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Five different softwoods were used to investigate fast methods for predicting 
quantitative chemical information via near-infrared (NIR) spectroscopy. In 
biomass-related industries, fast collection of chemical information from a 
feedstock is needed. Prior to predicting quantitative information, a principal 
component analysis (PCA) using NIR spectra was conducted to evaluate the 
possibility of discriminating the softwoods. As a result of PCA, the five species 
were divided into three groups. This result indicated that the extractive 
compounds were key factors because the powder samples were separated by 
species having a similar extractive content. The partial least square (PLS) 
method was applied to develop a calibration model for predicting chemical 
composition. This model showed good performance in predicting the extractive 
and lignin content of all species. The calibration results of the extractive and 
lignin content for all species were indicated as R2 = 0.99. The cross-validation 
of the components for all species also showed an excellent value of R2 = 0.98 
and 0.97, respectively. Based on our results, it was possible to suggest a 
useful tool for providing rapid information about wood used in the bioenergy 
and pulp production fields.  

 
Keywords: Softwood species; Near-infrared spectroscopy; Partial least square regression; Chemical 

composition; Extractive; Lignin; Non-destructive measurement  

 

Contact information: a: Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul 

National University, Seoul 08826, Republic of Korea; b: Research Institute of Agriculture and Life 

Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of 

Korea; c: Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, 

Republic of Korea; * Corresponding author: cingyu@snu.ac.kr 

 
 

INTRODUCTION 
 

With an increase in use of wood materials in various industries, it is necessary to 

rapidly know chemical and physical information about the wood. In particular, the 

chemical properties are influenced by the condition of the wood, and if the wood has too 

many defects, the chemical composition may differ from a normal specimen of the wood. 

In addition, the chemical structure is different depending on the section of the wood 

(Onnerud 2003; Wadenbäck et al. 2004). Furthermore, a natural phenomenon related to 

wood degradation or deterioration via external factors can result in the restriction of the 

use of wood (Schultz et al. 2007; Zhang et al. 2009; Ozdemir et al. 2015). Therefore, it is 

important to quickly find defects and abnormal conditions in wood materials on the spot. 

Although the defects and differences on the surface of the wood can be observed easily, it 

is harder to know the chemical information of other wood-based materials such as sawdust, 
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chips, and powder, which are not uniform in shape. For this reason, a faster and easier 

method to determine chemical information of the wood materials is needed.  

The traditional wet analysis of wood chemical properties is time-consuming and 

inefficient; it is typically conducted in a laboratory and is labor intensive.  To overcome 

this inconvenience, spectroscopic techniques such as near-infrared (NIR) and visible 

infrared have been developed to predict the chemical composition of wood.  

Particularly, NIR spectroscopy has been introduced as a promising method for the 

prediction of wood properties. The technique is a simple task with no chemical destruction 

and easy preparation of samples (Yeh et al. 2004; Schimleck 2008; Xu et al. 2013). Many 

studies have already suggested the use of time-saving analytical models based on NIR 

spectroscopy. This allows cellulose, lignin, and extractive contents in wood or biomass to 

be measured automatically (Ishizuka et al. 2014; Li et al. 2015). It is possible to predict 

more precise information, such as the syringyl/guaiacyl ratio and the mono-sugar 

distribution. In addition, other studies have been reported for predicting mechanical 

properties such as moisture content, density, and air-dried specific gravity (Leblon et al. 

2013; Yang et al. 2017). Such information can improve the efficiency in not only wood 

industries but also bioenergy-based plant designs (Alves et al. 2012; López et al. 2017). 

However, the biomass industry has fewer attempts to apply the NIR system for the rapid 

prediction of the chemical properties of a wood.  

