
 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Huang et al. (2018). “Inelastic model for bamboo,” BioResources 13(2), 2814-2833.     2814 

 

An Inelastic Model for Analyzing Intermediately Slender 
Engineered Bamboo/Wood Columns Subjected to 
Biaxial Bending and Compression 
 

Zirui Huang,a,b Zhongfan Chen,a,* Dongsheng Huang,c,d Ying Hei Chui,e and Yuling Bian f 

 
The engineered bamboo/wood composites (EBWCs) studied in this work 
included solid wood, wood-based composites, and bamboo-based 
composites. The basic characteristic of these products is that they have 
similar stress-strain relationships in the parallel to the grain direction 
because of their similar microscopic structures. The asymmetric stress-
strain relationship in tension and compression presents a great challenge 
for the inelastic analysis of intermediately slender EBWC columns. In this 
study, a novel model was developed for the inelastic analysis of biaxially 
loaded intermediately slender EBWC columns with rectangular cross 
sections. The model provides a step by step method to evaluate the 
nonlinear responses and load-carrying capacities of these columns. 
Experiments on parallel strand bamboo columns loaded with biaxial 
eccentric loads were conducted to validate the model. Good agreement 
between the experimental and predicted results was achieved. The 
innovative elements of the model were the asymmetric properties of 
EBWCs in tension and compression, and its simplicity, which lends itself 
to implementation in engineering design calculations. The present work is 
an extension of a previous study by Huang et al. (2015a), and its objective 
was to develop an innovative inelastic analysis model evaluating biaxially 
loaded intermediately slender EBWC columns with rectangular cross 
sections.  
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INTRODUCTION 
 

The essential characteristic of intermediately slender columns is that the load-

carrying capacity is usually dominated by the strength of the material and slenderness of 

the column. Numerous studies have been implemented to develop models for evaluating 

the in-plane load-carrying capacities of intermediately slender columns (Chen and Atsuta 

1977; Buchanan 1984; Song and Lam 2009; Theiler et al. 2013; Huang et al. 2015a) since 

the pioneering work of von Karman on plastic performances of beam-columns 

(Timoshenko 1953). The plastic behaviors of biaxially loaded beam-columns have been 

studied extensively since the 1960s. Because of the expanding needs in the design of steel 

and concrete structures, many of these research studies were valuable in the U.S. and 

coordinated by the U.S. Column Research Council (Chen and Atsuta 1977). However, the 
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methods developed were based on the determination of the exact deflection shape of the 

columns, which limited their practical use. By establishing force equilibrium conditions 

only at the mid-height of the column, assuming the deflection shape of the column is a half 

sine wave, and idealizing the material as elastic-perfectly plastic, many researchers have 

created approximate models to evaluate the ultimate load-carrying capacities for steel and 

concrete columns (Chen and Atsuta 1977). Nevertheless, these models are not applicable 

for bamboo and wood columns because of the complicated constitutive law of these 

materials. Many timber design standards use empirical compression-moment interaction 

equations to evaluate beam-columns (EN 1995-1-1 2004; CSA 086-14 2014; ANSI/AWC 

2015).  

For engineered bamboo/wood composites (EBWCs), including solid woods, wood-

based composites, and bamboo-based composites, the constitutive law of the materials 

usually contains more complicated characteristics than for homogenous materials, 

especially for asymmetric properties under tension and compression (Buchanan 1984; 

Huang et al. 2015b, 2016; Li et al. 2016). It was reported by Buchanan (1984) that the 

nonlinear stress-strain relationship in the compression of solid wood was determined as 

early as 1840. Since then many nonlinear models have been proposed to simulate the stress-

strain relationship of wood in the parallel to the grain direction (Buchanan 1984). The 

bilinear model is the simplest constitutive law among them, which states that wood has a 

bilinear elastic-plastic stress-strain relationship in compression, whereas it is elastic in 

tension (Neely 1898). Zakić (1973) proposed a parabolic model for solid wood, which 

assumed that the compressive stress-strain relationship may be approximated by parabolic 

curves. 

Wood-based composites, such as laminated veneer lumber, laminated strand 

lumber, and parallel strand lumber, have been increasingly used as construction materials 

in the last few decades because of concerns about saving forestry resources (U.S. 

Department of Agriculture 2010). These composites are manufactured by bonding wood 

strands or fibers together with an adhesive. They usually provide more uniform and 

predictable in-service performances than solid wood products because of smaller and more 

evenly distributed flaws compared to a member of solid wood. In addition, they may 

provide more predictable in-service behavior because of dispersion and the elimination of 

defects during the manufacturing process. Although the mechanical properties of most 

wood-based composites might be changed compared with those of solid wood, the stress-

strain relationship of solid wood is still the same as for wood-based composites (Li et al. 

