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Genetic modification of plant lignin composition is an important strategy 
for improving biomass enzymatic digestibility without sacrificing the 
normal growth of the plant. However, the absence of fast and convenient 
methods for rapid determination of lignin composition has impeded 
corresponding research. Near-infrared reflectance spectroscopy (NIRS) 
analysis has potential as a solution for this dilemma, while the NIRS 
measurement for expediently assaying lignin composition in rice straws is 
still lacking. In this study, visible and near-infrared reflectance 
spectroscopy (VIS/NIRS) and modified partial least squares (MPLS) 
method were combined to develop calibration models for predicting the 
lignin monomer contents in a diverse rice population. Four optimal 
equations for predicting the content of p-hydroxyphenyl (H), guaiacyl (G), 
and syringyl (S) lignin units and their total amount (H + S + G) were 
generated with acceptable determination coefficients for calibration (0.85 
to 0.93), cross-validation (0.75 to 0.88), and external validation (0.82 to 
0.88), and the ratio performance deviation (RPD, 2 to 3.01). This study 
was the first to demonstrate that VIS/NIRS could give a sufficiently 
accurate prediction of lignin monomer contents in rice and could be 
applied for rapid assessments of large-scale rice straw samples. 
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INTRODUCTION 
 

Lignin is a crucial material in the evolution of plants from an aquatic environment 

to a land environment and provides land plants water transport, mechanical support, 

stress response, and pathogen resistance (Boerjan et al. 2003). Unfortunately, it has been 

identified as a major contributor to biomass recalcitrance, which is the blockage that 

leads to the high cost of lignocellulosic sugar production (Ding et al. 2012; Zeng et al. 

2014). This economic effect has promoted lignin modification to become a popular 

research topic. Numerous studies have established that increased biomass digestibility 

could be gained by reduced lignin content and altered lignin composition (Fu et al. 2011; 

Bonawitz et al. 2014). However, a reduction in lignin often disturbs plant development 

and causes undesirable effects (Chen and Dixon 2007; Bonawitz and Chapple 2013).  
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A feasible method for lignin engineering to decrease biomass recalcitrance 

involves changing the proportion of three major types of lignin units, p-hydroxyphenyl 

(H), guaiacyl (G), and syringyl (S) units (Wang et al. 2016). 

The lignin monomer content is typically a quantitative trait, while the studies that 

attempted to identify monolignol synthesis genes through quantitative trait locus/loci 

(QTL) mapping or genome-wide association study (GWAS) have been very limited 

(BarrièRe et al. 2008). A main reason that limits the use of classic quantitatively genetic 

methods in identification of the monolignol synthesis gene might be the complex process 

for assaying lignin monomer content on a large scale.  

Traditional wet chemical methods used to analyze lignin composition include 

thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by 

reductive cleavage (DFRC) (Wen et al. 2013). Unfortunately, all of these methods are 

labor-intensive and time-consuming. Even though high-throughput systems with small 

vials have been developed to improve the efficiency of the process (Foster et al. 2010; 

Penning et al. 2014), additional costs of the equipment might limit their applications to 

some extent. Nonetheless, reliable, low-cost, and time-effective methods for lignin 

composition assessments are urgently needed.  

The NIRS analysis has been shown to be a fast, environmentally friendly 

analytical method and has gained a wide variety of applications in the prediction of 

biomass property and component composition (Xu et al. 2013). The absorption of the 

near-infrared spectroscopy radiation is primarily induced by overtone and combination 

bands of fundamental stretching vibrations of O-H, C-H, and N-H, which represent the 

major chemical bonds in biological compounds (Bailleres et al. 2002). Through 

mathematical approaches, near-infrared spectral data, and reference parameters are 

combined to build the calibration models (Payne and Wolfrum 2015). Calibration models 

for accurate prediction of the biomass compositions of rice (Jin and Chen 2007), wheat 

(Owens et al. 2009), sorghum (Wu et al. 2015; Xu et al. 2015), Miscanthus (Jin et al. 