In this study, NIR spectroscopy was employed for collecting the chemical 

information of five softwoods grown in the Republic of Korea. Characteristically, 

specimens for the experiment were prepared as powder state to eliminate the influence of 

the wood direction. Wood samples were used to develop regression models for predicting 

chemical composition using the partial least square (PLS) technique. The calibration and 

cross-validation results of the extractive and lignin contents were evaluated. In addition, a 

principal component analysis (PCA) was tested for the classification of softwood species.  

 

 

EXPERIMENTAL 

 
Materials 

Larch (Larix kaempferi), cedar (Cryptomeria japonica), cypress (Chamaecyparis 

obtusa), red pine (Pinus densiflora), and Korean pine (Pinus koraiensis) were purchased 

from the National Forestry Cooperative Federation in the Republic of Korea. Lumber 

pieces from each species were obtained as 50 × 100 × 600 mm (thickness × width × length) 

boards, which were cut into 50 samples. Each sample was stranded five times at 2 mm 

intervals. A total of 250 sawdust samples were prepared from each species. The sawdust 

was ground and filtered through a 40 mesh sieve. The ground powder was stored at room 

temperature in a sealed plastic bag. 

 

Methods 
Near-infrared (NIR) spectrum measurement 

NIR spectra were obtained using a SpectraStar 2600 XL instrument (Unity 

Scientific, Milford, MA, USA). The 40 mesh size sample was placed in a cup holder with 

100 × 50 mm (diameter × length), and 12 scans were recorded and averaged from 680 to 

2600 nm wavelength at intervals of 1 nm. OMNIC 9.2 software (Thermo Scientific, 

Waltham, MA, USA) was used for spectra analysis. The spectra analysis was performed 
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with additional data pretreatment, and a Savitsky-Golay 2nd derivative (polynomial order: 

3, smoothing point: 21) was used to compare the differences more precisely between the 

wood species.  

  

Selection of representative samples  

A total of 250 samples for each species were prepared to obtain the NIR spectra. 

However, the chemical analysis of all samples was not possible. Thus, representative 

samples for each species were selected based on the Mahalanobis distance theory. The 

Mahalanobis distance in a multidimensional space was introduced to NIR spectroscopy 

research by Mark and Tunnel (1985). In a principal component space, the standardized 

Mahalanobis distance is applied to consist of clusters of NIR spectra as well as the selection 

of calibration samples. The distance is used in two ways: neighborhood H (NH), used when 

constructing a set of calibration samples, and global H (GH), used when determining the 

boundaries of the spectral population and the detection of outliers (Shenk and Westerhaus 

1991a,b). NH was chosen for this study to select representative samples for further 

calibration of the set. The NH of larch, cypress, and cedar was set to 1.5, whereas the NH 

value of red pine and Korean pine was 1.0. A different NH value was applied to the 

selection step because the number of red and Korean pines was too small to develop the 

calibration model at 1.5. Therefore, the NH was reset to 1.0 for both pine species. Totally, 

150 samples were selected as representatives (Larch: 29, Cypress: 25, Cedar: 26, Red pine: 

29, Korean pine: 41).  

 

Chemical composition analysis 

The extractive and lignin contents were analyzed according to the National 

Renewable Energy Laboratory procedures (Sluiter et al. 2005, 2008). An alcohol-benzene 

(1:2, v/v) solution was used to extract the extractive compounds in woods via a Soxhlet 

extractor at 80 °C for 6 h. The solute was evaporated to remove the solvent. The extractive 

content was calculated by the oven-dry weight. The lignin content was analyzed via the 

Klason lignin method using 0.3 g of wood powder, which was placed in a flask with 3 mL 

of 72% H2SO4 for 1 h at 30 °C. Next, 84 mL of distilled water was added to the flask, and 

the hydrolysis reaction was continued at 120 °C for 1 h. When the reaction was finished, 

the solid and liquid fractions were separated using an aspirator. The weight of the solid 

residue as an acid insoluble lignin was calculated, and the acid hydrolyzed compounds in 

the liquid fraction (acid-soluble lignin) were measured via a UV/Vis spectrometer.  