2016), i.e., linearity in tension and nonlinearity in compression. 

In recent years, bamboo-based composites have been commercially produced and 

are starting to be used as construction materials in China because of the restriction on forest 

harvesting. Parallel strand bamboo (PSB) (Huang et al. 2015b) and laminated bamboo 

(Huang et al. 2016) are the major bamboo-based composites commonly used in building 

construction. Similar to wood-based composites, bamboo-based composites are usually 

fabricated by gluing bamboo strands, fiber bundles, or bamboo panels together under a 

controlled temperature and pressure. It has been confirmed by Huang et al. (2015b) and 

Huang et al. (2016) that the parallel to the grain stress-strain relationships of bamboo-based 

composites also present linearity in tension and nonlinearity in compression. 

Indeed, bamboo and wood have similar microstructures, which consist of long and 

parallel cellulosic fibers embedded in ligneous tissues (Zhou et al. 2012; CSA 086-14 

2014). This is photographically illustrated in Fig. 1. It is the reason why the constitutive 

relationships of solid woods, wood-based composites, and bamboo-based composites 
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exhibit similarities in the parallel to the grain direction. Therefore, from the macro-

mechanical perspective, solid wood, wood-based composites, and bamboo-based 

composites can be thought to belong to the same material category. The parallel to the grain 

stress-strain relationship of EBWCs may be simulated by a unique model with different 

values for the model parameters for different composites. Consequently, the analysis of 

beam-columns made of solid wood, wood-based composites, and bamboo-based 

composites may be performed with the same model. 

 

  
  (a)       (b) 
 

Fig. 1. Similar microscopic structures of wood and bamboo: (a) typical microscopic structure of 
soft wood (U.S. Department of Agriculture 2010); and (b) microscopic structure of Phyllostachys, 
a common bamboo species used to manufacture bamboo-based composites 

 

It has been confirmed that the shape of the compressive stress-strain curve severely 

influences the nonlinear behavior of beam-columns (Buchanan 1984). To use the actual 

compression curve as an input is the best way to model the nonlinear behavior of beam-

columns. However, the complication in computing resultant forces over an inelastic area 

of the failure cross section makes this method unappealing in practice. Therefore, some 

simplified constitutive relationships were adopted to build an analytical model to evaluate 

the load-carrying capacity of biaxially loaded beam-columns. For example, the elastic-

perfectly plastic constitutive law is a popular one that has been adopted to solve the biaxial 

loading problems for steel beam-columns (Chen and Atsuta 1977). The inelastic problems 

of biaxially loaded EBWC beam-columns have received less attention in the past than steel 

and concrete beam-columns. Many design codes around the world, such as ANSI/AWC 

(2015), CSA 086-14 (2014), and EN 1995-1-1 (2004), adopt an allowable stress design 

(ASD) method or load and resistance factor design (LRFD) method for wood structures. 

These codes present the moment-force interaction equations as failure criteria to check 

whether or not a beam-column meets the requirements of an ASD/LRFD. The failure 

criterion is derived from the results of extensive simulation calculations and applies to 

timber columns, and the material properties are taken into account (Blaß 1987). Indeed, the 

ultimate-based design philosophy has become a fundamental requirement in virtually all 

wood structural design standards, e.g., ANSI/AWC (2015) and CSA 086-14 (2014). 

Without a proper nonlinear analysis method, it is challenging to propose an ultimate-based 

design for biaxially loaded EBWC columns. 

Newlin (1940) suggested a parabolic interaction equation as a failure criterion for 

wood columns subjected to combined in-plane bending and compression. This interaction 

curve is actually empirical in nature because it was based on the data fitting of experimental 

results. A strain-based model that takes the nonlinearities and P-delta effect into 
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consideration for the inelastic analysis of glulam columns was proposed by Blaß (1986). 

The model assumes the strain over the failure section is known, and hence the stress 

distribution over the failure section can be inferred in accordance with the stress-strain 

relationship. Theiler et al. (2013) proposed a formula for the load-carrying capacity 

calculation of eccentrically loaded timber columns. To determine the load-carrying 

capacity and ultimate deflection of intermediately slender columns of bamboo-based 

composites, Huang et al. (2015a) developed an inelastic model to evaluate the in-plane 

performances of PSB columns subjected to bending and compression, in which 

compressive nonlinearity of the stress-strain relationship was modeled by a parabolic 

curve. The ultimate load-carrying capacity and deflection can be obtained with the model, 

and furthermore, the nonlinear responses can be traced via a step by step calculation. 

