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Stress wave testing has been applied in the nondestructive evaluation of 
wood for many years. However, the anisotropy property of wood and the 
limited number of sensors prevent an accurate stress wave velocity 
measurement and the high resolution of tomographic inversion. This 
paper proposes a tomographic imaging algorithm (IABLE) with a velocity 
error correction mechanism. The proposed algorithm computed the wave 
velocity distribution of the grid cells of wood cross-sections by the least 
square QR decomposition (LSQR) iterative inversion, and then optimized 
the tomography with a velocity error correction mechanism (ECM). To 
evaluate the performance of the proposed algorithm, several healthy and 
defective logs and live trees were selected as the experimental samples, 
and the nondestructive testing procedures were finished. With the stress 
wave velocity data sets measured via a PiCUS 3 stress wave testing 
instrument, the IABLE algorithm was implemented, and the tomographic 
images of the log samples and live trees were generated. The 
experimental results demonstrated the effectiveness of the proposed 
imaging algorithm for the nondestructive evaluation of wood. 
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INTRODUCTION 
 

The stress wave technique is simple to be applied at a low cost in nondestructive 

wood evaluation, and it has been used for many years (Wang et al. 2004; Senalik et al. 

2014; Carter 2017; Proto et al. 2017). Stress wave techniques are simpler and less costly 

than imaging techniques, and some types of commercial equipment (e.g., Fakopp 

Treesonic, Fakopp Microsecond, Hitman Resonance Tool, IML Impulse Hammer) are 

available to measure stress wave transmission times in trees (Wang et al. 2004; Walsh et 

al. 2014). To increase the reliability of the inspection and decide the extent and location 

of any internal decay, it would be practical to conduct multiple measurements with more 

sensors in different orientations at one cross-section, especially for potentially defective 

trees. Tomographic inversion of stress wave data from multiple measurements allows 

inspectors to obtain an image of the distribution of stress wave velocity in a cross-section 

and help estimate the extent of internal decay. Thus, acoustic tomography has been used, 

with increasing popularity, to assess the internal condition of wood or live trees (Bucur 

2003; Socco et al. 2004; Wang et al. 2004, 2009; Dackermann et al. 2014; Senalik et al. 

2014; Riggio et al. 2015; Gilbert et al. 2016). Socco et al. (2004) assessed the feasibility 
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of ultrasonic tomography for non-invasive testing of living trees with both laboratory and 

field ultrasonic measurements. They also pointed out that the marked anisotropy of 

longitudinal direction properties could create numerous difficulties in constructing 3D 

tomographic images for trees. Divos and Divos (2005) concluded that the resolution of 

stress wave-based acoustic tomography is influenced by the applied frequency, the 

number of sensors, and the applied inversion technique. The resolution of the image 

increases if the applied frequency is raised, the number of sensors is increased, or the 

applied algorithm is more advanced. In addition, some sonic tomography equipment (e.g., 

FAKOPP ArboSonic 3D, PiCUS Sonic Tomograph, and Arbotom) has been developed to 

conduct multipath stress wave testing, and these products can generate 2D or 3D 

tomograms of the tree trunk (Arciniegas et al. 2015). 

To improve the precision of decay detection and the resolution of tomographic 

images, many researchers have studied the relationships between the mechanical 

characteristics of wood and stress wave velocity. Dikrallah et al. (2006) presented an 

experimental analysis of the acoustic anisotropy of wood, in particular, the dependence of 

propagation velocities of stress waves on natural anisotropy axis in the cross-section. 

