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Innovations in the furniture industry have an important place in the global 
competitive environment. The use of mechanical joining techniques is 
rapidly increasing in the furniture industry. One of the most common 
mechanical joining techniques is screwing. This study investigated the 
impacts of screw diameter, screw length, and the distance between the 
screws on the failure load of screw joints in particleboard. Additionally, a 
model was developed on an artificial neural network model (ANN), based 
on experimental data, to predict the failure load of joints. The results 
indicated that the highest tension and compression strengths of joints 
were achieved when the distance is 140 mm between the screws. Joint 
strengths of all specimens were improved when the screw length and 
diameter were increased. It is necessary to estimate the effect of various 
factors to improve furniture joint performance. Coefficients of 
determination at 0.98 (tension strength test) and 0.96 (compression 
strength test) were predicted for the testing phase by the ANN model. All 
these findings established that the prediction was compatible with 
experimental data of tension and compression strengths. The results of 
the analysis showed that the neural network approach was effective in 
predicting the failure load of screw joints and showed that the ANN 
model has great potential in the design optimization of furniture 
assemblies.   
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INTRODUCTION 
  

Furniture is much needed in daily life, and its design and construction is an 

applied art (Wang and Lee 2014). Its strength evaluation should start at the design 

process stage (Smardzewski et al. 2014). The strength and durability of furniture are 

some of the most important factors determining furniture value (Smardzewski and 

Majewski 2013). In furniture, the strength of joints plays a critical role in the quality. 

Furniture members are combined with different techniques (Kasal et al. 2016). The joints 

should always be carefully selected in the construction of wood-based furniture 

(Smardzewski et al. 2015). Structural failure may occur when the correct connection is 

overlooked (Haftkhani et al. 2011). For this reason, designers need to possess knowledge 

of how to select a suitable combination of members (the type of material, dimension, and 

geometry) and fasteners (nails, screws, dowels, and bolts) (Maleki et al. 2017).  

L type Corner joints used in furniture production can be prepared with various 

materials. Some of these materials are wood, fiberboard, and particleboards. Especially 

today, particleboards are widely used in furniture production, because particleboards are 
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much cheaper than wood fiberboards and plywoods. Minifix, dowel, screw, and glue can 

be used in the joining of L type corner in particleboard. Also, several of these joining 

methods can be used together. Many studies have been carried out on the advantages of 

furniture production with these joining methods. According to the results of the dowel 

design made by using particleboard and fiberboards in the box constructions furniture 

corner joints, the 8 mm diameter dowels gave better performance than the 10 mm 

diameter dowels. Moreover, the grooved surface dowels on the particleboards were found 

to be more successful than the flat surface dowels. However, the flat surface dowels on 

the fiberboards gave better results than the grooved surface dowels. The increase in the 

number of dowels indicates that the resultant corner joint increases the tensile strength 

and decreases the compressive strength (Efe 1998; Efe and Imirzi 2008). In another 

study, corner joints were used in the production of box-structured furniture; the authors 

investigated the strength properties of glue and glue-free joints. According to the results 

of the experiment, it was reported that glue-free joints outperformed glued joints, and the 

best results were given by unglued multifixed corner assemblies, while the second level 

of performance was obtained by unglued minifixed corner assemblies (Efe and Kasal 

2000; Efe and İmirzi 2008). In a study by Kasal and his colleagues, particleboard coated 

with surface synthetic resin and fiberboard were used in the corners of the furniture. In 

addition, some of the screws used for joining the corner were used with polyurethane 

adhesive and some without adhesive. The corner joints obtained were examined for 

bending resistance under tensile and compressive loads. As a result of the work done, the 

bending strengths of the joints made using the fiberboard were higher than those using 

the chipboard. It has also been found that joints made using glue and screws enhance 

bending resistance (Kasal et al. 2006). 