More recently, studies have been done to evaluate the nonlinear performances of 

biaxially loaded beam-columns. Most of them postulated an elastic-perfectly plastic stress-

strain relationship for materials to mitigate mathematical difficulties (Pallarés et al. 2009; 

Baptista 2012; Fossenti and Papia 2012; Papanikolaou 2012). Song and Lam (2009) 

reported a nonlinear model to evaluate the stability of timber beam-columns subjected to 

biaxial eccentric compression. The compressive nonlinearity of the stress-strain 

relationship was modeled by a 3rd order polynomial, and a numerical integration approach 

was employed to solve the problem. 

The present work is an extension of a previous study by Huang et al. (2015a), and 

its objective was to develop an innovative inelastic analysis model evaluating biaxially 

loaded intermediately slender EBWC columns with rectangular cross sections. Solid wood, 

wood-based composites, and bamboo-based composites were uniquely treated as EBWCs 

because of their similar constitutive laws in the parallel to the grain direction. By taking 

the nonlinear behavior of the material into consideration, a nonlinear model was developed 

for determining the ultimate load-carrying capacity of intermediately slender EBWC 

columns loaded with a biaxial eccentric force. A key innovative element of the model was 

that the asymmetric properties of the EBWCs in tension and compression were considered, 

and it did not involve complicated mathematical calculations. Thus, the model can be easily 

adopted for design calculations. The model was validated by experiments on PSB columns 

with an eccentric load applied in a biaxial manner. 

 

 
THEORETICAL MODEL 
 
Stress-strain Relationship 

The analytical model developed in the present work was based on Euler’s beam 

theory; hence, only the mechanical properties in the longitudinal direction, i.e., parallel to 

the grain, were considered. The stress-strain relationship of the solid wood in the parallel 

to the grain direction has been extensively studied for decades. Four constitutive models 

are commonly used to account for the nonlinearity of compression parallel to the grain, 

which are schematically illustrated in Fig. 2. The bilinear elastic-plastic and bilinear-

softening stress-strain relationships proposed by Neely (1898) and Malhotra and Bazan 

(1980), respectively, are popular among the four models. These two models consider the 

proportional limit to be the maximum compressive strength; hence, they may remarkably 

underestimate the load-carrying capacity of members. Zakić (1973) observed the nonlinear 

hardening process of compression and proposed a parabolic model for the compressive 

stress-strain relationship of solid wood. It has been reported that the researcher Glos further 
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took the softening process of compression into consideration and proposed a polynomial 

stress-strain relationship (Buchanan 1984).  
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Fig. 2. Commonly used parallel to the grain stress-
strain relationships for wood 
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Fig. 3. Parallel to the grain stress-strain 
relationship for bamboo-based 
composites 

 

Usually the parabolic and polynomial models can provide a good approximation 

for solid wood in compression parallel to the grain. The present study employed a parabolic 

model created in the study by Huang et al. (2015b) to account for the parallel to the grain 

stress-strain relationship of EBWCs. The equation of the stress-strain relationship may be 

expressed as: 
 

 
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 
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where λi (i = 1, 2, and 3) is the material constant, fcu and εcu are the ultimate compressive 

strength (kN) and associated strain, respectively; fce and εce are the stress (MPa) and strain 

corresponding to the proportional compressive limit, respectively; ftu and εtu are the 

ultimate tensile strength (kN) and strain, respectively; and E is the Young’s modulus 

parallel to the grain (MPa). 

The stress-strain curve is schematically shown in Fig. 3. 
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Analysis of the Failure Cross Section 
A rectangular cross section of a column loaded with an axial force was adopted to 

build the governing equations. The eccentricities ex and ey (Fig. 4a) were considered the 

Cartesian coordinates in the plane of the failure cross section, which originated from the 

centroid of the cross section and took the x- and y-axis to be the edges parallel to the section. 

Further, the load condition that is shown in Fig. 4a can be equivalent to the condition that 

is presented in Fig. 4b, in which the section is subjected to a centroid axial load (N) 

combined with biaxial moments (Mx and My), with respect to the x- and y-axis. The tensile 

force (N) and bending moments (Mx and My) follow the right-hand cork screw and are 

considered to be positive in the longitudinal direction. 

The following assumptions were applied in the development of the analytical 

methods: (1) the plane section remains plane after deformation, (2) damage begins at the 

outermost corner of the compressive zone until the fiber is broken at the remote corner of 

the tensile zone, and (3) the neutral axis of the cross section keeps its original direction 

during the damage process. Thus, the strain at any point (x, y) over the cross section can be 

functionally expressed as, 
 

 ,x y Px Qy R                    (3) 

where P, Q, and R are the parameters that depend on the stress state of the cross section. 

