elayaraja et al. (2017) generated 

AgNPs by immersing TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized BC 

in AgNO3 solution and keeping it the dark over night at 40 °C. The prepared AgNP 

deposited BC was a promising alternative to control the shrimp pathogen. Because the 

reducibility of natural cellulose is usually very weak, additional energy, e.g., microwave 

heating (Oluwafemi et al. 2016; Xu et al. 2016) or water bath heating (Yang et al. 2012a; 

Emam et al. 2014; Wu et al. 2014b), may be necessary during the redox reaction between 

cellulose and silver ions. 

Natural cellulose can be introduced in specific reductive groups for the in situ 

reduction of silver ions. Wu et al. (2008) fabricated dialdehyde cellulose via a periodate 

oxidation reaction, and reductive aldehyde groups were successfully introduced. Cheng 

et al. (2013) prepared AgNPs/cellulose compounds using aminocellulose as a combined 

reducing and capping reagent.  

 

Summary 

In physical methods, nano-silver colloid has to be prepared in advance. However, 

there is no need for such preparation before the in situ chemical reduction method. 

Compared with physical adsorption, in situ chemical reduction is simpler, and the silver 

loading ratio is improved to a certain extent. Furthermore, the antibacterial endurance of 

AgNPs-containing cellulosic materials is effectively enhanced due to the internal loading 

of AgNPs within cellulosic materials. Especially, when cellulose itself plays a role as 

reducing agent, the process is conducted without using ordinary reductants, which often 

are hazardous. 

 

 

COVALENT BONDING METHOD FOR THE PREPARATION OF AgNPs-
CELLULOSE COMPOSITES 
 

Because the fixation ratio of AgNPs and the antibacterial endurance of AgNPs- 

containing cellulose fibers are influenced by the interaction between fibers and particles, a 

strong and effective bridge should be established to enhance the combination between 

cellulosic materials and AgNPs. Thus, the covalent bonding method has been examined in 

a preliminary study. The procedures of the covalent bonding method are as follows: i) 

AgNPs are immobilized by a suitable dendrimer; and ii) the covalent bonds between 

polymer-parceled AgNPs and modified cellulose are formed during the crosslinking 

reaction process.  

Zhang et al. (2013) firstly prepared amino functional AgNPs by a one-step reaction 

between silver nitrate and amino-terminated hyperbranched polymer (HBP-NH2). And then 

the amino functional AgNPs were grafted on the NaIO4 oxidized cotton fabric. The 

preparation process is shown in Fig. 4. The AgNPs grafted oxidized cotton fabric showed 

excellent antibacterial property and laundering durability. After exposing to 50 consecutive 

home washing conditions, the Ag content of AgNPs grafted oxidized cotton fabric only 

decreased from 149.88 to 116.08 mg/kg, and the bacterial reduction was maintained over 

96% against both S. aureus and E. coli. 
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Fig. 4. The preparation of AgNPs  grafted oxidized cotton fabric (reprinted with permission from 
Zhang et al. 2013)  

 

 
 
Fig. 5. The amidation reaction between NFC and DENAgNPs (reprinted with permission from 
Ramaraju et al. 2015)  
 

Ramaraju et al. (2015) prepared AgNPs-containing cellulosic antibacterial material 

using this method (Manna et al. 2001; Bendi and Imae 2013). The preparation process 

included three procedures: i) a silver nitrate solution and NH2-terminated fourth generation 

poly (amido amine) dendrimer (PAMAM) solution were mixed together, and sodium 

borohydride solution was slowly added to form a PAMAM containing AgNPs 

(DENAgNPs); ii) NFC, suspended in water, was reacted with equimolar coupling reagents, 

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxy-succinimide 

(NHS) to form a stable NHS-carboxylated NFC; and iii) an aqueous DENAgNPs solution 

was added into the NHS-carboxylated NFC suspension to form DENAgNPs-NFC via an 

amidation reaction. The amidation reaction is shown in Fig. 5. 
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Summary 

There are some disadvantages with the covalent bonding method, such as the larger 

chemical consumption and the prolonged preparation period. Nevertheless, the greatest 

benefit of this method is the relative strength and permanence of the covalent bond between 

the cellulosic materials and the AgNPs-wrapped polymers. The AgNPs are tightly 

immobilized on the cellulosic materials, endowing permanent antibacterial activity. 

Although this preparation method is in the early stages, it may be the focus of future 

research. 

 
 
CYTOTOXICITY ANALYSIS OF AgNPs 
 

Since AgNPs are widely used as an antibacterial agent, which can kill 

microorganisms cells, their biological activities on human cells are worth considering. 

Some research has been focused on this subject and has been reported.  

Travan et al. (2009) indicated that AgNPs did not show any cytotoxic effect toward 

three different eukaryotic cell lines, i.e., mouse fibroblast-like (NIH-3T3), human 

hepatocarcinoma (HepG2), and human osteosarcoma (MG63) cell lines. They thought that 

this was due to the fact that AgNPs could exert their antimicrobial activity by simple 

contact with the bacterial membrane, while they could not be taken up and internalized by 

eukaryotic cells. Panáček et al. (2009) found that AgNPs exhibited no cytotoxic effects on 

human fibroblasts at silver concentrations of 0.05 mg/L to 54 mg/L. However, the research 

of Greulich et al. (2009) showed that AgNPs exhibited cytotoxic effects on human 

mesenchymal stem cells at high concentrations but also induced cell activation at high but 

nontoxic concentrations of AgNPs. Recently Shaheen and Fouda (2017) investigated the 

cytotoxicity of AgNPs, and their research demonstrated that AgNPs were safe for 

eukaryotic human cell represented by HepG2, Mcf7 and BHK cellline. 