They found a significant difference in wave velocity between the waves propagating in 

whole volume and the waves guided on bars. Maurer et al. (2006) developed a simple 

correction scheme that removes first-order anisotropy effects. The corrected travel-time 

data can be inverted with isotropic inversion codes that are commercially available. The 

numerical experiments demonstrate the consequences of ignoring anisotropy effects and 

the performance of their correction scheme. Liang et al. (2007) found that the prediction 

of decay areas by acoustic tomography is rather conservative when heartwood decay is 

the major structural defect in trees. Brancheriau et al. (2008) designed a reconstruction 

algorithm using a linear approximation of the forward problem (Born approximation) and 

based on the assumption that a transversal cross-section of wood is isotropic. Qualitative 

reflectivity images were obtained from back-scattered measurements by reflection 

tomography. The qualitative aspect of this imaging technique was validated by 

performing a numerical simulation and testing on a small-diameter green wood (Picea 

abies) log. Schubert et al. (2009) investigated the influence of fungal decay on 

tomographic measurements neglecting the heterogeneity of wood, and they found that the 

cross-section of a cavity, which is larger than 5% of the total cross-section of the trunk, 

can be detected by acoustic wood tomography. Li et al. (2014) studied stress wave 

velocity patterns in black cherry trees and found that the ratio of tangential velocity to 

radial velocity in healthy trees approximated a second-order parabolic curve with respect 

to the symmetric axis  = 0 ( is the angle between wave propagation path and radial 

direction). The analytical model was found in excellent agreement with the real data from 

healthy trees. Marin᷉o et al. (2010) analyzed the velocity gradient by relating the value of 

longitudinal stress-wave velocity to the distance from the point where velocity was 

measured to the pith, the results of the tests showed a statistically significant relationship 

between the longitudinal velocity and distance to pith. 

Feng et al. (2014) presented an image reconstruction algorithm for detecting the 

internal defects of wood. The proposed algorithm was based on an interpolation method 

that estimated the velocity values of unknown grid cells using the values of the 

surrounding cells. Du et al. (2015) proposed a stress wave tomography method using 

ellipse-based spatial interpolation and velocity compensation. Their results showed that 

the proposed method performed well and can resist the signal interference caused by the 

density variation of the defective area. Arciniegas et al. (2015) used four different signal 
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processing algorithms to study the effect of the signal dynamic on the velocity 

determination and to determine the validity range of the signal processing techniques. 

They found that the computed velocity increased as the noise level increased, and they 

suggested that a combination of the Fisher and Hinkley methods (Fisher 1912; Hinkley 

1971) in the same algorithm would yield the most accurate acoustic velocity 

determinations in the tomography of standing trees. Karlinasari et al. (2016) investigated 

the sound wave velocity change from green to dry conditions in agarwood and 

tomographic images associated with changes in the moisture content. The results showed 

that sonic velocity values increase from 12% to 22% as moisture content decreases from 

a green condition (live tree) to an air-dried condition (disk sample). Nevertheless, solid 

and damage areas revealed only slight differences on the tomograms. Gilbert et al. (2016) 

developed field methodology and image analysis protocols using acoustic tomography to 

estimate the amount of internal decay and damage of living trees. They concluded that 

sonic tomography, coupled with image analysis, provides an efficient, noninvasive 

approach to evaluate decay patterns and the structural integrity of, even irregularly 

shaped, living trees. 

Micro-drilling resistance testing is typically applied to evaluate the internal decay 

and density variation of wood. A significant amount of research has been conducted to 

explore the use of resistance drilling measurements for various applications such as tree 

ring analysis, tree decay detection, and structural timber condition assessment (Faggiano 

et al. 2011, Wang 2017). From the relative drilling resistance curve, the actual internal 

decay severity of wood can be decided. Two kinds of micro-drilling testing instruments 

(Resistograph, Rinntech, Heidelburg, Germany, and IML Resistograph System, IML Inc., 

Wiesloch, Germany) are often used all over the world. In this study, micro-drilling 

resistance testing is used to verify the accuracy of tomographic imaging. 

The objective of this study is to improve the accuracy of stress wave tomography 

for the nondestructive evaluation of wood. An error correction mechanism (ECM) of 

stress wave velocity inversion was proposed for wood tomography reconstruction. Then 

an imaging algorithm (IABLE) based on the least square QR decomposition (LSQR) and 

ECM was designed. Experiments were conducted to demonstrate the effectiveness of 

IABLE. 