Furthermore, the equation of the neutral axis of the biaxial bending cross section 

can be expressed as: 
 

0Px Qy R                    (4) 

Obviously, the neutral axis is a straight line. Hereafter, functional expressions for 

the axial compression were created with respect to the material properties, dimensions of 

the cross section, and eccentricities of the thrust in the linear and nonlinear states. 
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Fig. 4. Biaxially loaded cross section: (a) rectangular cross section subjected to a biaxial 
eccentric force (N); and (b) equivalent loading condition of (a) 

 

Elastic analysis 

In the elastic condition, the stress-strain relationship over the whole cross section 

satisfies Hooke’s law. Thus, the stress over the cross section may be expressed as: 

   ,x y E Px Qy R                   (5) 

The resultant forces of the cross section satisfy the equations: 

 ,
A

x y dA N   

  x y,
A

x y ydA M Ne    

  y x,
A

x y xdA M Ne                   (6) 

(a) (b) 
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Substituting Eq. 5 into Eq. 6 yields: 
 

x

e

y
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e

x

Ne
Q
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 , and e

N
R

EA
               (7) 

where A is the area of the cross section (mm2), and Ix and Iy are the moments of inertia 

(mm4) about the x- and y-axis, respectively. The P, Q, and R parameters of the strain plane 

in the elastic state were replaced by Pe, Qe, and Re, respectively, in Eq. 7 for the sake of 

distinguishing the plane parameters in the elastic-plastic state, which will be discussed later. 

It was deduced from the plane hypothesis that the fiber at the corner of the compressive 

zone of the cross section (Fig. 4) must be the first one that reaches the proportional limit. 

After that, the cross section is turned to an elastic-plastic state. Therefore, the proportional 

limit of a biaxial compressive load may be computed by: 
 

ce
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y x
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f
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                (8) 

 

Nonlinear analysis 

It was deduced from the plane hypothesis that stress at the point farthest from the 

neutral axis should reach the yielding value first. For EBWCs, the tensile strength is usually 

noticeably higher than the proportional limit of compression; hence, the damage must begin 

from the remote corner of the compressive zone. Considering this damage mechanism and 

the stress-strain relationship, it was inferred that the failure cross section might be divided 

into three zones during the damage process, i.e., the elastic tensile zone (ETZ), elastic 

compressive zone (ECZ), and plastic compressive zone (PCZ), which are illustrated in Fig. 

5. Obviously, the strains in the boundary of the ECZ and PCZ must equal the strain of the 

proportional limit of compression. It was therefore easy to deduce that the boundary of the 

ECZ and PCZ must be a straight line and parallel to the neutral axis, otherwise the plane 

hypothesis would be violated. Obviously, there were two possible PCZ shapes, triangular 

and trapezoidal, depending on the ratio of ex to ey. In this study, the equations based on the 

triangular PCZ case were derived first, and then the equations for the trapezoidal PCZ case 

were derived. 

Assuming the boundary of the ECZ and PCZ go through points (a0, b) and (a, b0) 

for a triangular PCZ (Fig. 6a), the strain plane of a damaged cross section must satisfy the 

following conditions, 
 

 , ta b    , and    0 0 cea ,b a,b                  (9) 

where εt is the tensile strain at the remote corner of the tensile zone. 

By substituting the three terms from Eq. 9 into Eq. 4, the equations to determine P, 

Q, and R for the strain plane can be obtained. Simultaneously solving the equations and 

considering Hooke’s law in the ETZ and ECZ yields: 
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Thus, the plane of strain can be determined by the intersection points of the ECZ-

PCZ boundary and cross section edges. In contrast, if the distances from points (-a, -b) and 

(a0, b) or (a, b0) to the neutral axis are denoted as d1 and d2, respectively, then ft/fce must 

equal d1/d2 according to the plane hypothesis. Thus, the relationship of the tensile stress (ft) 

at point (-a, -b) in the tensile zone and the compressive stress (fce) at point (a0, b) in the 

compressive zone can be expressed as: 

t ce

0 +b

aP bQ R
f f

a P Q R

  

 

             (11) 

The axial resultant force (N) of the cross section can be computed by, 

 
1 2A A A

N dA E dA dA                     (12) 

where A1 and A2 denote the areas (mm2) of the elastic response zone and plastic response 

zone in the cross section, respectively, as is illustrated in Fig. 6. 

The integration of the last term on the right side of Eq. 12 would be incredibly 

complicated to perform if the nonlinear stress-strain relationship was not directly 

substituted into the equation. Hence, a simplified approach from the previous study by 

Huang et al. (2013) was employed to calculate the stress integration over the PCZ. In this 

approach, a homogeneous coefficient (α) was introduced to consider the uneven 

distribution of compressive stress in the PCZ. Thus,  
2 2

ce
A A

f dA f dA     was obtained. It 

was easy to prove that the α coefficient has the same value as that used for in-plane beam-

columns (Appendix A). Therefore, α may be calculated by (Huang et al. 2013): 
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         (13) 

where the λi coefficients are determined by Eq. 2. 