 

Classification via principal component analysis (PCA) 

The score plot of the first principal component (PC1) and the second principal 

component (PC2) was based on the PCA, and it was used to observe the clusters in the 

selected samples. Unscrambler software (CAMO, 9.7, OSLO, Norway) was used for the 

multicomponent analysis with the PCA. To improve the spectral errors, a data pretreatment 

was performed using the Savitsky-Golay 2nd derivative (polynomial order: 3, smoothing 

point: 21). 

 

Regression model via partial least square (PLS) 

A PLS analysis was employed to develop the prediction models for each species. 

Prior to model evaluation, preprocessing conditions were set. The standard normal variate 

(SNV), and a detrend was used to lower the electrical error. In addition, a forward gap 1st 

derivative (gap size = 8, smoothing = 8) was applied. A PLS regression model for the 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Park et al. (2018). “Rapid chemical content of wood,” BioResources 13(2), 2440-2451.  2443 

extractive and lignin content via NIR spectroscopy was calibrated with the preprocessed 

spectra and the results of the chemical analysis using UCal NIR calibration software 

(version 3.0, Unity Scientific, Milford, MA, USA). The calibration set and cross-validation 

were divided into five groups followed by evaluation for each and all species. The model 

calibration was validated by the coefficient of determination (R2), the root mean square 

error of calibration (RMSEC), and the root mean square error of cross-validation 

(RMSECV).  

 
 
RESULTS AND DISCUSSION 
 
NIR Spectra Analysis  

The five softwood species used in this study are native to a wide range of Korea. 

There were differences in the chemical composition of each wood, which can be influenced 

by the environmental conditions, such as moisture and nutrients. The different chemical 

compositions and contents can be a problem in species identification. The 250 ground 

samples for each species were collected, and a total of 1,250 spectra reports were obtained. 

Unlike wood sawdust or lumber, the wood powder used in the study had no effect on the 

absorbance difference according to the directions for measurement. Fig.1(A) shows the 

raw spectra of all samples. It was not easy to compare the spectral differences among the 

five species. It was difficult to interpret the precise spectral information without any 

preprocessing because the primary and secondary overtones are reflected in the near-

infrared region. Overlapping and broad spectral data was observed. Therefore, a 

mathematical pretreatment using the Savitsky-Golay 2nd derivative was applied to compare 

the spectra among the five species, and the results are presented in Fig. 1(B). The spectral 

region ranging from 1600 to 1800 nm is commonly represented as the extractive and lignin 

band assignment, whereas the 2000 to 2300 nm wavelength is related to the cellulose and 

hemicellulose bands. The distinct differences at the 1600 to 1800 nm wavelength were 

attributed to the 1st overtone of the C-H bond originated from the –CH2, -CH3, and the 

=CH2, found in aromatic compounds. More specifically, the peak of 1672 and 1685 nm 

may be originated from the C-H stretch in aromatics (Baillèresa et al. 2002; Fujimoto et 

al. 2007; Workman and Weyer 2007; Schwanninger et al. 2011). Thus, the five species 

used in this study exhibited unique patterns, especially in the aromatic compounds, which 

is a key factor in gathering information for wood discrimination.   

 

Fig. 1. NIR spectra of all selected species (A) raw spectra and (B) 2nd derivative spectra 
depending on species 
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Chemical Composition of Representative Samples 
Prior to performing the principal component analysis (PCA) for the evaluation of 

the discriminability of five softwood species, it was necessary to collect the chemical 

composition of the wood powders. However, it is difficult to analyze all of 1,250 samples. 