 

The Stress Wave Velocity Pattern and Velocity Inversion Procedure 
Analytical model of stress wave velocity in healthy live trees 

A better understanding of wave velocity patterns in trees is critical to develop 

reliable and effective imaging software for internal decay detection. For simplicity, one 

can assume that the trunk of a tree under testing is a cylindrical body, its cross-section is 

an ideal circularity (Fig. 1(b)), and the pith is located in the center of the circular tree. 

Figure 1(a) shows the field setup for stress wave testing of a live tree with 12 sensors 

deployed around the tree trunk. Figure 1(b) gives two stress wave propagation paths, 

where S is a source sensor, and R1 and R2 are receiver sensors. A stress wave is 

transmitted from the source to the receivers. The SR2 represents the radial direction, and 

SR1 represents the tangential direction. The VT represents the tangential velocity (m/s), VR 

is the radial velocity (m/s), and  is the angle (radian) between radial direction and 

tangential direction. Generally, the stress wave velocity along radial direction is largest, 

and it will decrease with the increment of the direction angle . Li et al. (2014) presented 

an analytical model of the ratio of tangential velocity to radial velocity in sound trees, 
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which approximated a second-order parabolic curve with respect to the symmetric axis  

= 0 as shown in Eq. 1. They demonstrated that this model was in excellent agreement 

with the real data measured from healthy trees. 

VT / VR  1 - 0.2 2                                                                                                                          (1) 

 

          
                                       (a)                                                                                   (b) 

 
Fig. 1. (a) Field setup of stress wave testing of live trees and (b) stress wave propagation in the 
cross-section  
 

Given the measured radial wave velocity VR, one can obtain the reference value 

VT of the tangential wave velocity along any direction in the cross-section from Eq. 1. By 

comparing the measured velocity Vtest with the reference value Vref, the defective 

propagation paths can be decided. 

Usually, the peripheral reference velocity V0 is determined by calculating the 

average of the line velocities of the neighboring sensors. This velocity can be used as a  

reference because the outer part of the tree usually is intact (Divos and Divos 2005). In 

the second step, one can derive the reference velocity Vref of each path from Eq. 1, and 

then the measured velocity Vtest is divided by the reference velocity. For each path, if Vtest 

/ Vref  < 0.9, then this path will be regarded as a defective line. 

 

The Principle of Tomographic Inversion and LSQR Iterative Algorithm 
Stress wave tomographic inversion is the procedure that provides the wave 

velocity distribution in an investigated section (domain) using the impulse travel time and 

the positions of sensors as inputs. The travel time relative to each S-R (source–receiver) 

position is calculated assuming a certain velocity distribution within the domain, and this 

velocity distribution is iteratively modified until the calculated travel times are in good 

agreement with the measured ones (Bucur 2003; Socco et al. 2004; Divos and Divos 

2005). Most inversion algorithms for travel-time tomography were developed from 

seismic investigation (Jackson and Tweeton 1994; Socco et al. 2004), and the first step is 

to split the investigated section into many grid cells of suitable size. For instance, Fig. 2 

shows a wave propagation path from S to R, and the wave travel time can be calculated 

by a line integral along path S-R of the wave slowness (reciprocal of velocity) given in 

Eq. 2. 
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Fig. 2. The square grid cells of a cross-section of wood 
 

t =∫ 𝑝 d𝑙
𝑅

𝑆
                                                                                                         

(2)

 where p is the slowness of stress wave (s/m) and dl is the infinite small distance along the 

wave path (m). 

To reconstruct the slowness distribution, the domain is often divided into M cells, 

and the continuous function p(x,y) is approximated by the discrete slowness distribution 

in each cell. Given the assumption that the slowness p is uniform in each cell, Eq. 2 can 

be transformed into a summation (Socco et al. 2004), 





M

j

ijji dpt
1

   (i = 1, 2, …, N)                                                                         (3) 

where dij is the segment intercepted by the ith wave path on the jth cell, and pj is the 

slowness of the jth cell (s/m). Then, the summation can be expressed in matrix form as 

follows, 

T = DP                                                                                                           (4) 

where T and P are the time (s) and slowness vectors (s/m), respectively, and D is the 

intercepted segment’s matrix (m). 