2017), bamboo (Yang et al. 2016), sugarcane (Hoang et al. 2017), and wood (Bailleres et 

al. 2002), have been built using NIRS. However, the progress in quantitative prediction 

of lignin composition in plants is still very limited, and all of these studies were 

conducted on just wood (Bailleres et al. 2002; Alves et al. 2006; Yamada et al. 2006; 

Maranan and Laborie 2008; Robinson and Mansfield 2009).  

Rice is an important food crop for human consumption. Its annual production 

generates about 800 million metric tons of straw, which provides an abundant biomass 

source for the production of renewable energy (Domínguez-Escribá and Porcar 2010). A 

reliable and fast method for assaying lignin composition of rice straw is necessary to 

efficiently design and screen rice varieties that are more amenable to enzymatic 

digestibility. Up until now, no research has been conducted to build NIRS calibration 

equations for the prediction of lignin composition in rice materials. The target of this 

work was to establish a rapid and accurate VIS/NIRS measurement for expediently 

assaying lignin composition in rice straw. 

 

 
EXPERIMENTAL 
 
Materials 

The 100 rice straw samples were selected from a rice recombinant inbred line 

(RIL) population described by Yan et al. (2014). The rice lines were planted in the 
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experimental field of Huazhong Agricultural University (Wuhan, China) during the 

natural growing season in 2012. The straws of three individual plants for each line were 

collected after grain harvest. Then the leaves were removed, and the stems were 

inactivated at 105 C for 30 min and dried at 60 C to a constant weight. The dried stems 

were ground to pass through a 40-mesh screen and stored in a dry container until their use. 

 

Methods 
Cell wall extraction and lignin composition assay 

Cell wall isolation and lignin composition assay were conducted using a high-

throughput platform previously described by Foster et al. (2010). The isolated cell wall 

material was prepared by washing the samples with 1.5 mL of 70% aqueous ethanol and 

1.5 mL of chloroform/methanol (1:1, v/v), followed by treatment with 35 μL of 0.01% 

sodium azide (NaN3), 35 μL amylase (50 μg/mL in H2O, from Bacillus species, Sigma), 

and 17 μL pullulanase (17.8 units, from Bacillus acidopullulyticus, Sigma). For lignin 

composition assay, 2 mg of isolated cell wall material was transferred into a screw-

capped glass tube. Dioxane (175 μL), ethanethiol (EtSH, 20 μL 10%), and boron 

trifluoride diethyl etherate (BF3, 5 μL 2.5%) were added for thioacidolysis. The reaction 

was heated at 100 C for 4 h with gentle mixing every hour. For purification, 1 mL of 

water and 0.5 mL of ethyl acetate was added, then mixed thoroughly with a vortex mixer, 

and the phases were left to separate. Next, 150 μL of the ethyl acetate layer (top layer) 

was transferred to a 2 mL Sarstedt tube.  

The solvent was evaporated by a concentrator with air. For the trimethylsilyl 

(TMS) derivatization, 500 μL of ethyl acetate, 20 μL of pyridine, and 100 μL of N, O-bis 

(trimethylsilyl) acetamide were added together, and the mixture was incubated for 2 h at 

25 ℃. The reaction products (100 μL) were analyzed by gas chromatography (GC) with a 

quadrupole mass-spectrometer (Santa Clara, CA, USA) or flame ionization detector 

(Restek Corporation, Bellefonte, PA, USA). Peaks were identified by characteristic mass 

spectrum ions of 299 m/z, 269 m/z, and 239 m/z for S, G, and H monomers, respectively. 

The composition of the lignin components was quantified by setting the total peak area to 

100%. The chemical agents were purchased from Sigma-Aldrich, St. Louis, MO, USA. 