Thus, dozens of samples were selected as representative samples with similar chemical 

properties for each species. Table 1 summarizes the chemical composition of the selected 

samples based on the neighborhood distance. In larch, the content of the extractives was 

1.6 to 5.5%, and the lignin content was 23.3 to 29.7%. The contents of the extractives and 

lignin were similar in cedar and cypress. In particular, the lignin contents of cedar and 

cypress were higher than other species. Previous research noted similar results using the 

same species (Japanese cedar and Japanese cypress) collected in the Japanese Archipelago 

(Ishizuka et al. 2014). The extractive content of red pine ranged from 3.9 to 18.3%, and 

that of Korean pine was between 3.3 and 22.7%.  Both pine species belong to the same 

Pinus family and are known to accumulate large amount of resin (Ekeberg et al. 2006; Kim 

et al. 2010). They showed a broad range of extractive content. 

 

Table 1. Summary of Extractive and Lignin Contents in Selected Samples for 
Each Species 

Species NH* 
Number of 
Selected 
Samples 

Extractive (%) Lignin (%) 

Min. Max. Std. Min. Max. Std. 

Larch 1.5 29 1.6 6.6 5.48 23.3 29.7 1.62 

Cedar 1.5 25 0.7 7.1 1.71 30.3 36.8 1.98 

Cypress 1.5 26 1.3 6.2 1.31 29.8 36.7 1.56 

Red pine 1.0 29 3.9 18.3 5.48 23.1 32.8 1.62 

Korean pine 1.0 41 3.3 22.7 3.57 22.0 28.4 2.39 

Total  150       

*NH: Neighborhood distance 

 

Wood Classification via PCA 
The PCA for the selected 150 samples was performed using the raw spectra data. 

If the score plot are scattered clearly by the different wood species, it would be better to 

differentiate them by each species. As shown in Fig. 2(A), the species boundary was not 

clear based on PC1 (86%) and PC2 (10%), except for the larch. Additional preprocessing 

was applied to eliminate errors that occur during the acquisition of NIR spectra, and 

mathematical processing was performed. In the NIR absorbance region, sharp peaks 

appeared at 1380 to 1480 nm and 1830 to 1950 nm, which were originated from the 

measurement limit of instrumentation and moisture (Fig. 1(B)). Therefore, the spectra with 

the 2nd derivative pretreatment was processed by eliminating the two regions additionally 

for a precise comparison. After preprocessing, a cluster formation in the PCA plot was 

clearly observed as shown in Fig. 2(B). This means that it is important to establish a specific 

spectral region that is attributed to the wood components. Finally, the cluster was divided 

into three groups (1 group: larch; 2 group: cedar and cypress; 3 group: red pine and Korean 

pine). Meanwhile, Fig. 2(C) shows the comparison between the PC1 loading value and the 

spectra with the 2nd derivative treatment for all selected species. The black line indicates 

the loading value, while the color lines are the spectra with the 2nd derivative.  
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Fig. 2. PCA analysis score plots based on NIR spectra and its loading; A: raw spectra, B: 2nd 
derivative spectra with removing the measurement limit of the instrumentation and the moisture, 
C: PC1-loading 

 

Loading refers to the degree of difference between the spectra, and intensive peaks 

at specific regions mean the presence of the big difference. The spectral pattern in the 

loading value was similar to the peaks in the spectra with the 2nd derivative. The spectral 

changes at 1600 to 1800 nm can be explained by the C-H bonds (-CH3 and -CH) attributed 
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to the aromatic compounds such as the extractives and lignin. In addition, the spectral 

changes in the 2100 to 2400 nm region appear due to the difference in absorptions by the 

cellulose and hemicellulose C-H bonds (-CH2 and CH). These results indicated that there 

are structural differences among each species although they were softwood species with 

similar wood components.  

 

Prediction of Chemical Composition via PLS Model 
The development of calibration model was conducted via a PLS method for the 

prediction of the chemical composition of the five species. For the development of the 

calibration formula using NIR spectra, SNV, detrend, the forward gap, and the 1st derivative 

were applied as a mathematical preprocessing. The predicted chemical components via 

NIR spectra and wet chemistry measurements were generated by the PLS regression 

procedure and shown in Fig. 3. Several previous papers mentioned that separating the 

specific spectrum range improved the calibration performance because it was more 

effective for good calibration results (He and Hu 2013; Zhou et al. 2015; Yang et al. 2016). 