Given T and matrix D, tomographic imaging process includes solving the 

slowness vector P, and rendering each cell with appropriate color according to the 

slowness value. Clearly in Eq. 3, wave path lengths dij are zero for most cells because a 

given wave path will typically intersect only a few of the cells; thus D is normally a large 

and sparse matrix. The LSQR iteration algorithm (Paige and Saunders 1982) is used to 

solve Eq. 4 in this paper. The idea of LSQR iteration algorithm is decomposing the 

coefficient matrix into an orthogonal matrix Q and an upper triangular matrix R by QR 

decomposition and then solving the least squares solution iteratively. 

Equation 4 is usually an underdetermined equation whose least squares solution is 

a generalized solution P=P* that makes the residual’s 2-norm (||T-DP||2) be a minimum 

value as follows: 

||T - DP*||2 = min||T - DP||2                                                                            (5) 

Thus, the least squares solution of the underdetermined Eq. 4 is equivalent to the 

solution of the normal Eq. 6:  

DTDP = DTT                                                                                              (6) 

http://dl.acm.org/author_page.cfm?id=81339526394&coll=DL&dl=ACM&trk=0&cfid=643590605&cftoken=68479522
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If (DTD) is reversible, then the normal Eq. 6 has a unique solution. Meanwhile, 

the least squares solution can be written as: 

P = (DTD)-1DTT                                                                                              (7) 

The least squares Eq. 7 using the decomposed matrix by QR decomposition can 

be written as: 

P = (RTQTQR)-1(QR)TT = R-1QTT                                                                (8) 

Then, the least squares solution of the underdetermined equation using QR 

decomposition is the solution to Eq. 9, whose coefficient matrix is an upper triangular 

matrix: 

RP = QTT                                                                                                   (9) 

Finally, the solution of the Eq. 9 is used in Eq. 5. The solution is iterated to obtain 

the least-squares solution until the residual’s 2-norm is minimum (Paige and Saunders 

1982).  

 

Tomographic Imaging Based on Stress Wave Velocity Error Correction 
After the velocity inversion procedure, the tomographic image the sample can be 

generated according to the velocities of the cells. However, the threshold of ratio Vtest / 

Vref (the measured velocity to the reference velocity) is typically an empirical value, 

which may result in the deviation between the tomography and the actual situation. In 

this section, the authors proposed a tomographic imaging algorithm based on an ECM. It 

helps to verify the defective lines; thus the proposed imaging algorithm can improve the 

quality of tomographic image. 

Given a cell and its wave velocity Vc, first the reference velocity Vref is calculated 

based on the analytical model (Li et al. 2014). If  = Vc / Vref < 0.9, then this cell will be 

decided as defective. Such a simple criterion sometimes results in errors of the generated 

wood tomography. The defective area often proliferates from one cell to its neighboring 

cells gradually. There often exists some correlation among the velocities of neighboring 

cells. In this paper, an ECM was proposed to reduce the potential errors mentioned 

above. The ECM is a decision strategy based on the stress wave velocities of neighboring 

cells. For the velocity distribution derived from the LSQR iterative algorithm and a 

corresponding initial  distribution, the authors investigate the velocities of neighboring 

cells of each cell and adjust the value of ratio Vc / Vref to reduce the probability of decision 

error. The ECM applies different techniques to deal with different cells of the cross-

section of wood. There are two kinds of grid cells, i.e., internal cells and marginal cells. 

For example, in Fig. 3, the ith cell is an internal cell with four neighboring internal cells, 

and the jth cell is a marginal cell with only two neighboring internal cells. Here, the cross-

section is represented by a circular plane. 