There are many artificial intelligence methods. Some of them are systems such as 

artificial neural networks (ANNs), fuzzy systems, multiple linear regression, and deep 

learning. In real life, artificial intelligence techniques are used in many areas such as 

predicting egg production based on energy consumption (Sefeedpari et al. 2016), 

modeling of groundwater level fluctuations (Gholami et al. 2015), neural network river 

forecasting through baseflow separation and binary-coded swarm optimization (Taormina 

et al. 2015), dimension reduction using semi-supervised locally linear embedding for 

plant leaf classification (Zhang and Chau 2009), assessment of river water quality based 

on theory of variable fuzzy sets and fuzzy binary comparison method (Wang et al. 2014), 

a split-step particle swarm optimization algorithm in river stage forecasting (Chau 2007), 

predictive performance of artificial neural network and multiple linear regression models 

in predicting adhesive bonding strength of wood (Bardak et al. 2016a), and neural 

network prediction of wood bonding quality (Bardak et al. 2016b). Lately, artificial 

neural networks is one of the most popular methods in the field of the artificial 

intelligence, and it is used to solve pattern recognition, prediction, classification, and 

optimization problems in engineering applications (Kumar and Thakur 2012; Tiryaki and 

Hamzacebi 2014). In contrast to commonly used modelling methods, artificial neural 

networks can help us to learn how to store their bias values and weights from examples or 

training patterns, and it guides how to use this knowledge to predict future values 

(Londhe and Deo 2003 and Tiryaki et al. 2016). Artificial neural networks (ANNs) can 

help designers in this regard. Artificial neural networks are usually information 

processing systems that mimic some features of biological neurons. An input layer, 

hidden layer(s), and an output layer of neurons are the main parts of each ANN structure 

(Saffari et al. 2009; Tracey et al. 2011). The ANNs can be used to estimate new data 

https://www.seslisozluk.net/author-nedir-ne-demek/
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through learning from some series of experimental data without outside help (Akincioglu 

et al. 2013). This technique is capable of handling incomplete data and can deal with 

nonlinear problems. ANN can make predictions and generalizations at high speeds once 

it is trained (Yuste and Dorado 2006; Rajendra et al. 2009; Garaga and Latha 2010). 

Modern researchers use ANNs to solve complex engineering problems. Previous studies 

have found a successful use for ANNs in mechanical engineering (Chau 2006; Kmet et 

al. 2011; Verma et al. 2017).    

Research on estimating the performance of furniture joints with artificial neural 

networks is limited. However, most of the current scientific literature is focused on 

experimental investigations of the screwing process. In this study, the impacts of various 

factors (screw diameter, screw length, and the distance between the screws) on the failure 

load of screw joints are modelled. As a result, the designed model has been estimated 

with high accuracy. 

 

 
EXPERIMENTAL 
 
Materials 

An 18 mm × 50 mm × 300 mm surface-coated chipboard was used as a wood 

material. Bartin University in Bartin, Turkey supplied the particleboards. All 

particleboards were kept for 7 days under standard air conditions (environment 

temperature 20 °C ± 2 °C, relative air humidity 65% ± 5%).  

 

 Sample preparation and testing 

Each experimental sample consisted of two members. The butt member was 270 

mm × 132 mm, and the face member was 270 mm × 150 mm. The screw sizes, which are 

commonly used in the particleboard assemblies in industry, were taken into 

consideration. Screw lengths of 30 mm and 40 mm and screw diameters of 3 mm, 3.5 

mm, and 4 mm were selected. Figure 1 shows the screws used in this study. 

 

  
 
Fig. 1. Screw samples 

 

Specially prepared moulds were used when the experimental specimens were 

combined with screws. The screws were mounted by the drill. In many studies, the 

distance between the screws was chosen differently (Efe and Imirzi 2008; Efe et al. 2011; 
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Demirci et al. 2011). Therefore, in this work the spacing of the screws was varied in steps 

of 20 mm from 100 to 200 mm to find the optimum resistance distance. The experimental 

setup for determining compression (a) and tension (b) strengths is shown in Fig. 2. 