 
Near-infrared reflectance spectra data collection and analysis 

Spectra collection and variability analysis of NIRS were conducted as described 

by Huang et al. (2012). Near-infrared reflectance spectra data was collected using a XDS 

Rapid Content™ Analyzer (FOSS, Co., LLC., Hillerod, Denmark) equipped with a dual 

detector system: silicon (400 nm to 1100 nm), lead sulfide (1100 nm to 2500 nm), and the 

ISIscan™ software (Infrasoft International LLC., Port Mathilda, PA, USA). The dried 

samples were placed into a mini-sample cup (standard ring cup) for screening. The 

reflectance (R) of each sample was recorded in triplicate at wavelengths ranging from 

400 nm to 2500 nm with 2-nm intervals at room temperature.  

The spectral absorbance values were recorded as log1/R. The WinISI III software 

package (Version 1.50e, Infrasoft International LLC., Port Matilda, PA, USA) was used 

for the chemometric management of data. A principal component analysis (PCA) 

algorithm was carried out to identify the spectral outlier sample and determine the 

structure and variability of spectral population (Cowe and McNicol 1985). The global H 

(GH) value of each sample was determined using the measured Mahalanobis distance 

from mean. The GH outlier (GH > 3.0) was finally eliminated after the PCA. Full spectra 



 

PEER-REVIEWED ARTICLE                  bioresources.com 

 

 

Hu et al. (2018). “Lignin composition from VIS/NIRS,” BioResources 13(2), 3284-3299.  3287 

wavelengths (408 nm to 2492 nm) were selected and pretreated with “1, 4, 4, 1” 

treatments for principal component analysis, the four digits orderly represented the 

number of the derivative, the gap over which the derivative is calculated, the number of 

the first smoothing, and the number of the second smoothing.  

 
Calibration and validation 

The prediction models were calibrated and validated following the procedure of 

Huang et al. (2012) with minor modifications. Two mathematical treatments as “0, 0, 1, 1” 

and “1, 4, 4, 1”, and seven scatter correction methods were used to build prediction 

equations.  

The seven methods were: no scatter correction standard (None), standard normal 

variant (SNV), detrend only (DET), combination of SNV and detrend (SNVD), standard 

multiple scatter correction (SMSC), weighted multiple scatter correction (WMSC), and 

inverse multi scatter correction (IMSC). In addition, three wavelength ranges (408 nm to 

2492 nm, 780 nm to 2492 nm, and 1108 nm to 2492 nm), and the modified partial least 

squares (MPLS) method were also utilized.  

Cross-validation was conducted during the development of equations to select the 

optimal number of factors and to avoid over-fitting. In addition, one of every four 

samples sorted based on the laboratory value were selected for the external validation. 

The coefficient of determination of the cross-validation (R2cv) was defined as the 

reference index to select the best equations.  

 
QTL mapping using measured data and predicted data 

The genetic map of the recombinant inbred line (RIL) population was built using 

179 markers and MAPMAKER/EXP version 3.0b software (Whitehead Institute for 

Biomedical Research, Cambridge, MA, USA). The following inclusive composite 

interval mapping was carried out using QTL IciMapping version 3.3 software (Institute 

of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China) based on 

stepwise regression with simultaneous consideration of all marker information. The 

walking speed chosen for all QTL mapping was 1.0 cM.  

 
Statistical analysis 

A statistical analysis for calculating the minimum, maximum, mean, and standard 

deviation and the Kolmogorov-Smirnov test for checking the normal distribution were 

conducted using the software of the SPSS 17.0 (SPSS Inc., Chicago, IL, USA). The best-

fit curve in frequency distributions and descriptors of regression analysis were developed 

using Origin 8.0 software (Microcal Software, Northampton, MA). 

 

 

RESULTS AND DISCUSSION 
 

Characterization of Spectra and Identification of Outlier 
The averaged VIS/NIR spectrum of 100 rice samples with three replications was 

generated by the WinISI III software and is shown in Fig. 1. There was one absorption 

band peak that occurred in the visible region (400 nm to 770 nm) and six peaks that 

occurred in the near infrared region (780 nm to 2500 nm).  
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The strong peak in the visible region at 438 nm might have been induced by the 

yellow-orange color of the rice powders, as the spectral region from 425 nm to 492 nm 

represents the complementary color of yellow-orange (Shenk and Westerhaus 1994). The 

peak at 1216 nm and 1492 nm is primarily attributed to the 2nd and 1st overtone O–H 

stretching in cellulose, respectively (Schwanninger et al. 2011). The peak at 1928 nm is 

mainly attributed to the asymmetric stretching and deformation of O–H in water (Ali et al. 