In our study, the full spectral range was applied to develop the calibration model, 

considering the measurement limit of the instrumentation and the moisture. The correlation 

was high between the predicted and measured chemical contents, demonstrating the 

feasibility of the PLS regression in predicting the chemical composition of the five 

softwood species.  
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Fig. 3. PLS calibration results of extractive and lignin contents of larch, cedar, cypress, red 
pine, Korean pine and all species 
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Results of the calibration and validation models for the quantitative compositional 

analysis of both each and all species are shown in Table 2. Specifically, each species 

showed the calibration results for the extractive content with a R2 of more than 0.94 of and 

a RMSEC of less than 0.48. For lignin, the calibration results were obtained with a R2 

greater than 0.97 and a RMSEC less than 0.43. The cross-validation results of the 

extractives also showed good prediction performance for each species, although larch 

indicated a relatively lower value with R2 = 0.78 when compared to other species. The R2 

was 0.93 for cedar, 0.86 for cypress, 0.98 for red pine, and 0.97 for Korean pine, 

respectively. The detailed RMSECV values of the extractive contents for each species are 

presented in Table 2. For the lignin after cross-validation, the R2 was shown as 0.92 for 

larch, 0.88 for cedar, 0.91 for cypress, 0.91 for red pine and 0.89 for Korean pine. All 

selected samples regardless of the species showed an excellent performance in the cross-

validation as well as the calibration results with a R2 = 0.99 for both the extractives and 

lignin. As a result, it is expected that the prediction of the extractive and lignin contents of 

each and all species used in our study will perform well. 

 

Table 2. Calibration and Validation Indices for Prediction of Extractive and Lignin 
Contents Using NIR Spectra 

Species 
Number of 
Selected 
Samples 

Constituent 
Calibration Validation 

RMSEC R
2
 RMSECV R

2
 

Larch 29 
Extractive 0.2639 0.9586  0.5855 0.7765 

Lignin 0.1869  0.9894  0.4751 0.9187 

Cedar 25 
Extractive 0.0493 0.9992 0.4395 0.9263 

Lignin 0.0403 0.9996 0.6475 0.8820 

Cypress 26 
Extractive 0.3308 0.9364 0.4059 0.8600 

Lignin 0.0605 0.9984 0.4502 0.9047 

Red pine 29 
Extractive 0.4139 0.9947 0.5422 0.9778 

Lignin 0.2847 0.9692 0.4588 0.9085 

Korean pine 41 
Extractive 0.4769 0.9821 0.6156 0.9646 

Lignin 0.4304 0.9675 0.6855 0.8904 

All species 150 
Extractive 0.4639 0.9899 0.6255 0.9801 

Lignin 0.4330 0.9864 0.5990 0.9722 

 
 
CONCLUSIONS 
 
1. The five softwood species used in this study had a significantly different content of 

extractives and lignin. In particular, the red pine and Korean pine showed the highest 

amount of extractive content and their maximum contents were shown as 18.3% and 

22.7, respectively.   

2. The possibility of classification of five softwoods via PCA was evaluated, indicating 

that the three groups were divided depending on their chemical properties (larch / cedar 

and cypress / red pine and Korean pine). However, it was difficult to classify each 

species clearly because some species had similar chemical structures. Therefore, more 

detailed research should be performed to identify unique information for each species.  

3. As a result of the PLS analysis, it was possible to demonstrate the good performance 

on the prediction of the quantitative information for all species. To sum up, the R2 
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values of the extractives and lignin in the cross-validation were shown as 0.98 and 0.97. 

These results showed the feasibility of a rapid prediction system via NIR, and thus they 

will be helpful for providing wood chemical information as a feedstock in various 

industries such as bioenergy as well as pulp and paper sciences.  
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