Thus, Eq. 12 can be further expressed as: 

2 2
ce

A A A
N E dA E dA f dA                   (14) 

In Eq. 14, an equivalent transformation for the integration over A1 was conducted 

for the sake of reducing the difficulty of integration over an irregular area, i.e., 

1 2A A A
E dA E dA E dA      . It was assumed that the equation of the ECZ-PCZ boundary has 

the form, 

y x                  (15) 

where: 
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After substituting the parameters obtained via Eq. 10 into Eq. 14 and considering 

the integral limit specified by Eq. 15, the resultant force over the cross section was obtained: 

         0 0 0 0 0 0 ce2 2 3
6 2

E
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Fig. 5. Typical strain (a) and stress (b) diagrams of a biaxially loaded rectangular cross section 
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Fig. 6. Critical cross sections with different shapes for the PCZ: (a) triangular PCZ; and (b) 
trapezoidal PCZ 

 

The derivation of Eq. 17 can be seen in Appendix B. Considering the parallel 

condition of the neutral axis and ECZ-PCZ boundary, the relation of the quantities of the 

two intersection points a0 and b0 can be expressed as: 

 0 0

P
b b a a

Q
                 (18) 

According to the assumption that the neutral axis always keeps its original direction 

during the damage process, the following relation was obtained: 

e x x

e y y

P e IP

Q Q e I
                  (19) 

Thus: 

 x x

0 0

y y

e I
b b a a

e I
                  (20) 

It was concluded from Eqs. 10, 17, and 20 that the axial force can be determined if 

the intersection points of the boundary and edges of the cross section are determined. The 

intersection quantity a0 can be determined by the equilibrium conditions of the axial force 

and moments over the cross section. However, the complicated integral operations and 

solving of high order equations make it unlikely in practice. Indeed, the damage process of 

the column began with the fiber yielding at the remote corner of the PCZ and ended the 

moment the fibers at the remote corner of the ETZ failed. In other words, a0 began at a and 

ended at the value corresponding to ft equals ftu at the remote corner of the ETZ. Thus, the 

nonlinear responses of the column can be traced step by step and the ultimate load-carrying 

capacity (Nu) can consequently be determined with the condition that ft equals ftu. The step 

by step calculation method is detailed in the Calculation Procedure section. 

(a) (b) 

(a) (b) 
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For the critical cross section with a trapezoidal PCZ (Fig. 6b), the parameters of the 

strain plane can be determined by: 

 
t ce1 2

22

f fb b
P

a b b E


 


 

t ce

2

1 f f
Q

b b E


  


 

 

   1 2 t 1 2 ce

2

21

2

b b f b b b f
R

b b E

   
 


           (21) 

where b1 and b2 are the quantities of the intersection points of the boundary and edges in 

the cross section, respectively. 

Again, considering the parallel condition for the neutral axis yields: 

x x

1 2

y y

2
e I

b b a
e I

                 (22) 

Substituting Eq. 21 into Eq. 14 and considering the trapezoidal area presented in 

Fig. 6b for A2 yields the resultant force of the cross section of a trapezoidal PCZ, which 

may be expressed as: 

         
2 22

1 2 1 2 1 2 1 2 1 2 ce

1
4 3 3 2 2

3 4

Ea
N EAR a b b P b b b b b Q b b b R a b b b f

                  
 

                 (23) 

The above analysis indicated that the neutral axis of bending must be a line and its 

direction is determined by the dimensions of the cross section and the eccentricities of 

compression, as is given by Eq. 19. The boundary line between the ECZ and PCZ is always 

parallel to the neutral axis during the damage process. If the intersections of the boundary 

and cross-sectional edges, i.e., a0 and b0 in Eq. 17 and a1 and b1 in Eq. 23, are determined, 

the ultimate compressive load may be computed by Eq. 17 for a triangular PCZ and by Eq. 

23 for a trapezoidal PCZ. The calculation procedure is discussed in the Calculation 

Procedure section. 

 
Lateral Deflection 

A pinned-end column of a certain length (l) loaded with a biaxial compressive load 

with eccentricities e0x and e0y was considered (Fig. 7). Theoretically, the plastic deflection 

can be determined through the moment-curvature equation. However, it is difficult to do 

in practice because the plastic curvature not only depends on the material and shape of the 

cross section, but also on the damage process of the cross section. Indeed, damage of a 

column loaded with only eccentric compression takes place in the vicinity of the failure 

cross section. In other words, the moment-curvature equations of elastic beam-columns 

(Eq. 24) still hold true the majority of the column. 