2001). The broad peak at 2110 nm is associated with the stretching and deformation of 

O–H in cellulose (Schwanninger et al. 2011). The peak at 2278 nm could be assigned to 

the O-H and C-C stretching and/or C-H stretching and deformation in cellulose (Ali et al. 

2001). The last peak at 2336 nm is mainly attributed to the C-H stretching and C-H2 

deformation in lignin (Schwanninger et al. 2011). The original spectra and the pretreated 

spectra dealt with six scatter methods and the first-order derivative of all samples were 

also exhibited (Fig. 2).  

The peaks in the pretreated spectra were clearer and steeper than those in original 

spectra and this might have been because the math pretreatments decreased the 

interferences induced by particle size, scatter coefficient, and path length variation. 

 

 
 

Fig. 1. Averaged visible-near infrared spectrum of original data of 100 rice samples. The main 
absorption band peaks are pointed out by arrows 
 
 

In terms of the distribution and variability of the spectral population and 

identification of anomalous samples, linearly uncorrelated components were extracted to 

characterize the 100 averaged spectra. Consequently, the total of 16 components and the 

first three components explained 99.45% and 90% of the variance in the spectral data, 

respectively. Based on the calculated Global “H” values (GH), none of the samples was 

identified as an outlier (i.e. GH ≥ 3), while most of the GH values ranged between 0.25 

and 2.0 (Fig. 3a). The distribution of PCA data was acceptably symmetrical in the 3D 

plot (Fig. 3b), which indicated that the spectral were appropriate for VIS/NIR spectra 

analysis. 
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Fig. 2. The original spectra and pretreated spectra of rice samples: (a) original spectra; (b) 
standard normal variant (SNV) pretreated spectra; (c) detrend (DET) pretreated spectra; (d) 
combination of SNV and detrend (SNVD) pretreated spectra; (e) standard multiple scatter 
correction (SMSC) pretreated spectra; (f) weighted multiple scatter correction (WMSC) pretreated 
spectra; (g) inverse multiple scatter correction (IMSC) pretreated spectra; and (h) 1st derivative 
pretreated spectra 
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Fig. 3. Histogram of global H (GH) value of 100 averaged spectra (a) and the three-dimensional 
plot of the PCA scores of spectra in principal components space (b) 
 

Reference Data and Determination of Calibration/ External Validation Sets 
Minimum and maximum contents of the three major lignin monomers (H, S, and 

G) measured/observed in the samples are presented in Table 1. The results showed that G 

represented the most abundant lignin unit in rice straw, followed by S. The total lignin 

monomers represented 2.4% of the cell wall material, which was consistent to previous 

studies that the thioacidolysis method released approximately 20% by weight of the 

lignin and the lignin levels in rice were approximately 11% to 19% of the dry matter 

basis (Jourdes et al. 2007; Li et al. 2015). Both the lignin monomers and the total 

monomer displayed high levels of diversity with the coefficient of variation (CV) were 

about 20% and relatively normal distribution (Table 1, Fig. 4). The substantial variation 

of these traits showed that the rice straw samples were suitable for NIRS assay. 