Through the research we can know that AgNPs exhibit distinguishing toxicity to 

different human cells. Nevertheless we can conclude that AgNPs are relatively nontoxic to 

human cells. Consequently, AgNPs can be regarded as sufficiently safe to merit  further 

investigations in the applications of medicine, wound dressing, food packaging, and some 

other fields. 

 

  

 

Fig. 6. The photographs of AgNPs-containing (A) modal fibers (reprinted from Pivec et al. 2017) 
and (B) RC membranes (reprinted with permission from Cai et al. 2009. “Nanoporous cellulose as 
metal nanoparticles support,” Biomacromolecules 10(1), 87-94; Copyright (2018) American 
Chemical Society and with permission from Chook et al. 2014). 
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FORMS AND APPLICATIONS OF AgNPs-CELLULOSE COMPOSITES 
 

For various applications, AgNPs-containing cellulosic antibacterial materials 

should take different forms, as shown in Figs. 6 through 8. The general map of applications 

of AgNPs-cellulose composites is shown in Fig. 9. Natural cellulose fiber materials loaded 

with AgNPs are usually made into antibacterial paper products (Xu et al. 2015) or mixed 

with fluff pulp to manufacture antibacterial disposable hygiene products. AgNPs-

containing NFC materials, which are normally fabricated into membrane, aerogel, or 

hydrogel products, are widely used in food packaging, chemical catalysis, environmental 

protection, and other fields (Dong et al. 2013; Das et al. 2015). AgNPs-containing MCC 

maintains the original powder morphology of MCC, and it is utilized as functional filler 

(Silva and Unali 2011). AgNPs-containing RC can be spun into silks for textile materials 

(Pivec et al. 2017) or cast into membranes for effluent treatment (Weis et al. 2005; 

Kallioinen et al. 2010; Puro et al. 2010). Singla et al. (2017a) prepared AgNPs and 

cellulose nanocrystals nanobiocomposites (NCs) in film and ointment forms. NCs were 

found to significantly enhance in vivo skin tissue repair by decreasing production of 

inflammatory cytokines and increasing fibroblast proliferation, angiogenesis, and finally 

tissue neo-epithelization and regeneration in less than 14 days by favoring collagen 

deposition. NCs may serve as potential candidates as antibacterial wound dressings for 

accelerating tissue repair and regeneration, such as serving for diabetic patients (Singla et 

al. 2017b). 

 

  
 
Fig. 7.  AgNPs contained in various products: (A) paper (reprinted with permission from Xu et al. 
2015), (B) NFC membranes  (reprinted with permissions from Dong et al. 2013 and Ramaraju et 
al. 2015), and (C) NFC gels (reprinted with permissions from Dong et al. 2013 and Das et al. 
2015)  
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Fig. 8. AgNPs-containing BC membranes (reprinted with permissions from Yang et al. 2012b and 
Li et al. 2015)  
 

 
 

Fig. 9. The applications of AgNPs-cellulose composites (reprinted with permissions from Adepu 
and Khandelwal 2017; Tang et al. 2015; and from Singla et al. 2017b)  

 
Because it is easy to shape, BC mostly has been formed into membranes. The 

AgNPs-containing BC membrane can be utilized as an antibacterial artificial skin to 

replace the defective skin, or as a medical antibacterial dressing to replace the traditional 

cotton wool, gauze, and bandages used to treat burns or chronic ulcerative disease (Czaja 
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et al. 2006, 2007; Fu et al. 2013). Adepu and Khandelwal (2017) fabricated BC-AgNPs 

antifouling materials. They found that food stuff was protected from microbial spoilage for 

30 days when stored in BC-AgNPs nanocomposites having < 2% silver, whereas spoilage 

was noticed within 15 days for food stuff stored in regular polythene bag. Therefore, BC 

impregnated with AgNPs serves to be highly useful material for food packaging as well as 

healthcare systems. With its superior mechanical properties and excellent biocompatibility, 

the AgNPs-containing BC membrane has great potential in medicine and health care (Yang 

et al. 2012b; Li et al. 2015).  

 
 
CONCLUSIONS  
 

1. This paper reviewed three common techniques used to prepare AgNPs-containing 

cellulosic antibacterial materials, i.e., the physical method, in-situ chemical reduction 

method, and covalent bonding method. The specific forms and application status of 

AgNPs-containing cellulosic materials prepared by the three methods are introduced.  

2. Commonly, the physical method is convenient to operate, and the loading ratio of 

AgNPs to cellulosic material is relatively high. However, the physical adsorption force 

between the AgNPs and the cellulosic material is correspondingly weak, and this is a 

drawback of this method. Compared with the physical method, the operation process 

of the in-situ chemical reduction method is obviously simplified, and the antibacterial 

endurance of AgNPs-containing cellulosic materials is effectively enhanced due to the 

internal loading of AgNPs in cellulosic materials. Considering the final product 

performances, the covalent bonding method is superior to the above two methods due 

to the covalent bond combination between cellulosic materials and AgNPs-wrapped 

polymers. However, some disadvantages now exist, such as the larger chemical 

consumption and the prolonged preparing period. 

3. The AgNPs-containing cellulosic antibacterial materials can be widely used in food 

packaging, chemical catalysis, environmental protection, functional materials, textiles, 

skin beauty products, medical items, health care, and other fields. To date, the 

exploration of the application of AgNPs-containing cellulose materials is still in 

progress. In general, the research on BC membranes and CA fibers is mature, and there 

have been commercial products in the market. Hence, the AgNPs-containing BC 

membranes and CA fibers are expected to be the earliest to achieve industrial 

production.  
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