 
2

x

y x 0x2

d w
EI N w e

dz
    

 
2

y

y y 0y2

d w
EI N w e

dz
                 (24) 

where wx and wy are the deflections (mm) with respect to the x- and y-axis, respectively. 
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Fig. 7. Deformation of a biaxially loaded column 

 

Based on this, Huang et al. (2015a) proposed a model that considers a beam-column 

to be an elastic rod with a plastic hinge at the critical cross section. The total deflection of 

the column may be expressed as, 

e p                   (25) 

where δe and δp are the fictitious elastic deflection (mm) and plastic deflection (mm), 

respectively. 

The fictitious elastic deflection may be calculated by the elastic beam theory 

(Bažant and Cedolin 1991). It has been confirmed that the fictitious plastic deflection is so 

trivial that it can be neglected (Huang et al. 2015a). Thus, the deflections of a biaxially 

loaded beam-column in this study can be approximately evaluated by, 

x

x x x 0x(cos tan sin 1)
2

l
w z z e


     

y

y y y 0y(cos tan sin 1)
2

l
w z z e


                (26) 

where x x/N EI   and y y/N EI  . Consequently, the eccentricities of the axial force at 

the failure cross section at the mid-height of the column can be evaluated by substituting z 

with l/2 in Eq. 26 and the initial eccentricities, which may be expressed as: 

x

x 0x sec
2

l
e e


  

y

y 0y sec
2

l
e e


                (27) 

 

Calculation Procedure 
As was discussed in the Elastic Analysis section above, to determine the boundary 

between the ECZ and PCZ by the equilibrium conditions is inappropriate in practice 

because of the difficulty of solving high order equations. In fact, the damage of the cross 

section begins with the fiber yielding at the remote corner of the PCZ. While keeping a 

straight line that is always parallel to the neutral axis, the responses of this boundary 

originate from the remote corner of the PCZ and move toward the inside of the section 

during the damage process. Because the direction of the separatrix is determined by the 

neutral axis, the position of the separatrix can be uniquely determined by one of the 
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intersection points, such as (a0, b) for a triangular PCZ and (a, b1) for a trapezoidal PCZ. 

Furthermore, the axial force must have a one-to-one correspondence with the position 

quantity (a0 or b1) for certain eccentricities. Thus, Eqs. 17 and 23 provide a step by step 

method for the nonlinear analysis of biaxially loaded beam-columns. 

For the sake of simplicity and without losing generality, the following discussions 

were based on the case of a triangular PCZ. For a trapezoidal PCZ, the calculation 

procedure was the same as that for the triangular PCZ case, provided that Eqs. 10, 17, and 

20 are replaced by Eqs. 21, 23, and 22, respectively. 

Following the above discussions, it seemed logical that the nonlinear responses of 

the column can be smoothly traced step by step via Eq. 17 because the parameters of the 

corresponding strain plane (Pi, Qi, and Ri) and tensile stress (fti) can be calculated via Eqs. 

10 and 11 for any given a0i, and consequently Ni can be obtained through Eq. 17. However, 

a vicious circular problem arose because the Pi, Qi, and Ri parameters are determined by 

fti, and the determination of the fti contrarily relied on the Pi, Qi, and Ri parameters. This 

problem can be solved by a numerical approach, such as the stationary iteration method. 

Nevertheless, numerical iteration is usually tedious in practice and sometimes may not 

achieve convergence depending on the choice for the initial value. 

To determine the tensile stress (fti) for a given a0i is a critical problem during 

calculation. The value of the fti depends on the distance from the remote corner of the ETZ 

to the neutral axis of the cross section. It has been confirmed that the neutral axis is 

continuously offset from its original position towards the convex side during the damage 

process (Huang et al. 2013). However, the amount of offsetting is small; hence, Pi, Qi, and 

Ri may be computed by replacing fti with fti-1 in Eq. 10 without any noticeable error, 

provided that the increment (Δa0i = a0i - a0-i) is small enough. Thus, a step by step procedure 

to trace the nonlinear responses and determine the load-carrying capacity of a biaxially 

loaded beam-column can be developed in this way. The calculation procedure is 

summarized below. 

Step 1 is to determine the proportional limit of the axial force (Ne) via Eq. 8. In this 

step, the additional eccentricities caused by the elastic deformation are small and can be 

neglected; hence, the initial eccentricities e0x and e0y are adopted for the initial calculation. 

Step 2 is to compute P0, Q0, and R0 via Eq. 7 for the initial calculation. The Δa0 

should be small enough that the error induced by replacing fti with fti-1 is negligible. 