 

Table 1. Statistics of the Lignin Monomer Contents of Rice Samples 

Traits Number Minimum Maximum Mean ± SD 
a
 CV 

b
 P 

c
 

H (mg/g) 100 1.08 2.68 2.02 ± 0.38 18.81 0.11 

S (mg/g) 100 4.46 11.47 8.21 ± 1.57 19.12 0.20 

G (mg/g) 100 5.73 20.15 13.3 ± 3.13 23.53 0.07 

H + S + G (mg/g) 100 11.27 33.85 23.53 ± 4.84 20.57 0.06 
Note: a Average ± standard deviation; 

b
 Coefficient of variation (SD*100/mean); 

c 
P value of 

Kolmogorov-Smirnov; P > 0.05 means the data are normally distributed 

 

Based on the order of reference value, one of every four samples was selected and 

merged into the validation sets, and the remaining samples were included in the 

calibration sets. Thus, the external validation sets included 25 samples, and the 

calibration sets contained 75 samples. The trait values of the samples in the calibration 

and external validation sets displayed comparable range and similar standard deviation 

(Table 2). Moreover, samples in the external validation set were distributed evenly in the 

corresponding calibration samples as displayed in the three-dimensional plot (Fig. 5). 

Thus, the calibration and external validation sets were suitable for building and verifying 

equations. 
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Fig. 4. Frequency distributions of lignin monomer content in rice samples; frequency distribution 
was fitted by a Gaussian curve 
 

 
 
Fig. 5. Distribution of the calibration set and external validation set for H (a), S (b), G (c), and H + 
S + G (d) in principal components space; the purple and blue circle represents the calibration and 
external validation set, respectively 
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Table 2. Calibration and External Validation Sets for Lignin Monomer Contents 

Traits 
Calibration External Validation 

N 
a
 Min 

b
 Max 

c
 Mean SD 

d
 N Min Max Mean SD 

H (mg/g) 75 1.08 2.68 2.02 0.38 25 1.23 2.64 2.01 0.39 

S (mg/g) 75 4.46 11.47 8.22 1.58 25 4.77 11.01 8.18 1.59 

G (mg/g) 75 5.73 20.15 13.32 3.13 25 6.34 19.49 13.24 3.18 

H + S + G 
(mg/g) 

75 11.27 33.85 23.55 4.88 25 12.97 32.10 23.46 4.82 

a
 N- sample number; 

b
 Min- minimum value; 

c
 Max- maximum value; 

d 
SD- standard deviation 

 

Table 3. Coefficient of Determination for Cross-validation (R2cv) of Models 
Developed Using Different Spectrum Ranges and Mathematical Treatments for 
Lignin Monomers in Rice Materials 

Spectrum Range 
(nm) 

Derivative 
Treatment a 

Scatter 
Methods b 

Determination Coefficient for Cross-validation 

H S G H + S + G 

408 to 2492 0,0,1,1 None 0.459 0.765 0.731 0.775 
0,0,1,1 SNV 0.477 0.739 0.743 0.797 