 

http://dl.acm.org/author_page.cfm?id=81339526394&coll=DL&dl=ACM&trk=0&cfid=643590605&cftoken=68479522
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Fig. 3. The internal cells and marginal cells of the cross-section 
 

For the internal cells, ECM checks the δ values of the ith cell and its neighboring 

cells numbered m, n, i1, and i2. If the ratio   = Vtest / Vref of each cell has been calculated, 

the value of i can be adjusted based on the following criterion, 

𝑖 = {
1, 𝑖𝑓 𝑠 > 𝑙/2 𝑎𝑛𝑑 𝑖 ≤ 0.9

 0.9, 𝑖𝑓 𝑠 < 𝑙/2 𝑎𝑛𝑑 𝑖 > 0.9
                                                         (10) 

where i is the ratio Vtest / Vref of the ith cell, s is the number of neighboring cells with   > 

0.9, and l is the number of the ith cell’s neighboring cells. 

For the marginal cells, such as the jth cell in Fig. 3, the ECM considers its eight 

neighboring cells (including next nearest neighbors, e.g., k1, k2, l1, and l2), and checks 

which cell is not outside the cross-section. Except for the l1
th and lth cells, the other six 

neighboring cells of jth cell are internal or marginal cells, so ECM uses the δ values of 

these six cells to correct the value of j based on Eq. 10. 

When all cells have been investigated with the aforementioned procedure, it 

should be checked whether the resulted  distribution has been changed compared with 

the initial  distribution. If there is any change in  distribution, the ECM needs to repeat 

the procedure until the  distribution remains stable. Once the final  distribution is 

decided, each cell of the cross-section will be marked with appropriate color based on its 

δ value, and then the tomographic image can be generated. 

 

 

EXPERIMENTAL 
 

Materials 
Two experiments were conducted with logs and live trees as the samples. The first 

experiment used three log samples (#1, #2, and #3) from laboratory including a defective 

cedar log with an artificial cavity, a defective sapium log, and a sound cedar log. The 

second experiment was finished in September 2016, three kinds of live trees with internal 

defects (Juniperus chinensis, Liquidambar formosana, and Morus alba) of Slender West 

Lake Park, Yangzhou, China, were selected as samples (#4, #5, and #6).  

 

Methods 
In the experiments, a PiCUS 3 Sonic Tomograph (Argus Electronic Gmbh, 

Rostock, Germany) instrument was used to collect the stress wave velocities and 

tomographic images. For each tested sample, 10 or 12 sensors were deployed according 
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to the size of its cross-sections. In addition, a Resistograph microdrilling instrument 

(RINNTECH, Heidelberg, Germany) was used to evaluate the defective degree of the 

cross-sections and demonstrate the accuracy of the proposed imaging algorithm. For the 

experiment of live trees, three live trees were tested using the PiCUS instrument, each at 

different heights above the ground. The tomographic images were then generated by 

IABLE and PiCUS. Subsequently, the samples were tested using the Resistograph 

microdrilling instrument at the same location as the PiCUS to measure the defective 

degree of the cross-sections. The Resistograph was accurate in defining the actual length 

of defective segment.  

 

 

RESULTS AND DISCUSSION 
 

Experimental Results of Logs 
Three log samples were tested using the PiCUS Sonic Tomograph instrument. 

The proposed tomographic imaging algorithm was implemented based on the velocity 

data set collected by the PiCUS. Then, the authors compared the tomographic images 

generated by IABLE and PiCUS with the actual situation of the sample. The ratio (Rs) of 

the defective area to the whole cross-section area reflects the accuracy of images, which 

was calculated by dividing the number of pixels in the defective area by those of the 

cross-section. Let Rs (%) represent the relative error between the Rs calculated from the 

tomographic image of IABLE or PiCUS and the actual Rs of the sample, which is defined 

by Eq. 11,  

 212 / ssss RRRR                                                                               (11) 

where Rs1 (%) is the Rs of IABLE or PiCUS and Rs2 (%) is the actual Rs. 

Figures 4 through 6 show the log samples and their tomographic images generated 

by IABLE and PiCUS. Here, for the images of IABLE, the brown color represents the 

defective area, and the green, purple, and blue colors were the defective area for PiCUS. 