For step 3, a0i equals a – i, i equals 1, 2, etc., fti is computed (Eq. 11), and then Pi, 

Qi, and Ri are computed via Eq. 10. 

Step 4 determines the boundary of the PCZ and ECZ. First, κxi and κyi are computed, 

and then the eccentricities exi and eyi are computed (Eq. 27). Consequently, the other 

intersection point (b0i) can be determined by Eq. 20. 

Step 5 determines the axial load (Ni) for each step via Eq. 17. 

Step 6 returns to step 3 for the next cycle of calculations. The steps are repeated 

until ft equals ftu. 

The axial load corresponding to the last cycle should be the ultimate load-carrying 

capacity of the column. The flow chart for the calculation procedure is presented in Fig. 8. 
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Fig. 8. Flow chart of the calculation procedure 

 

 

EXPERIMENTAL VALIDATION 
 

To validate the model developed above, two groups of PSB columns subjected to 

biaxial eccentric compressive loads were tested. Parallel strand bamboo is manufactured 

by gluing parallel bamboo strands together under a controlled temperature and pressure. 

As was discussed above, PSB composites exhibit the typical properties of EBWCs and are 

well suited for use as beams and columns in frame structures for buildings. All of the 

experimental samples had the same square cross section of 100 mm × 100 mm, and 

different lengths were tested (Table 2). The dimensions of the test columns were 

determined in such a way that the slenderness ratios of the columns fell into the range of 

intermediate slenderness. Huang et al. (2015a) shows how to determine the slenderness 

ratio of PSB columns. 

The parallel to the grain tension and compression properties of the PSB composites 

were tested according to the standard test method ASTM D 143-14 (2014).  

 

 

RESULTS AND DISCUSSION 
 

Table 1 presents the test results of the 12 specimens for each group of tension and 

compression tests. 

The test columns were pin supported through two steel boots at the two ends. A 

biaxial eccentric compressive load induced from the actuator of a test machine was applied 

to the upper end, as is illustrated in Fig. 9a.  
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Table 1. Parallel to the Grain Properties of the PSB Composites 

Mechanical 
Properties 

E 
(MPa) 

Proportional Limit Ultimate State 

Stress 
(MPa) 

Strain 
(×10-3) 

Stress 
(MPa) 

Strain 
(×10-3) 

Tension 

Mean 9750 - - 83.06 11.41 

Min. 8185.58 - - 75.16 8.26 

Max. 10049.66 - - 98.54 12.09 

SD 786.57 - - 8.45 1.66 

CV 8.42% - - 10.17% 14.58% 

Compression 

Mean 9729.27 28.96 3.43 143.06 56.50 

Min. 8884.05 25.18 2.69 117.60 43.35 

Max. 11659.33 30.38 4.66 156.17 63.28 

SD 1268.70 4.57 0.66 16.48 6.48 

CV 13.04% 15.79% 19.23% 11.52% 11.46% 

SD – standard deviation; CV – coefficient of variation 

 

A ball bearing was inserted between the plates of the boots and loading panels, 

which is shown in Fig. 9b. By adjusting the position of the ball bearing, any objective value 

for the eccentricities could be achieved. 

The loading force was monotonically increased by controlling the actuator at a 

speed of 1 mm/min until the column collapsed. The loading force of the actuator was 

recorded through a TDS-530 acquisition instrument (Tokyo Sokki Kenkyujo Co., Ltd, 

Tokyo, Japan) at a frequency of 2 Hz. Figure 10 presents the typical failure mode of the 

column. It was observed that the failure was characterized by the fibers being broken at the 

remote corner of the tensile zone. The results of the tests and calculations are compared in 

Table 2. Good agreement between the measured and predicted strengths was observed. 

 

 

 
Fig. 9. Test setup: (a) column loaded with biaxial compression; and (b) ball bearing, which allows 
for eccentricities to be adjusted to any objective value 

Ball bearing  

(a) (b) 
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Table 2. Comparison of the Ultimate Load-carrying Capacities of the Test 
Samples from the Calculations and Tests 

L 
(mm) 

Slenderness 
Ratio 

e0x 
(mm) 

e0y 
(mm) 

Experimental 
Value 
(kN) 

Calculated 
Value 
(kN) 

Error 
(%) 

1300 45 

40.0 23.1 167 156.7 6.2 

69.3 40.0 134 137.9 2.91 

40.0 40.0 150 171.4 14.27 

56.6 56.6 128 132.3 3.36 

84.9 84.9 90 94.8 5.33 

1650 57 

40.0 23.1 145 127.9 11.8 

69.3 40.0 103 114.0 10.68 

40.0 40.0 135 136.1 0.81 

56.6 56.6 100 110.0 10.00 

84.9 84.9 75 82.7 10.27 

 