0,0,1,1 DET 0.466 0.773 0.731 0.827 

0,0,1,1 SNVD 0.457 0.763 0.787 0.796 

0,0,1,1 SMSC 0.471 0.766 0.764 0.789 
0,0,1,1 WMSC 0.514 0.776 0.814 0.788 

0,0,1,1 IMSC 0.453 0.756 0.758 0.798 

1,4,4,1 None 0.564 0.755 0.814 0.880 

1,4,4,1 SNV 0.687 0.781 0.767 0.833 
1,4,4,1 DET 0.647 0.745 0.842 0.879 

1,4,4,1 SNVD 0.714 0.768 0.828 0.825 

1,4,4,1 SMSC 0.687 0.781 0.768 0.834 

1,4,4,1 WMSC 0.734 0.781 0.827 0.826 
1,4,4,1 IMSC 0.687 0.781 0.767 0.832 

780 to 2492 0,0,1,1 None 0.489 0.752 0.833 0.807 

0,0,1,1 SNV 0.397 0.739 0.810 0.803 

0,0,1,1 DET 0.459 0.764 0.852 0.812 
0,0,1,1 SNVD 0.512 0.764 0.764 0.823 

0,0,1,1 SMSC 0.483 0.810 0.816 0.807 

0,0,1,1 WMSC 0.600 0.766 0.831 0.811 

0,0,1,1 IMSC 0.517 0.800 0.813 0.815 
1,4,4,1 None 0.716 0.805 0.856 0.867 

1,4,4,1 SNV 0.669 0.790 0.821 0.842 

1,4,4,1 DET 0.655 0.790 0.858 0.872 

1,4,4,1 SNVD 0.712 0.767 0.845 0.841 
1,4,4,1 SMSC 0.669 0.789 0.821 0.843 

1,4,4,1 WMSC 0.711 0.789 0.828 0.828 

1,4,4,1 IMSC 0.669 0.790 0.821 0.842 

1108 to 2492 0,0,1,1 None 0.487 0.783 0.827 0.823 
0,0,1,1 SNV 0.473 0.781 0.814 0.833 

0,0,1,1 DET 0.545 0.782 0.844 0.841 

0,0,1,1 SNVD 0.570 0.768 0.850 0.857 

0,0,1,1 SMSC 0.606 0.775 0.854 0.833 
0,0,1,1 WMSC 0.562 0.794 0.854 0.812 

0,0,1,1 IMSC 0.566 0.808 0.816 0.843 

1,4,4,1 None 0.729 0.765 0.844 0.847 

1,4,4,1 SNV 0.745 0.778 0.845 0.847 
1,4,4,1 DET 0.677 0.781 0.873 0.873 

1,4,4,1 SNVD 0.718 0.800 0.845 0.850 

1,4,4,1 SMSC 0.745 0.778 0.844 0.847 
1,4,4,1 WMSC 0.727 0.782 0.865 0.845 

1,4,4,1 IMSC 0.745 0.778 0.845 0.846 
a The four digits orderly represent the number of the derivative, the gap over which the derivative 
was calculated, the number of the first smoothing, and the number of the second smoothing 
b None, no scatter correction standard; SNV, standard normal variant; DET, detrend only; SNVD, 
combination of SNV and detrend; SMSC, standard multiple scatter correction; WMSC, weighted 
multiple scatter correction; IMSC, inverse multiple scatter correction 
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Calibration and Validation of Lignin Monomeric Models 
For the correlation between the spectral data and the laboratory values, seven 

scatter correction methods, two derivative treatments, and three spectrum regions 

combining the MPLS regression technique were applied to produce a total of 42 

calibration equations for each trait (Table 3). The best equations according to the R2cv for 

the four traits were selected (Table 4). Generally speaking, no single math treatment or 

spectrum regions gave the best prediction for all traits. For H, G, and H + S + G, the best 

equation came from the 1, 4, 4, 1 derivative treatment using 6 factors, while the best 

equation for S came from the 0, 0, 1, 1 derivative treatment using 8 factors. Unlike single 

lignin monomers, the total lignin monomer was predicted best using the whole 

wavelength range including the visible spectrum, which indicated that the color of the 

rice powder might contain the information of the total lignin monomer content. The best 

equations for all four traits had high R2 values that ranged from 0.85 for H and 0.93 for H 

+ S + G in calibration. In cross-validation, the equations also displayed acceptable R2cv 

values from 0.75 to 0.88 and ratio performance deviation (RPD) values from 2 to 3.01 

(Arana et al. 2005). The external validation for the equations was conducted using the 

“Monitor results” module of the WinISI III software. The R2ev value of equations for 

these four traits ranged from 0.82 to 0.88 (Table 4). In addition, the predicted and 

reference values of these four traits showed good correlations, as indicated in the plots 

(Fig. 6) and the corresponding table of regression descriptors (Table 5). 