 

      

(a)                                                    (b)                                                        (c) 

 
Fig. 4. (a) Sample #1, (b) tomographic image of IABLE, and (c) tomographic image of PiCUS 
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 (a)                                                      (b)                                                         (c) 

 
Fig. 5. (a) Sample #2, (b) tomographic image of IABLE, and (c) Tomographic image of PiCUS 
 

      

                   (a)                                                      (b)                                                         (c) 

 
Fig. 6. (a) Sample #3, (b) tomographic image of IABLE, and (c) tomographic image of PiCUS 

 

Table 1 shows the Rs of images generated by IABLE and PiCUS. Here, Rs   0 

meant that the tomographic image displayed a false positive or false negative for the 

defective area. A low moisture content in the log samples caused false defective areas. 

From Table 1, it can be seen that the Rs of IABLE was closer to the actual Rs and its 

relative error was smaller than that of PiCUS. However, it was difficult to eliminate the 

false defects thoroughly in either method (as shown in Fig. 5). 

 

Table 1. Imaging Accuracy Comparison Between IABLE and PiCUS 

Sample Rs2 (%) 
IABLE PiCUS 

Rs1 (%) Rs (%) Rs1 (%) Rs (%) 

# 1 36.6 39.9 9 28.6 21.85 

# 2 9.8 12.9 31.6 36 267 

# 3 0 0 0 11 > 0 

 
Experimental Results of Live Trees 

Figures 7, 9, and 11 depict the sample trees under test and the tomographic images 

generated by IABLE and PiCUS of the tree trunk. Figures 8, 10, and 12 give the 

resistance curves of the Resistograph along different testing paths, where the horizontal 

axis denotes the length of the testing path and the blue section is the actual length without 

bark. The longitudinal axis represents the relative resistance. In each resistance curve, the 
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path i-j accorded with the wave path in the tomographic image of the cross-section from 

the ith sensor to jth sensor. 

 

   5.  

                   (a)                                                      (b)                                                         (c) 

 
Fig. 7. (a) Sample #4, (b) tomographic image of IABLE, and (c) tomographic image of PICUS 
 

   
                   (a)                                                      (b)                                                         (c) 

 
Fig. 8. (a) Resistance curve of path 1 through 7; (b) Resistance curve of path 2 through 9; and 
(c) Resistance curve of path 4 through 10 

 

From Fig. 7, it can be seen that the defective area of the tomographic image of 

IABLE was very close to that of PiCUS. To compare the accuracy of the defective areas 

of IABLE and PiCUS, the drilling resistance testing processes along three different paths 

were completed. Figure 8 shows the resistance curves of three paths. In the resistance 

curves, the horizontal axis denotes the drilling depth (mm), and the vertical axis 

represents the relative drilling resistance Resi (%). Although both IABLE and PiCUS 

showed a high accuracy of defect detection, there was a slight decay that was found by 

IABLE but not by PiCUS at the beginning of path 1 through 7. Along path 2 through 9, 

except for the obvious defect at 190 mm to 310 mm, there was a slight internal decay in 

the sample #4 tree, and IABLE obtained a better evaluation than PiCUS. The same case 

was found in path 4 through 10. 
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                   (a)                                                      (b)                                                         (c) 

 
Fig. 9. (a) Sample #5, (b) tomographic image of IABLE, and (c) tomographic image of PiCUS 

 

   
                   (a)                                                      (b)                                                         (c) 

 
Fig. 10. (a) Resistance curve of path 3 through 8; (b) Resistance curve of path 4 through 7; and 
(c) Resistance curve of path 5 through 10 

 
Figure 9 shows the sample #5 tree with a large cavity and the tomographic 

images generated by IABLE and PiCUS, and Fig. 10 shows the resistance curves of 

Resistograph along three paths. Due to the large cavity, the tomographic image generated 

by PiCUS was not accurate enough. Instead, IABLE corrected the error caused by the 

abnormal data with ECM and made the image reflect the cavity more accurately. 