 

 
 

Fig. 10. Typical failure mode: (a) shows the break at the remote corner of the tensile zone; (b), 
(c), and (d) show the front view of the failure mode of surfaces 1, 2, and 3, respectively 

 

 

CONCLUSIONS 
 

1. Solid wood, wood-based composites, and bamboo-based composites all have similar 

mechanical properties in a macroscopic sense because of their similar foam-fibrous 

microstructures. The constitutive law in the parallel to the grain direction of these 

materials exhibits identical characteristics to that of wood materials, i.e., linearity in 

tension and nonlinearity in compression; hence, they can be uniquely treated as EBWCs 

from a macroscopic viewpoint. The nonlinearity in compression can be approximated 

well with parabolic curves. 

2. The load-carrying capacity of intermediately slender EBWC columns subjected to a 

biaxial eccentric compressive load is usually determined by the material properties and 

dimensions of the columns. Damage usually begins with the fibers yielding at the 

remote corner of the compressive zone and ends when the fibers at the remote corner 

of the tensile zone break.  

(a) (b) (c) (d) 
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3. Based on elementary beam theory, a novel model was developed for nonlinear analysis 

of intermediately slender EBWC columns with rectangular cross sections. The model 

provides a step by step method to trace the nonlinear responses of biaxially loaded 

EBWC columns. The breakthrough of this model was that the asymmetric properties 

of EBWCs in tension and compression were considered, and its calculation was 

relatively simple.  

4. The accuracy of the model was validated through experimental investigation on PSB 

columns loaded with eccentric compressive loads. Good consistency was achieved 

between the results of the experiments and calculations. This implied that the effects of 

torsion and warping are negligible for biaxially loaded intermediately slender columns 

with rectangular cross sections. 
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APPENDICES 
 
Appendix A 

The homogenous coefficient (α) for in-plane bending beam-columns is defined as: 

 
 

ce

ce cp

cp ce

y

y y
y dy

y f







 




       (A1) 

For biaxial bending beam-columns, α is defined as: 

 
2

2 ce

,
A

x y dA

A f


 


       (A2) 

where yce and ycp are the depths (mm) of the ECZ and PCZ for the in-plane bending column, 

and A2 is the area (mm2) of the PCZ of the biaxial bending column. For the sake of 

simplicity, the integral  
2

,
A

x y dA  was converted to the coordinates ξ - χ in the plane of 

the cross section, which assumes the ξ-axis is parallel to the ECZ-PCZ boundary, as is 

illustrated in Fig. A1. Thus, the stress at any point in the PCZ should only depend on the 

distance of the point to the separatrix, and can be expressed as: 

    2

1 2 3, ,x y                 (A3) 

 

 
Fig. A1. Coordinate transformation during the calculation of the resultant force over the PCZ 

 

The resultant force over the PCZ can be calculated by: 
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Hence, it was concluded that the homogeneous coefficients for in-plane and out-of-

plane bending are the same. 

 

Appendix B 
For convenience, Eq. 17 was rewritten as: 

2 2
1 2 3 ce

A A A
N N N N E dA E dA f dA              (B1) 

Substituting Eq. 3 for the first two terms of Eq. B1 yields: 
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The last term of Eq. B1 may be expressed as: 
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N f dydx f a a b b
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The boundary condition of the separatrix gives: 

ηa0 + β = b        (B5) 

ηa + β = b0        (B6) 

Substituting these two equations into Eq. B3 yields: 

      2 0 0 0 02 2 3
6

E
N a a b b a a P b b Q R             (B7) 

Thus Eq. 17 can be obtained by substituting Eqs. B2, B3, and B7 into Eq. B1. 

For a trapezoidal PCZ, the integration of the second and third term of Eq. B1 is 

expressed as Eqs. B8 and B9, respectively: 

 

 

2

3 2 2 22 1
2

3 3

a b

a x
N E Px Qy R dydx

E a P Ea b a Q Ea b R

 

  


 
   

 
      

 

 
    (B8) 

 3 ce ce 1 22
a b

a x
N f dydx af b b b

 
 

 
           (B9) 

The linear conditions of the intersections of the separatrix and edges of the cross 

section yield the equations: 

aη + β = b1        (B9) 

-aη + β = b2        (B10) 

Substituting these two equations into Eqs. B8 and B9, and considering that the first 

term of Eq. B1 is identical for both triangular and trapezoidal PCZs, the equation for 

calculating the resultant force in the case of a trapezoidal PCZ (Eq. 23) can be obtained. 

 

(B3) 