 

Table 4. Calibration and Validation for the Best Equations Generated for 
Prediction of Lignin Monomer Contents in Rice Samples 

Traits 
Calibration Cross-validation External Validation 

SEC a R2 b Spectrum (nm) DT c SCM d Terms e SECV f R2cv g RDP h SEP i R2ev j 

H 0.14 0.85 1108-2498 1,4,4,1 SMSC k 6 0.19 0.75 2 0.24 0.83 

S 0.56 0.88 780-2498 0,0,1,1 SMSC 8 0.69 0.81 2.29 0.68 0.82 

G 0.9 0.92 1108-2498 1,4,4,1 DET l 6 1.14 0.87 2.75 1.2 0.86 

H + S + G 1.28 0.93 400-2498 1,4,4,1 None m 6 1.62 0.88 3.01 1.91 0.88 

a
 SEC, standard error of calibration; 

b
 R

2
, determination coefficient of calibration 

c
 DT, derivative treatment; the four digits orderly represent the number of the derivative, the gap 

over which the derivative was calculated, the number of the first smoothing, and the number of 
the second smoothing 
d 
SCM, scatter correction methods 

e
 Terms, number of principal component used for calibration 

f
 SECV, standard error of cross-validation 
g
 R

2
cv, determination coefficient of cross-validation 

h
 RPD, ratio performance deviation (SD/SECV) 

i
 SEP, standard error of prediction in external validation 
j
 R

2
ev, determination coefficient of external validation 

k
 SMSC, standard multiple scatter correction; 

l 
DET, detrend only 

m
 None, no scatter correction 
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Table 5. Descriptors of Regression Line between Measured and Predicted 
Values of Calibration Set and External Validation Set 

 Calibration Set External Validation Set 

 H S G H + S + G H S G H + S + G 

Slope 0.84 0.89 0.91 0.91 0.94 0.52 0.93 0.96 

Intercept 0.33 0.89 1.16 2.14 0.15 0.93 0.76 0.67 

R2 a 0.85 0.89 0.90 0.90 0.86 0.72 0.91 0.92 
a
 Coefficient of determination, represents the degree of fit of the regression 

 

 
Fig. 6. Correlation between the predicted and measured values of external validation set and 
calibration set for H (a), S (b), G (c), and H + S + G (d); the solid line indicates the best linear 
relationship (1:1) 

 

The regression coefficients that could be used to gain insight on the molecular 

features underlying the best calibration models are displayed in Fig. 7. The strong 

correlation coefficients were found at wavelengths centered at 1636 nm and 1676 nm for 

H, 1668 nm and 2268 nm for S, 1660 nm, 2172 nm, 2364 nm, and 2444 nm for G, and 

1652 nm, 1676 nm, 2164 nm, and 2380 nm for H + S + G.  

In identified wavelength, the regression correlations at 1660 nm and 1668 nm 

were consistent with the chemical structure of lignin, as the bands at these wavelengths 

correspond to the first overtone of aromatic C-H stretching in lignin (Barton et al.1992; 

Michell and Schimleck 1996). 
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Fig. 7. Corresponding plots of regression coefficients for the prediction model for H (a), S (b), G 
(c), and H + S + G (d); the main peaks are delineated 

 

To investigate whether the accuracy of these equations were satisfied for QTL 

analysis, QTL mapping was conducted using the measured data and predicted data of 87 

rice samples whose genotype data had been investigated. The logarithm of odds (LOD) 

scores of genetic loci calculated by two sets of data for all traits were similar in full 

genetic map (Fig. 8), indicating the equations were sufficiently accurate to generate 

phenotype data for mapping genetic loci controlling lignin composition in rice straw. 

 

 
Fig. 8. LOD scores of genetic locus for H (a), S (b), G (c), and H + S + G (d) calculated by 
predicted and measured values 
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CONCLUSIONS 
 
1. Visible and near-infrared spectroscopy (VIS/NIRS) and lignin monomer content data 

of rice materials were correlated by the modified partial least squares method for the 

calibration of a VIS/NIR model. 

 

2. Four calibration equations for rapid predicting of the content of H, S, G, and H + S + G 

were built. 

 

3. The equations showed an acceptable determination coefficient for calibration, cross-

validation, and external validation that ranged from 0.85 to 0.93, 0.75 to 0.88, and 0.82 to 

0.88, respectively.  

 

4. These equations make it feasible to determine the lignin composition of a large number 

of rice samples in a time-effective and low-cost manner. 
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