 

 
 
Fig. 2. Experimental setup for determining compression (a) and tension (b) strengths 

 

Compression and tension strength tests were conducted according to the 

procedure outlined in the ASTM 1037 (1998) standard. This standard has been used in 

determining the compression and tension strengths in this work since the ASTM 1037 

standard is mostly used in determining the resistance properties of particleboard and 

fiberboard joints (Atar and Ozciftci 2008; Çetin-Yerlikaya 2013). The tests were 

performed on a universal testing machine with a capacity of 10,000 kg and a loading 

speed of 2 mm/min. The loading was continued until separation occurred on the surface 

of the test samples. The strength of the joints was characterized by the bending moment 

force. The bending moment in compression (Mc) and in tension (Mt) = Moment (Nmm), 

and Fmax = Maximum force at the moment of breaking (N). The parameter L is the Arm 

of Moment (mm). The Mt and Mc values were calculated with Eqs. 1 and 2: 

Mt (Nmm) = Fmax / 2 × L                                                                                    (1)  

Mc (Nmm) = Fmax × L                                                                                         (2)  

  

Methods 
Development of artificial neural networks procedure   

RapidMiner is mostly used in many studies (Geetha and Nasira 2014; Yadav et al. 

2015; Celik and Basarır 2017) and popular commercial software (RapidMiner, Inc. 

Headquarters, version 7.4, Boston, MA, USA) has been developed by Ralf Klinkenberg, 

Ingo Mierswa, and Simon Fischer in 2001 (Yadav et al. 2015). Therefore, the 

RapidMiner software was selected for this work. Rapidminer is applied for ANNs based 

the prediction of the failure load of screw joints. The software has modules and operators 

that make it possible to analyze data sets for predicting. At the same time, this software is 

used to measure prediction performance. The ANNs are computed based on the 

independent variables that experimental data provide. The screw diameter, screw length, 

and distance between values were the inputs of the neural network, while the failure load 

of the screw joint was its output. The reported data were separated into two parts: training 

(80%) and testing data (20%). Figure 3 shows the RapidMiner operation for model 

production with operators. In addition, the method known in the literature as k-fold cross 
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validation has been used to measure the success of the ANN model. In this method, data 

set were separated into two parts: training (90%) and testing data (10%). 

 
 
Fig. 3. RapidMiner operation for model production with operators 
 

There are no rules for the number of neurons needed in artificial neural networks. 

The number of neurons required in each hidden layer can only be determined by trial 

(Akdag et al. 2016; Garcia et al. 2017). In this study, the employed neural network 

architecture is shown in Fig. 4.  

 

 
 
Fig. 4. The employed neural network architecture 
 
 

RESULTS AND DISCUSSION  

   

Moment Capacity under Compression and Tension Loads 
The screw diameter, the screw length, and the distance between the screws 

affected the tension and compression strengths of joints. The distance was varied to find 

the best value in the steps of 20 mm from 100 to 200 mm. The results showed that the 

highest tension and compression strengths of joints were achieved when the distance is 

140 mm between the screws. The worst results were obtained at 100 mm configuration. 

For the test of the screw length and diameter, the screw length values were chosen as 30 

and 40 mm, while the screw diameter was used 3, 3.5, and 4 mm. Joint strengths of all 

specimens improved when the screw length and diameter were increased. Therefore, 

Table 1 indicates that the best results were reached with 140 (the distance), 40 (the screw 

length), and 4 (the screw diameter). On the other hand, the worst parameters were 100 

(the distance), 30 (the screw length), and 3 (the screw diameter), as expected. Moment 

capacities were found to be greater for joints loaded in tension than the ones loaded in 
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compression, which was also reported by Zhang and Eckelman (1993). These results 

were consistent with previous studies (Kasal 2008; Smardzewski et al. 2015). Table 1 

presents the moment capacity variability determined by the compression and tension tests 

depending on changes in the diameter, length, and distance between the screws.  

 

Table 1. Results of the Duncan and Experimental Tests for Process Variables of 
Moment Capacity under Compression and Tension Loads 

Numbers are in units of mm.         Moment Capacity (Nmm) 