 

     
                   (a)                                                      (b)                                                         (c) 

 
Fig. 11. (a) Sample #6, (b) tomographic image of IABLE, and (c) tomographic image of PiCUS 
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                                     (a)                                                                              (b)                        

 
Fig. 12. (a) Resistance curve of path 9 through 1 and (b) Resistance curve of path 2 through 11 

 

From Fig. 11, it can be seen that there was a clear cavity in the sample #6 tree, 

and it was found that the cavity was filled with special padding, which made the defective 

areas have a high Resi value. Figure 11 shows the sample tree and the tomographic 

images generated by IABLE and PiCUS. Figure 12 presents the resistance curves along 

two paths. The radius of tree trunk was more than the drilling range of Resistograph 

instrument, so the authors could only obtain the Resi data of half path. As shown in Fig. 

12(a), the Resi values were relatively low around the sensor #9, so this section can be 

regarded as defective, and this defect line was detected by IABLE clearly. However, 

PiCUS was unable to detect this defect. Therefore, from Fig. 11, it can be seen that the 

tomographic image of IABLE displayed some small defective area disconnected with the 

central defective area that should be improved in the future. 

To quantitatively evaluate the performance of IABLE, for the same stress wave 

propagation path, the ratio (Rl) of the defective length calculated from the image of 

IABLE or PiCUS to the actual defective length tested by the Resistograph instrument was 

compared. Like the definition of Rs, Rl represents the relative error between the Rl of 

IABLE or PiCUS and the actual Rl. Table 2 gives the comparison results of IABLE and 

PiCUS for the three live tree samples. Here, Rl1 and Rl1 are the above-defined ratios of 

IABLE and PiCUS, respectively. This experiment showed that IABLE could detect the 

slight decay, which was negated by PiCUS. For samples #4 and #5, IABLE had Rl 

values less than 10%, which showed a better evaluation for the slight decay than PiCUS. 

For sample #6, due to the incomplete data of microdrilling testing, there existed 

differences between the tomographic images and REL data of resistance curves. In 

general, it can be seen that IABLE had higher accuracy than PiCUS, and better reflects 

the actual situation. However, the boundary of the defective area in the image generated 

by IABLE was not realistic enough, which requires a more effective strategy of velocity 

error correction for the marginal cells. 
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Table 2. The Length Ratio and Relative Error 

Sample Path Rl (%) 
IABLE PiCUS 

Rl1 (%) Rl (%) Rl2 (%) Rl (%) 

#4 

1-7 89.9 93.5 4.1 95.9 6.7 

2-9 87.8 81.1 7.6 57 35.2 

4-10 91.5 93.5 2.2 80.4 12.1 

#5 

3-8 88.5 87.1 1.6 67.6 23.6 

4-7 83.3 77.5 6.9 53.9 35.3 

5-10 74.6 76.4 2.4 68.7 8 

#6 
9-1 75.6 93.1 23.1 43.5 42.5 

2-11 86.4 88.9 2.9 88.9 3 

 

 

CONCLUSIONS 
 

Traditionally, tomographic imaging for stress wave testing of wood is based on 

velocity inversion. However, the anisotropy property of wood and the limited number of 

sensors prevent an accurate stress wave velocity measurement and high resolution of 

tomographic inversion. This study presented a velocity error correction mechanism for 

improving the accuracy of tomographic imaging of wood. Based on the preliminary 

results obtained from both laboratory and field-testing, the following conclusions were 

drawn: 

1. The velocity error generated during the inversion procedure was corrected by the 

collaboration of neighboring grid cells, effectively improving the accuracy of 

tomography.  

2. The experimental results of several samples of logs and live trees showed that the 

IABLE tomographic imaging algorithm developed in this work had better accuracy 

than the PiCUS instrument. The quantitative comparison between the microdrilling 

resistance testing and the stress wave tomographic image demonstrated the 

effectiveness of IABLE. 

3. The experiments showed that the tomographic images of IABLE were not precise 

enough for the small defects and boundary shape. Thus, the proposed velocity error 

correction mechanism needs improvement. 

4. Micro-drilling testing can help people demonstrate the accuracy of acoustic imaging 

of wood, and develop imaging equipment with high resolution for nondestructive 

evaluation wood. 
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