Under Compression Under Tension 

Distance between 
screws  

Screw 
length  

Screw diameter  N Mean SD HG Mean SD HG 

100 30 3 5 742 43 A 1762 30 A 

3.5 5 1095 118 A 3597 130 BC 

4 5 2104 151 CD 6079 108 EF 

40 3 5 5004 86 H 13321 673 G 

3.5 5 5967 101 I 14073 472 GH 

4 5 9794 548 MN 15886 758 IJ 

120 30 3 5 836 62 A 2909 592 B 

3.5 5 2162 139 CD 3736 147 BC 

4 5 2143 238 CD 7081 350 F 

40 3 5 6953 277 J 15015 590 HI 

3.5 5 10265 474 NO 15809 917 IJ 

4 5 10783 875 O 19172 517 M 

140 30 3 5 1270 113 AB 6050 180 EF 

3.5 5 3117 109 EF 6934 139 F 

4 5 4203 100 G 7205 403 F 

40 3 5 8223 171 K 22040 2007 N 

3.5 5 11597 1894 PQ 28154 1482 O 

4 5 11750 1002 Q 33497 1692 Q 

160 30 3 5 1256 61 AB 5123 90 DE 

3.5 5 2230 154 CD 6778 218 F 

4 5 2488 112 DE 7244 282 F 

40 3 5 9931 576 MN 16624 1004 JK 

3.5 5 11022 92 OPQ 19105 1512 M 

4 5 10910 543 OP 30225 2455 P 

180 30 3 5 807 22 A 5042 76 DE 

3.5 5 2003 959 BCD 5272 580 DE 

4 5 3847 84 FG 6264 165 EF 

40 3 5 6048 1353 I 14046 1008 GH 

3.5 5 8670 268 KL 17190 427 KL 

4 5 8592 1436 KL 22238 1607 N 

200 30 3 5 1568 156 ABC 4756 162 CD 

3.5 5 3573 643 FG 6796 607 F 

4 5 4053 142 G 6673 314 F 

40 3 5 9105 175 LM 14961 510 HI 

3.5 5 9106 239 LM 18029 253 LM 

4 5 9736 449 MN 22273 1744 N 

Notes: SD: standard deviation; HG (Homogeneity group): A group of observational units similar to 
each other in terms of an observed feature; different letters in columns represent statistical 
differences ,and same letters in columns indicate that there is no statistical difference between 
the samples according to the Duncan’s multiply range test at 95% confidence level. Groups in HG 
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column with more than one letter show no statistically significant difference with groups with 
common letter but groups that do not contain a letter in common are statistically different. 

ANN  
Thirty-six different inputs were presented to the ANN, and an experimental output 

(predicted failure load of screws) was obtained for each input for the testing phase (Table 

2) of the tension and compression strength tests.  

 

Table 2. Input and Output Parameters in Moment Capacity under Tension and 
Compression Loads for Testing Phase 

Numbers are in units of mm. Moment Capacity (Nmm) 

Under Tension Under Compression 

Distance between 
screws 

Screw 
Length  

Screw 
diameter 

Experimental Predicted Experimental Predicted 

100 30 3.0 1758 2171 761 882 

100 30 3.5 3515 4829 1293 1666 

100 30 4.0 6105 6498 2358 2983 

100 40 3.0 13551 13156 5021 4628 

100 40 3.5 14555 14342 6086 6536 

100 40 4.0 16280 15337 10346 8966 

120 30 3.0 2510 3961 751 1074 

120 30 3.5 3839 5590 2358 2280 

120 30 4.0 7185 6456 2440 3287 

120 40 3.0 15465 14269 6618 7325 

120 40 3.5 14338 17094 11106 9376 

120 40 4.0 19333 19017 10090 11036 

140 30 3.0 5810 5174 1293 1400 

140 30 3.5 6753 6158 3119 2849 

140 30 4.0 6938 6642 4184 3535 

140 40 3.0 20489 21272 8216 8992 

140 40 3.5 26594 27587 13236 10833 

140 40 4.0 32260 33695 12171 11743 

160 30 3.0 5134 5933 1293 1490 

160 30 3.5 7076 6516 2358 2993 

160 30 4.0 7400 6793 2586 3701 

160 40 3.0 15170 15798 10574 8668 

160 40 3.5 17899 20724 11106 10231 

160 40 4.0 33069 28637 10041 10835 

180 30 3.0 5033 6406 781 807 

180 30 3.5 4839 6743 1521 2315 

180 30 4.0 6429 6898 3956 3424 

180 40 3.0 12609 13526 7683 7923 

180 40 3.5 16698 16576 8976 8844 

180 40 4.0 20280 22069 6618 9117 

200 30 3.0 4585 7012 1826 1724 

200 30 3.5 7649 7126 4488 3199 

200 30 4.0 6450 7153 4184 4466 

200 40 3.0 15818 14113 9281 8084 

200 40 3.5 17656 17424 8976 8522 

200 40 4.0 20194 22591 10346 8602 
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When Table 2 is examined, it can be seen that the moment capacity results under 

both tensile and compressive loads are close to each other when the experimental and 

predicted results of the model are considered. Various performance measures related to 

the ANN model are shown in Table 3.  

 

Table 3. Various Performance Measures Related to ANN Model 

Test Type ANN 
Model 

Coefficient of 
Determination 

(R2) 

Root 
mean 

squared 
error 

Absolute 
error 

Relative 
error 

Spearman 
Rho 

Kendall 
Tau 

Tension 
strength test 

Testing 0.984 1462.168 1139.490 14.06% 0.942 0.816 

K-fold 
cross-

validation 

0.987 1699.144 1391.811 16.45% 0.958 0.875 

Training 0.990 1226.112 960.457 11.44% 0.955 0.844 

Compression 
strength test 

Testing 0.969 992.412 761.529 16.28% 0.952 0.838 

K-fold 
cross-

validation 

0.978 1044.642 805.377 23.47% 0.971 0.889 

Training 0.980 995.524 749.861 22.47% 0.978 0.887 

 

The coefficient of determination, R2, collectively can give an indication of the 

ANN performance. The R2 values were within range of 0 and 1, and prediction accuracy 

increases when R2 gets closer to 1 (Ozsahin 2012; Tiryaki et al. 2015). Generally, a R2
 

value greater than 0.9 indicates a highly satisfactory model (Heng and Suetsugi 2013; 

Cranganu et al. 2015). In other words, there was a good agreement between the 

experimental and the prediction results. For tension strength, the values of R2 in testing, 

cross-validation, and training were 0.984, 0.987, and 0.990, respectively, while the values 

of R2 in testing, cross-validation, and training for compression were 0.969, 0.978, and 

0.980, respectively.  R2 values calculated in the present study with the ANN modeling 

technique were found to be greater than 96% for all data sets. The R2 value obtained from 

the tension strength test was better than the compression strength test for the testing 

phase. All these findings showed that the prediction was compatible with experimental 

data of tension and compression strengths at least 96%. Root Mean Squared Error, which 

is calculated by quadrature sum of all errors, is the standard deviation of the residuals 

(prediction errors) (Hyndman and Koehler 2006). Mean absolute error is the average 

absolute deviation of the prediction from the actual value, and it is commonly used for 

forecast error in time series analysis (Hyndman and Athanasopoulos 2014). Relative error 

is the mean of the absolute deviation between the experimental and the predicted values. 

Spearman's Rho is the linear relationship between the measured and predicted quantities, 

which is the rank correlation between them (Spearman 1904). On the other hand, the last 

parameter is Kendall's Tau. The strength of the relationship between two quantities can 

be measured by Kendall’s Tau, which refers the rank correlation as it does for Spearman's 

Rho (Kendall 1938; Celik and Basarır 2017). 
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 CONCLUSIONS 
 

Experiments were performed by varying three furniture joint process parameters: 

the screw diameter, the length, and the distance between the screws. 

1. It was found that these parameters significantly affected the strength of joints. 

2. Though the ANN method was satisfactory in the modeling of the joint process, the 

prediction for the joints of the tension strength test was better for the testing phase 

than the compression strength test. 

3. In this study, ANN was shown to be successful for decreasing designers’ and 

engineers’ time for analyzing the performance of different furniture joints.  

4. This method ensures an optimum selection of the screw diameter, the length, and the 

distance between the screws as a failure load of screws, generating maximum 

strength. 

5. Finally, it is possible to say that ANNs are more economical to determine the effects 

on the strength of joints of various factors (screw diameter, screw length, and the 

distance between the screws). This work can be extended by testing different distance 

between screws, different screw lengths and diameters, or by adding different factors 

such as the number of screws and the type of wood material.  
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